1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
|
; X86ISA Library
; Note: The license below is based on the template at:
; http://opensource.org/licenses/BSD-3-Clause
; Copyright (C) 2015, May - August 2023, Regents of the University of Texas
; Copyright (C) August 2023 - May 2024, Yahya Sohail
; Copyright (C) May 2024 - August 2024, Intel Corporation
; All rights reserved.
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
; o Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; o Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
; o Neither the name of the copyright holders nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
; Original Author(s):
; Shilpi Goel <shigoel@cs.utexas.edu>
; Matt Kaufmann <kaufmann@cs.utexas.edu>
; Warren A. Hunt, Jr. <hunt@cs.utexas.edu>
; Robert Krug <rkrug@cs.utexas.edu>
; Updated by Shilpi Goel <shilpi@centtech.com> in June, 2021 to use
; the bigmem and defrstobj books.
; Contributing Author(s):
; Yahya Sohail <yahya.sohail@intel.com>
(in-package "X86ISA")
(include-book "utilities" :dir :utils)
(include-book "structures" :dir :utils)
(include-book "centaur/defrstobj2/defrstobj" :dir :system)
(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)
(include-book "centaur/bitops/ihsext-basics" :dir :system)
(include-book "std/strings/pretty" :dir :system)
(include-book "tlb")
(include-book "tty")
; cert_param: (non-lispworks)
;; Matt Kaufmann discovered that LispWorks complained about making an
;; array whose length is more than twice the legal limit. Here's the
;; exact error (from an email Matt sent to Shilpi):
;; HARD ACL2 ERROR in ACL2::MAKE-ARRAY$: The dimensions of an array must
;; obey restrictions of the underlying Common Lisp: each must be a non-
;; negative integer less than the value of array-dimension-limit (here,
;; 536870911) and their product must be less than the value of array-
;; total-size-limit (here, 536870911). The call
;; '(ACL2::MAKE-ARRAY$ 1342177280
;; :ELEMENT-TYPE '(UNSIGNED-BYTE 8)
;; :INITIAL-ELEMENT '0),
;; which has dimensions 1342177280, is thus illegal.
;; Since other Lisps do not complain about the large array length, we
;; choose not to support LispWorks at this point.
;; ----------------------------------------------------------------------
(defsection machine
:parents (x86isa)
:short "Core elements of the x86 ISA, like the @('x86') state,
decoder function, etc., and proofs about the x86 ISA
specification.")
(local (xdoc::set-default-parents x86isa-state))
;; ----------------------------------------------------------------------
;; x86 state
;; ----------------------------------------------------------------------
(defsection physical-memory-model
:parents (x86isa-state)
:short "How to change physical memory models"
:long "<p>We use the @(tsee bigmems::bigmems) library to model the
memory. The default model is @(tsee bigmem::bigmem). This model is
\"attachable,\" which allows one to replace it in execution with a
logically equivalent stobj. Here's why you'd want to replace it:</p>
<p>@(tsee bigmem::bigmem) provides constant access time for the entire address
space. However, accessing a byte requires walking a 3 level hierarchy.</p>
<p>@(tsee bigmem-asymmetric::bigmem-asymmetric) provides faster access to the
lower 6GB of physical memory, because those values are stored in an array, but
slower access to the rest of the address space, since it stores the rest of the
values in in an ordered alist.</p>
<p>If you're only going to be using the lower 6GB of memory (or mostly using
the lower 6 GB) of memory, using the @(tsee
