File: cffi-manual.texinfo

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (7159 lines) | stat: -rw-r--r-- 221,048 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
\input texinfo   @c -*- Mode: Texinfo; Mode: auto-fill -*-
@c %**start of header
@setfilename cffi.info
@settitle CFFI User Manual
@exampleindent 2

@c @documentencoding utf-8

@c Style notes:
@c
@c * The reference section names and "See Also" list are roman, not
@c   @code.  This is to follow the format of CLHS.
@c
@c * How it looks in HTML is the priority.

@c ============================= Macros =============================
@c The following macros are used throughout this manual.

@macro Function {args}
@defun \args\
@end defun
@end macro

@macro Macro {args}
@defmac \args\
@end defmac
@end macro

@macro Accessor {args}
@deffn {Accessor} \args\
@end deffn
@end macro

@macro GenericFunction {args}
@deffn {Generic Function} \args\
@end deffn
@end macro

@macro ForeignType {args}
@deftp {Foreign Type} \args\
@end deftp
@end macro

@macro Variable {args}
@defvr {Special Variable} \args\
@end defvr
@end macro

@macro Condition {args}
@deftp {Condition Type} \args\
@end deftp
@end macro

@macro cffi
@acronym{CFFI}
@end macro

@macro impnote {text}
@quotation
@strong{Implementor's note:} @emph{\text\}
@end quotation
@end macro

@c Info "requires" that x-refs end in a period or comma, or ) in the
@c case of @pxref.  So the following implements that requirement for
@c the "See also" subheadings that permeate this manual, but only in
@c Info mode.
@ifinfo
@macro seealso {name}
@ref{\name\}.
@end macro
@end ifinfo

@ifnotinfo
@alias seealso = ref
@end ifnotinfo

@c Typeset comments in roman font for the TeX output.
@iftex
@alias lispcmt = r
@end iftex
@ifnottex
@alias lispcmt = asis
@end ifnottex

@alias res = result

@c ============================= Macros =============================


@c Show types, functions, and concepts in the same index.
@syncodeindex tp cp
@syncodeindex fn cp

@copying
Copyright @copyright{} 2005 James Bielman <jamesjb at jamesjb.com> @*
Copyright @copyright{} 2005-2015 Lu@'{@dotless{i}}s Oliveira
  <loliveira at common-lisp.net> @*
Copyright @copyright{} 2005-2006 Dan Knapp <danka at accela.net> @*
Copyright @copyright{} 2005-2006 Emily Backes <lucca at accela.net> @*
Copyright @copyright{} 2006 Stephen Compall <s11 at member.fsf.org>

@quotation
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

@sc{The software is provided ``as is'', without warranty of any kind,
express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement.
In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the
software or the use or other dealings in the software.}
@end quotation
@end copying
@c %**end of header

@dircategory Software development
@direntry
* CFFI Manual: (cffi-manual).           CFFI Manual.
@end direntry

@titlepage
@title CFFI User Manual
@c @subtitle Version X.X
@c @author James Bielman

@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage

@contents

@ifnottex
@node Top, Introduction, (dir), (dir)
@top cffi
@insertcopying
@end ifnottex

@menu
* Introduction::                What is CFFI?
* Installation::
* Implementation Support::
* Tutorial::                    Interactive intro to using CFFI.
* Wrapper generators::          CFFI forms from munging C source code.
* Foreign Types::
* Pointers::
* Strings::
* Variables::
* Functions::
* Libraries::
* Callbacks::
* The Groveller::
* Static Linking::
* Limitations::
* Platform-specific features::  Details about the underlying system.
* Glossary::                    List of CFFI-specific terms and meanings.
* Comprehensive Index::