bigmem-asymmetric::bigmem-asymmetric) makes sense, otherwise use @(tsee
bigmem::bigmem)</p>
<p>By default, the model uses @(tsee bigmem::bigmem). To switch to @(tsee
bigmem-asymmetric::bigmem-asymmetric), submit the following events to ACL2
before including the x86 books:</p>
<code>
(include-book \"centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric\" :dir :system)
(attach-stobj bigmem::mem bigmem-asymmetric::mem)
</code>")
(defsection environment-field
:parents (x86isa-state)
:short "An environment field that includes a simple model of the
file system and an oracle"
:long "<p>The environment allows reasoning about non-deterministic
events and computations in the ISA, like the @('RDRAND') instruction
and in the user-level mode, the @('SYSCALL') instruction.</p>"
(define rip-ret-alistp (lst)
:short "Recognizer for the @('oracle') sub-field of the environment
field @('env')"
:long "<p>A valid @('rip-ret-alistp') associates canonical linear
addresses, i.e., 48-bit integers in our specification, to a list
of arbitrary values. For example, <tt>'((1 . ((-1 . 12) 5000)) (2
. (0)))</tt> means that if the oracle in the environment field is
consulted at address <tt>1</tt>, <tt>'(-1 . 12)</tt> will be
popped out. If the oracle is consulted again at the address
<tt>1</tt>, then <tt>5000</tt> will be popped out.</p>"
:parents (environment-field)
(if (atom lst)
(equal lst nil)
(and (consp (car lst))
(i48p (caar lst))
(true-listp (cdar lst))
(rip-ret-alistp (cdr lst))))
///
(defthm rip-ret-alistp-fwd-chaining-alistp
(implies (rip-ret-alistp x)
(alistp x))
:rule-classes :forward-chaining))
(define env-alistp (env)
:short "Recognizer of the environment field @('env')"
:long "<p>As of now, @('env-alistp') consists of three sub-fields,
all of which are basically alists --- file descriptors, file
contents, and an oracle field.</p>"
:parents (environment-field)
(or (equal env nil)
(and (alistp env)
(equal (len env) 3)
(consp (assoc :FILE-DESCRIPTORS env))
(alistp (cdr (assoc :FILE-DESCRIPTORS env)))
(consp (assoc :FILE-CONTENTS env))
(alistp (cdr (assoc :FILE-CONTENTS env)))
(consp (assoc :ORACLE env))
(rip-ret-alistp (cdr (assoc :ORACLE env)))))
///
(defun env-alist-fix (x)
(declare (xargs :guard (env-alistp x)))
(mbe :logic (if (env-alistp x) x nil)
:exec x))
(defthm env-alistp-fwd-chaining-alistp
(implies (env-alistp x)
(alistp x))
:rule-classes :forward-chaining)
(defrulel nth-and-assoc-equal-check
(implies (and (alistp x)
(not (equal (car (nth 0 x)) :oracle))
(equal (car (nth 1 x)) :oracle))
(equal (nth 1 x)
(assoc-equal :oracle x))))
(defthm env-alistp-implies-rip-ret-alistp
(implies (env-alistp x)
(rip-ret-alistp (cdr (assoc-equal :oracle x))))
:rule-classes (:rewrite :forward-chaining))
(defthm env-alistp-implies-alistp-file-descriptors
(implies (env-alistp x)
(alistp (cdr (assoc-equal :file-descriptors x))))
:rule-classes (:rewrite :forward-chaining))
(defthm env-alistp-implies-alistp-file-contents
(implies (env-alistp x)
(alistp (cdr (assoc-equal :file-contents x))))
:rule-classes (:rewrite :forward-chaining))))
(defn os-info-fix (x)
(if (keywordp x) x :linux))
(defconst *x86isa-state*
`(
;; --------------------------------------------------
(:doc "<h5>Fields that govern the model's operation</h5>
<p>These fields are an artifact of our x86 ISA model.</p>
<ul>")
(:doc "<li>@('MS'): Model state, used to indicate I/O or errors
that our model does not handle yet. Basically, we use the model
state to assert partial correctness. If the model state is nil
till the end of execution, we expect the results to be correct.
Otherwise, all bets are off.<br/>")
(ms :type t :initially nil)
(:doc "</li>")
(:doc "<li>@('FAULT'): We need some way to pass exceptions and
such around. So we stuff them into the @('fault') slot, to be
processed by the step function.<br/>")
(fault :type t :initially nil)
(:doc "</li>")
(:doc "<li>@('ENV'): Environment for the programs running on our
x86 model.<br/>")
(env :type (satisfies env-alistp)
:fix (ec-call (env-alist-fix x))
:initially nil)
(:doc "</li>")
(:doc "<li>@('UNDEF'): Field that seeds unknown values that
characterize commonly occurring undefined behavior.<br/>")
(undef :type t :initially 0)
(:doc "</li>")
(:doc "<li>@('APP-VIEW'): This field acts as a switch. When its
value is @('t'), support for system features like paging is
absent. When its value is @('nil'), the model is in @('sys-view')
and support for system features is present.<br/>")
(app-view :type (satisfies booleanp)
:fix (acl2::bool-fix x)
:initially t)
(:doc "</li>")
(:doc "<li>@('MARKING-VIEW'): This field also acts as a
switch. When its value is @('t'), then accessed and dirty bits in
the paging structures are set during those data structure
traversals, as expected. Otherwise, these bits are not set. This
switch is meaningful only in when the model is in @('sys-view').<br/>")
(marking-view :type (satisfies booleanp)
:fix (acl2::bool-fix x)
:initially t)
(:doc "</li>")
(:doc "<li>@('ENABLE-PERIPHERALS'): This field also acts as a
switch. When its value is @('t'), then the model's peripherals
(timer and TTY) are enabled. Otherwise, the model acts like
there are no peripherals. This only applies when the model
is in @('sys-view').<br/>")
(enable-peripherals :type (satisfies booleanp)
:fix (acl2::bool-fix x)
:initially t)
(:doc "</li>")
(:doc "<li>@('HANDLE-INTERRUPTS'): This field also acts as a
switch. When its value is @('t'), then exceptions and interrupts
are handled using handlers in the IDT. Otherwise, exceptions and
interrupts cause the ms or fault fields to be set after instruction
execution, which terminates execution when using x86-run. This
only applies when the model is in @('sys-view'). Note: The timer
peripheral triggers interrupts, and they won't be handled unless
this is @('t'), so if you are using it, you probably want to enable
this.<br/>")
(handle-exceptions :type (satisfies booleanp)
:fix (acl2::bool-fix x)
:initially t)
(:doc "</li>")
(:doc "<li>@('OS-INFO'): This field is meaningful only in
@('app-view') mode to model system call behavior.<br/>")
(os-info :type (satisfies keywordp)
:fix (ec-call (os-info-fix x))
:initially :linux)
(:doc "</li>")
(:doc "</ul>")
;; --------------------------------------------------
(:doc "<h5>Components of the x86 state specified by this model</h5>
<ul>")
(:doc
"<li>@('RGF'): The general-purpose registers are just an array of
signed 64-bit integers. Note that we choose to define the GPRs
as signed integers for the sake of efficiency. For instance,
@('-1') in unsigned format would occupy 64 bits, a bignum. But
in the signed format, it would be a fixum. See Intel Volume 1,
Section 3.4.1 (General-Purpose Registers) for information about
these registers.<br/>")
(rgf :type (array (signed-byte 64)
(,*64-bit-general-purpose-registers-len*))
:initially 0
:fix (acl2::logext 64 (ifix x))
:resizable nil
:accessor rgfi
:updater !rgfi)
(:doc "</li>")
(:doc "<li>@('RIP'): We choose the RIP to be a 48-bit signed
integer. RIP can contain only canonical addresses, which range
from 0 to 2^47-1 and 2^64-2^47 to 2^64-1, inclusive, for the
64-bit mode. So, in our model, 0 to 2^47-1 represents the lower
range of canonical addresses and -2^47 to -1 represents the upper
range of canonical addresses. See Intel manual, Jan'19, Volume 1,
Section 3.5 for details about the instruction pointer.<br/>")
(rip :type (signed-byte 48)
:initially 0
:fix (acl2::logext 48 (ifix x)))
(:doc "</li>")
(:doc "<li>@('RFLAGS'): We define the @('rflags') register as a
32-bit field, even though in the 64-bit mode, rflags is a 64-bit
register --- this is justified because Intel says that the top 32
bits of rflags are reserved. See Intel manual, Jan'19A, Volume 1,
Section 3.4.3 for details about @('rflags').<br/>")
(rflags :type (unsigned-byte 32)
;; Bit 1 is always 1.