@detailmenu
 --- Dictionary ---

Foreign Types

* convert-from-foreign::        Outside interface to backward type translator.
* convert-to-foreign::          Outside interface to forward type translator.
* defbitfield::                 Defines a bitfield.
* defcstruct::                  Defines a C structure type.
* defcunion::                   Defines a C union type.
* defctype::                    Defines a foreign typedef.
* defcenum::                    Defines a C enumeration.
* define-foreign-type::         Defines a foreign type specifier.
* define-parse-method::         Specifies how a type should be parsed.
@c * explain-foreign-slot-value::  <unimplemented>
* foreign-bitfield-symbols::    Returns a list of symbols for a bitfield type.
* foreign-bitfield-value::      Calculates a value for a bitfield type.
* foreign-enum-keyword::        Finds a keyword in an enum type.
* foreign-enum-value::          Finds a value in an enum type.
* foreign-slot-names::          Returns a list of slot names in a foreign struct.
* foreign-slot-offset::         Returns the offset of a slot in a foreign struct.
* foreign-slot-pointer::        Returns a pointer to a slot in a foreign struct.
* foreign-slot-value::          Returns the value of a slot in a foreign struct.
* foreign-type-alignment::      Returns the alignment of a foreign type.
* foreign-type-size::           Returns the size of a foreign type.
* free-converted-object::       Outside interface to typed object deallocators.
* free-translated-object::      Defines how to free a oreign object.
* translate-from-foreign::      Defines a foreign-to-Lisp object translation.
* translate-to-foreign::        Defines a Lisp-to-foreign object translation.
* with-foreign-object::         Allocates a foreign object with dynamic extent.
* with-foreign-objects::        Plural form of @code{with-foreign-object}.
* with-foreign-slots::          Accesses the slots of a foreign structure.

Pointers

* foreign-free::                Deallocates memory.
* foreign-alloc::               Allocates memory.
* foreign-symbol-pointer::      Returns a pointer to a foreign symbol.
* inc-pointer::                 Increments the address held by a pointer.
* incf-pointer::                Increments the pointer address in a place.
* make-pointer::                Returns a pointer to a given address.
* mem-aptr::                    The pointer to an element of an array.
* mem-aref::                    Accesses the value of an index in an array.
* mem-ref::                     Dereferences a pointer.
* null-pointer::                Returns a NULL pointer.
* null-pointer-p::              Tests a pointer for NULL value.
* pointerp::                    Tests whether an object is a pointer or not.
* pointer-address::             Returns the address pointed to by a pointer.
* pointer-eq::                  Tests if two pointers point to the same address.
* with-foreign-pointer::        Allocates memory with dynamic extent.

Strings

* *default-foreign-encoding*::  Default encoding for the string types.
* foreign-string-alloc::        Converts a Lisp string to a foreign string.
* foreign-string-free::         Deallocates memory used by a foreign string.
* foreign-string-to-lisp::      Converts a foreign string to a Lisp string.
* lisp-string-to-foreign::      Copies a Lisp string into a foreign string.
* with-foreign-string::         Allocates a foreign string with dynamic extent.
* with-foreign-strings::        Plural form of @code{with-foreign-string}.
* with-foreign-pointer-as-string::  Similar to CL's with-output-to-string.

Variables

* defcvar::                     Defines a C global variable.
* get-var-pointer::             Returns a pointer to a defined global variable.

Functions

* defcfun::                     Defines a foreign function.
* foreign-funcall::             Performs a call to a foreign function.
* foreign-funcall-pointer::     Performs a call through a foreign pointer.
* translate-camelcase-name::    Converts a camelCase foreign name to/from a Lisp name.
* translate-name-from-foreign::  Converts a foreign name to a Lisp name.
* translate-name-to-foreign::   Converts a Lisp name to a foreign name.
* translate-underscore-separated-name::  Converts an underscore_separated foreign name to/from a Lisp name.

Libraries

* close-foreign-library::       Closes a foreign library.
* *darwin-framework-directories*::  Search path for Darwin frameworks.
* define-foreign-library::      Explain how to load a foreign library.
* *foreign-library-directories*::  Search path for shared libraries.
* load-foreign-library::        Load a foreign library.
* load-foreign-library-error::  Signalled on failure of its namesake.
@c * reload-foreign-libraries::    Reload foreign libraries.
* use-foreign-library::         Load a foreign library when needed.

Callbacks

* callback::                    Returns a pointer to a defined callback.
* defcallback::                 Defines a Lisp callback.
* get-callback::                Returns a pointer to a defined callback.

@end detailmenu
@end menu




@c ===================================================================
@c CHAPTER: Introduction

@node Introduction, Installation, Top, Top
@chapter Introduction

@cffi{} is the Common Foreign Function Interface for @acronym{ANSI}
Common Lisp systems.  By @dfn{foreign function} we mean a function
written in another programming language and having different data and
calling conventions than Common Lisp, namely, C.  @cffi{} allows you
to call foreign functions and access foreign variables, all without
leaving the Lisp image.