:initially 2
:fix (acl2::loghead 32 (ifix x)))
(:doc "</li>")
(:doc "<li>@('User Segment Registers'):
<p>Visible portion:
@({ 16-bit selector INDEX(13)::TI(1)::RPL(2) })</p>
<p>Hidden/Cache portion (see Intel manual, Mar'17, Vol. 3A, Figure 3-7):
@({ 16-bit Attributes
32-bit Limit
64-bit Base Address})</p>
<p>See Intel manual, Jan'19, Volume 1, Section 3.4.2 and Intel
manual, Jan'19, Volume 3, Sections 3.4.2 and 3.4.3 for
details.</p><br/>")
(seg-visible :type (array (unsigned-byte 16)
(#.*segment-register-names-len*))
:initially 0
:fix (acl2::loghead 16 (ifix x))
:resizable nil
:accessor seg-visiblei
:updater !seg-visiblei)
(seg-hidden-base :type (array (unsigned-byte 64)
(#.*segment-register-names-len*))
:fix (acl2::loghead 64 (ifix x))
:initially 0
:resizable nil
:accessor seg-hidden-basei
:updater !seg-hidden-basei)
(seg-hidden-limit :type (array (unsigned-byte 32)
(#.*segment-register-names-len*))
:fix (acl2::loghead 32 (ifix x))
:initially 0
:resizable nil
:accessor seg-hidden-limiti
:updater !seg-hidden-limiti)
(seg-hidden-attr :type (array (unsigned-byte 16)
(#.*segment-register-names-len*))
:fix (acl2::loghead 16 (ifix x))
:initially 0
:resizable nil
:accessor seg-hidden-attri
:updater !seg-hidden-attri)
(:doc "</li>")
(:doc "<li>@('System Table Registers (GDTR and IDTR)'): These
registers point to bounded tables of (up to 8192) segment
descriptors. In 64-bit mode, the system table registers are
extended from 48 to 80 bits. See Intel manual, Jan'19, Volume 3,
Figure 2-6.<br/>")
(str :type (array (unsigned-byte 80)
(#.*gdtr-idtr-names-len*))
:fix (acl2::loghead 80 (ifix x))
:initially 0
:resizable nil
:accessor stri
:updater !stri)
(:doc "</li>")
(:doc "<li>@('System Segment Registers (Task Register and LDTR)'):
<p>Visible portion:
@({ 16-bit selector INDEX(13)::TI(1)::RPL(2) })</p>
<p>Hidden/Cache portion:
@({ 16-bit Attributes
32-bit Limit
64-bit Base Address })</p>
<p>See Intel manual, Jan'19, Volume 3, Figure 2-6 for details.</p><br/>")
(ssr-visible :type (array (unsigned-byte 16)
(#.*ldtr-tr-names-len*))
:initially 0
:fix (acl2::loghead 16 (ifix x))
:resizable nil
:accessor ssr-visiblei
:updater !ssr-visiblei)
(ssr-hidden-base :type (array (unsigned-byte 64)
(#.*ldtr-tr-names-len*))
:initially 0
:fix (acl2::loghead 64 (ifix x))
:resizable nil
:accessor ssr-hidden-basei
:updater !ssr-hidden-basei)
(ssr-hidden-limit :type (array (unsigned-byte 32)
(#.*ldtr-tr-names-len*))
:initially 0
:fix (acl2::loghead 32 (ifix x))
:resizable nil
:accessor ssr-hidden-limiti
:updater !ssr-hidden-limiti)
(ssr-hidden-attr :type (array (unsigned-byte 16)
(#.*ldtr-tr-names-len*))
:fix (acl2::loghead 16 (ifix x))
:initially 0
:resizable nil
:accessor ssr-hidden-attri
:updater !ssr-hidden-attri)
(:doc "</li>")
(:doc "<li>@('CTR'): Control registers --- See Intel manual,
Jan'19, Volume 3, Section 2.5.<br/>")
;; [Shilpi]:
;; Note that CR0 is still a 32-bit register in 64-bit mode. All
;; other control registers are 64-bit wide. Also, CR4 has all
;; but the low 21 bits reserved. It'd be nice to define these
;; registers separately so that bignum creation can be avoided
;; during slicing operations involving these registers.
(ctr :type (array (unsigned-byte 64)
(#.*control-register-names-len*))
:fix (acl2::loghead 64 (ifix x))
:initially 0
:resizable nil
:accessor ctri
:updater !ctri)
(:doc "</li>")
(:doc "<li>@('DBG'): Debug registers --- See Intel manual, Jan'19,
Volume 3, Section 17.2.<br/>")
(dbg :type (array (unsigned-byte 64)
(#.*debug-register-names-len*))
:initially 0
:fix (acl2::loghead 64 (ifix x))
:resizable nil
:accessor dbgi
:updater !dbgi)
(:doc "</li>")
(:doc "<li>@('FPU 80-bit data registers'): The MMX
registers (@('MM0') through @('MM7')) are aliased to the low
64-bits of the FPU data registers. See Intel manual, Jan'19,
Volume 1, Section 8.1.2.")
(fp-data :type (array (unsigned-byte 80)
(#.*fp-data-register-names-len*))
:fix (acl2::loghead 80 (ifix x))
:initially 0
:resizable nil
:accessor fp-datai
:updater !fp-datai)
(:doc "</li>")
(:doc "<li>@('FPU 16-bit control register'): See Intel manual,
Jan'19, Volume 1, Section 8.1.5.")
(fp-ctrl :type (unsigned-byte 16)
:fix (acl2::loghead 16 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('FPU 16-bit status register'): See Intel manual,
Jan'19, Volume 1, Section 8.1.3.")
(fp-status :type (unsigned-byte 16)
:fix (acl2::loghead 16 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('FPU 16-bit tag register'): See Intel manual,
Jan'19, Volume 1, Section 8.1.7.")
(fp-tag :type (unsigned-byte 16)
:fix (acl2::loghead 16 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('FPU 48-bit last instruction pointer'): See Intel
manual, Jan'19, Volume 1, Figure 8-1.")
(fp-last-inst :type (unsigned-byte 48)
:fix (acl2::loghead 48 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('FPU 48-bit last data (operand) pointer'): See Intel
manual, Jan'19, Volume 1, Figure 8-1.")
(fp-last-data :type (unsigned-byte 48)
:fix (acl2::loghead 48 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('FPU 11-bit opcode:') See Intel manual, Jan'19,
Volume 1, Figure 8-1.<br/>")
(fp-opcode :type (unsigned-byte 11)
:fix (acl2::loghead 11 (ifix x))
:initially 0)
(:doc "</li>")
(:doc "<li>@('MXCSR') register")
(mxcsr :type (unsigned-byte 32)
;; Bits 7 through 12 are the individual masks for the
;; SIMD floating point exceptions. These are set upon
;; a power-up or reset.
:fix (acl2::loghead 32 (ifix x))
:initially 8064)
(:doc "</li>")
(:doc "<li>@('OPMASK'): 8 opmask registers are used for
conditional execution and merging of data elements in the
destination operands of AVX-512 EVEX-encoded instructions. They
are also used as operands in opmask instructions like KMOV, etc.")
(opmsk :type (array (unsigned-byte 64)
(#.*opmsk-register-names-len*))
:fix (acl2::loghead 64 (ifix x))
:initially 0
:resizable nil
:accessor opmski
:updater !opmski)
(:doc "</li>")
(:doc "<li>@('ZMM'): ZMM 512-bit data registers --- the lower
256-bits of the ZMM registers are aliased to the respective
256-bit YMM registers and the lower 128-bit are aliased to the
respective 128-bit XMM registers. Note that registers YMM16/XMM16
to YMM31/XMM31 are available only via the EVEX prefix (AVX-512).")
(zmm :type (array (unsigned-byte 512)
(#.*zmm-register-names-len*))
:fix (acl2::loghead 512 (ifix x))
:initially 0
:resizable nil
:accessor zmmi
:updater !zmmi)
(:doc "</li>")
(:doc "<li>@('MSR'): Model-specific registers<br/>")
(msr :type (array (unsigned-byte 64)
(#.*model-specific-register-names-len*))
:fix (acl2::loghead 64 (ifix x))
:initially 0
:resizable nil
:accessor msri
:updater !msri)
(:doc "</li>")
(:doc "<li>@('MEM'): Field modeling @('2^52') bytes of physical
memory in @('sys-view') and @('2^48') bytes of linear memory in
@('app-view'). <br/>")
(mem :type (array (unsigned-byte 8) (,*mem-size-in-bytes*)) ;; 2^52
:initially 0
:fix (acl2::loghead 8 (ifix x))
:child-stobj bigmem::mem
:child-accessor bigmem::read-mem
:child-updater bigmem::write-mem
:accessor memi
:updater !memi)
(:doc "</li>")
(:doc "<li>@('Inhibit Interrupts One Instruction'): The Intel manual states
that some instructions, like the STI instruction, inhibit interrupts
for one instruction after execution, despite the interrupt flag being
set immediately. This flag is used to implement that. It is t when
interrupts should not be allows and is cleared after executing an
instruction if it was set at the beginning of the instruction.
Consult the documentation for STI in Volume 2B 4.3 in the Intel
manual.<br/>")
(inhibit-interrupts-one-instruction :type (satisfies booleanp)
:initially nil
:fix (acl2::bool-fix x))
(:doc "</li>")
(:doc "<li>@('Time Stamp Counter'): This keeps track of how many instructions have been executed for the RDTSC instruction.<br/>")
(time-stamp-counter :type (satisfies natp)
:initially 0
:fix (nfix x))
(:doc "</li>")
(:doc "<li>@('Last Clock Event'): Our clock device sends a clock event every 100,000 instructions. When interrupts
are disabled, however, we can't send a clock event. Instead of sending one on every 100,000 instructions,
we send an interrupt if interrupts are enabled and the last clock event was 100,000 or more instructions ago.
This keeps track of how many instructions have been executed since the last clock event.<br/>")
(last-clock-event :type (satisfies natp)
:initially 0
:fix (nfix x))
(:doc "</li>")
(:doc "<li>@('Implicit Supervisor Access'): This field is a boolean
flag that, when t, tells the address translation system that all
translations should be treated as implicit supervisor accesses,
regardless of current privilege level.<br/>")
(implicit-supervisor-access :type (satisfies booleanp)
:initially nil
:fix (acl2::bool-fix x))
(:doc "</li>")
(:doc "<li>@('TLB'): This field models a (number of) TLB(s). See @(tsee tlb)
for a detailed discussion about our address translation caching scheme and
its consistency with the x86 ISA. It is a fast alist that is @(tsee tlbp).
Invalid translations are not cached.<br/>")
(tlb :type (satisfies tlbp)
:initially :tlb
:fix (tlb-fix x))
(:doc "</li>")
(:doc "<li>@('TTY-in'): This field models the input buffer of the TTY device.<br/>")
(tty-in :type (satisfies tty-bufferp)
:initially nil
:fix (tty-buffer-fix x))
(:doc "</li>")
(:doc "<li>@('TTY-out'): This field models the output buffer of the TTY device.<br/>")
(tty-out :type (satisfies tty-bufferp)
:initially nil
:fix (tty-buffer-fix x))
(:doc "</li>")
(:doc "</ul>")))
(make-event
`(defconst *x86-field-names-as-keywords*
',(loop$ for i in (strip-cars *x86isa-state*)
when (not (equal i :doc))
collect
(intern$ (symbol-name i) "KEYWORD"))))
(defun xdoc-x86-state (xs) ;; xs: *x86isa-state*
(if (atom xs)
""
(let* ((fld (car xs))
(rest (xdoc-x86-state (cdr xs))))
(if (equal (car fld) :doc)
(str::cat (cadr fld) rest)
(str::cat "@({ " (str::pretty fld
:config (str::make-printconfig
:home-package (pkg-witness "X86ISA")
:print-lowercase t))
" })" rest)))))
(with-output
:on summary
:summary-off #!acl2(:other-than errors time)
(make-event
`(rstobj2::defrstobj x86
,@(loop$ for fld in *x86isa-state* append
(if (equal (car fld) :doc)
nil
(list fld)))
:inline t
:non-memoizable t
:enable '(bigmem::read-mem-over-write-mem
bigmem::read-mem-from-nil
bigmem::loghead-identity-alt)
:accessor xr
:updater xw
:accessor-template ( x)
:updater-template (! x))))
(defthm x86p-xw
(implies (x86p x86)
(x86p (xw fld index val x86))))
(globally-disable '(x86p))
(defthm-signed-byte-p i64p-xr-rgf
:hyp t
:bound 64
:concl (xr :rgf i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n32p-xr-rflags
:hyp t
:bound 32
:concl (xr :rflags i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n16p-xr-seg-visible
:hyp t
:bound 16
:concl (xr :seg-visible i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n64p-xr-seg-hidden-base
:hyp t
:bound 64
:concl (xr :seg-hidden-base i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n32p-xr-seg-hidden-limit
:hyp t
:bound 32
:concl (xr :seg-hidden-limit i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n16p-xr-seg-hidden-attr
:hyp t
:bound 16
:concl (xr :seg-hidden-attr i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n64p-xr-ssr-hidden-base
:hyp t
:bound 64
:concl (xr :ssr-hidden-base i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n32p-xr-ssr-hidden-limit
:hyp t
:bound 32
:concl (xr :ssr-hidden-limit i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n64p-xr-ctr
:hyp t
:bound 64
:concl (xr :ctr i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n80p-xr-fp-data
:hyp t
:bound 80
:concl (xr :fp-data i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n32p-xr-mxcsr
:hyp t
:bound 32
:concl (xr :mxcsr i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n512p-xr-zmm
:hyp t
:bound 512
:concl (xr :zmm i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n08p-xr-mem
:hyp t
:bound 8
:concl (xr :mem i x86)
:gen-rewrite nil ; already done by defrstobj
:gen-linear t
:gen-type t)
(defthm-unsigned-byte-p n64p-xr-msr
:hyp t
:bound 64
:concl (xr :msr i x86)
:gen-linear t
:gen-type t)
(defthm-signed-byte-p i48p-xr-rip
:hyp t
:bound 48
:concl (xr :rip i x86)
:gen-linear t
:gen-type t)
;; ----------------------------------------------------------------------
(make-event
`(defxdoc x86isa-state
:pkg "X86ISA"
:parents (machine)
:short "The state of the @('x86isa') model"
:long ,(str::cat
"<h4>Definition of the @('x86isa') state</h4>
<p>The definition of the state uses nested and abstract stobjs by way of
community books @(tsee rstobj2::defrstobj), @(tsee bigmem::bigmem), or @(tsee
bigmem-asymmetric::bigmem-asymmetric). It may be interesting to read about
the old definition to see how the current definition supports all of its
functionality but in a more maintainable way; see @(see
x86isa-state-history).</p>
<p>The @('bigmem') and @('bigmem-asymmetric') books define a memory model
similar to the old @('x86isa') memory model in that it provides a record
representation for reasoning and an allocate-on-demand, array-like performance
for execution. The x86 concrete stobj has the @('bigmem') stobj for its memory
field; @('defrstobj') exports the @('bigmem') memory accessor and updater
functions alongside those of other x86 fields and gives us a state definition
that's logically a multi-typed record. @('defrstobj') also allows the
definition of a universal accessor and updater, so we still retain that
feature in the @('x86isa') books.</p>
<p>Note that the @('bigmem') books define a 64-bit address space,
though the @('x86isa') state restricts that to a 52-bit address space
because the max. physical address allowed by the x86 architecture is
52 (as of this writing in mid-2021). If the max. allowed physical
address is increased anywhere up to 64 bits, then we can simply
change the size of the @('mem') field in the @('x86isa') stobj.</p>
<h4>x86 ISA state components modeled by @('x86isa')</h4>"
(xdoc-x86-state *x86isa-state*))))
(defxdoc x86isa-state-history
:parents (x86isa-state)
:short "A short history of the definition of the x86 state"
:long "<h4>Old definition of the @('x86isa') state</h4>
<p>Before @(tsee bigmems::bigmems) and @(tsee rstobj2::defrstobj) were used to
define the x86 state, the x86 state's definition was rather tedious. (For
future reference, the following git revision has that old definition:
@('dea40263247bd930077205526934bc596686bfb0')).</p>
<p>This current file @('state.lisp') replaces the following old
files, all of which are deleted now.</p>
<ul>
<li> @('concrete-state.lisp') </li>
<li> @('concrete-memory.lisp') </li>
<li> @('abstract-state.lisp') </li>
<li> @('state-field-thms.lisp') </li>
</ul>
<p>The old x86isa memory model was based on the FMCAD'2012 paper \"A
Formal Model of a Large Memory that Supports Efficient Execution\".
The following comment from the old file @('concrete-state.lisp')
describes it briefly:</p>
<code>
....
;; For our ACL2 model, we define a paging-like mechanism to
;; model the complete x86 52-bit address space. The memory is
;; laid out in a flat array, to be viewed as back-to-back
;; \"pseudo-pages\" each of size 2^27 bytes (128MB). The address
;; of a byte is split into two pieces: a 25-bit pseudo-page
;; address and a 27-bit offset within a page. The mem-table
;; data structure is of size *mem-table-size* = 2^25 -- thus,
;; indices are 25 bits -- and it maps these indices to 25-bit
;; pseudo-page addresses. However, the mem-table values are
;; actually 26-bit values: the least significant bit is
;; initially 1, but is 0 when the entry is valid, in which case
;; the most significant 25 bits represent a pseudo-page address.
;; The offset of a byte address is a 27-bit wide address, which
;; when added to (ash pseudo-page-address 27), gives the \"real\"
;; address of a byte stored in mem-array. Mem-array-next-addr
;; keeps track of the 25-bit index of the pseudo-page to be
;; allocated next.
;; Here is an example of how this works. Suppose we have the
;; following, where again, the least significant bit of 0
;; indicates a valid entry, and where {i, 1'bx} denotes
;; concatenation of the bit-vector i with the single bit x.
;; mem-table[#x0654321] = {0, 1'b0}
;; mem-table[#x16789ab] = {1, 1'b0}
;; mem-table[#x0111111] = {2, 1'b0}
;; All additional values in mem-table are the initial value of
;; 1, which means \"page is not present\".
;; Then mem-array starts as follows.
;; 2^27 bytes corresponding to byte addresses with top 25 bits = #x0654321
;; 2^27 bytes corresponding to byte addresses with top 25 bits = #x16789ab
;; 2^27 bytes corresponding to byte addresses with top 25 bits = #x0111111
(mem-table :type (array (unsigned-byte #.*mem-table-size-bits+1*)
;; *mem-table-size-bits* of pseudo-page
;; address, followed by 1 extra bit
;; (LSB) to indicate the
;; absence/presence of pseudo-pages
(#.*mem-table-size*))
:initially 1
:resizable nil)
(mem-array :type (array (unsigned-byte 8)
(#.*initial-mem-array-length*))
:initially 0
:resizable t)
(mem-array-next-addr :type (integer 0 #.*mem-table-size*)
:initially 0)
...
</code>
<p>The proof of correctness of this memory model was pretty
involved (see the old file @('concrete-memory.lisp')). Then there
was the overhead of introducing an abstract stobj to logically view
this memory as a record (see old file @('abstract-stobj.lisp')).</p>
<p>All of this was finished before nested stobjs were supported in
ACL2, so there was not much incentive to simplify the memory model or
the state definition.</p>
<h5>Non-interference Properties</h5>
<p>We used a neat trick for all the accessors and updaters of
the @('x86isa') state's field that is worth mentioning here. Say
@('RGFI*') is the name of the corresponding exported accessor from
defabsstobj; during execution, @('RGFI*') calls are really
@('RGF$CI') calls, the concrete accessor from the corresponding
concrete stobj.</p>
<code> Signature: (RGFI* index x86) </code>
<p>We also defined a universal accessor function @('XR'), meant to be
used only for reasoning:</p>
<code> Signature: (XR fld-name index x86) </code>
<p>@('XR') case-split on @('fld-name') and called the appropriate
accessor function (e.g., if fld-name was @(':RGF'), @('XR') called
@('RGFI*'), and so on). We defined a similar universal updater
function @('XW'). We then proved read-over-write/write-over-write,
etc. lemmas about just @('XR') and @('XW'), thereby getting these
properties for all fields of the x86 state. This way, we avoid a
blow-up in the number of such lemmas as the number of fields in the
state increase.</p>
<p>We then defined another function, @('RGFI') (inlined), with the
same signature as @('RGFI*'), whose body was an @('MBE') like
so:</p>
<code>
(RGFI index x86) :=
(mbe :logic (XR :RGF index x86)
:exec (RGFI* index x86))
</code>
<p>We then used @('RGFI') as the canonical accessor function for the
@('RGF') field --- we never used @('RGFI*') or @('XR') in our
definitions from this point on, though @('XR') was often used in
definitions where we didn't care about the execution speed (e.g.,
non-executable functions used only for reasoning). We kept @('RGFI')
enabled and @('XR') disabled.</p>
<p>The consequence of this was that whenever an @('RGFI') call was
encountered during reasoning, it quickly opened up to @('XR') (about
which we have all those nice theorems). During execution, @('RGFI')
was simply the efficient concrete accessor @('RGF$CI').</p>")
;; ----------------------------------------------------------------------
|