We consider this manual ever a work in progress.  If you have
difficulty with anything @cffi{}-specific presented in the manual,
please contact @email{cffi-devel@@common-lisp.net,the developers} with
details.


@heading Motivation

@xref{Tutorial-Comparison,, What makes Lisp different}, for
an argument in favor of @acronym{FFI} in general.

@cffi{}'s primary role in any image is to mediate between Lisp
developers and the widely varying @acronym{FFI}s present in the
various Lisp implementations it supports.  With @cffi{}, you can
define foreign function interfaces while still maintaining portability
between implementations.  It is not the first Common Lisp package with
this objective; however, it is meant to be a more malleable framework
than similar packages.


@heading Design Philosophy

@itemize
@item
Pointers do not carry around type information. Instead, type
information is supplied when pointers are dereferenced.

@item
A type safe pointer interface can be developed on top of an
untyped one.  It is difficult to do the opposite.

@item
Functions are better than macros.  When a macro could be used
for performance, use a compiler-macro instead.
@end itemize


@c ===================================================================
@c CHAPTER: Installation

@node Installation, Implementation Support, Introduction, Top
@chapter Installation

@cffi{} can be obtained through one of the following means available
through its @uref{http://common-lisp.net/project/cffi/,,website}:

@itemize
@item
@uref{http://common-lisp.net/project/cffi/releases/?M=D,,official release
tarballs}

@item
@uref{http://common-lisp.net/gitweb?p=projects/cffi/cffi.git,,git
repository}

@c snapshots have been disabled as of
@c @item
@c @uref{http://common-lisp.net/project/cffi/tarballs/?M=D,,nightly-generated
@c snapshots}

@end itemize

In addition, you will need to obtain and install the following
dependencies:

@itemize
@item
@uref{http://common-lisp.net/project/babel/,,Babel}, a charset
encoding/decoding library.

@item
@uref{http://common-lisp.net/project/alexandria/,,Alexandria}, a
collection of portable public-domain utilities.

@item
@uref{http://www.cliki.net/trivial-features,,trivial-features}, a
portability layer that ensures consistent @code{*features*} across
multiple Common Lisp implementations.

@end itemize

Furthermore, if you wish to run the testsuite,
@uref{http://www.cliki.net/rt,,RT} is required.

You may find mechanisms such as
@uref{https://www.quicklisp.org/beta/,Quicklisp} (recommended)
or @uref{http://common-lisp.net/project/clbuild/,,clbuild} (for advanced
uses) helpful in getting and managing @cffi{} and its
dependencies.


@c ===================================================================
@c CHAPTER: Implementation Support

@node Implementation Support, Tutorial, Installation, Top
@chapter Implementation Support

@cffi{} supports various free and commercial Lisp implementations:
@acronym{ABCL}, Allegro CL, Clasp, @sc{clisp}, Clozure CL,
@acronym{CMUCL}, Corman CL, @acronym{ECL}, @acronym{GCL}, LispWorks,
@acronym{MCL}, @acronym{SBCL} and the Scieneer CL.

In general, you should work with the latest versions of each
implementation since those will usually be tested against recent
versions of CFFI more often and might include necessary features or
bug fixes. Reasonable patches for compatibility with earlier versions
are welcome nevertheless.

@section Limitations

Some features are not supported in all implementations.
@c TODO: describe these features here.
@c       flat-namespace too

@subheading Allegro CL

@itemize
@item
Does not support the @code{:long-long} type natively.
@item
Unicode support is limited to the Basic Multilingual Plane (16-bit
code points).
@end itemize

@subheading Clasp

@itemize
@item
Only supports a flat namespace.
@end itemize

@subheading CMUCL

@itemize
@item
No Unicode support. (8-bit code points)
@end itemize

@subheading Corman CL

@itemize
@item
Does not support @code{foreign-funcall}.
@end itemize

@subheading @acronym{ECL}

@itemize
@item
On platforms where ECL's dynamic FFI is not supported (ie. when
@code{:dffi} is not present in @code{*features*}),
@code{cffi:load-foreign-library} does not work and you must use ECL's
own @code{ffi:load-foreign-library} with a constant string argument.
@end itemize

@subheading Lispworks

@itemize
@item
Does not completely support the @code{:long-long} type natively in
32-bit platforms.
@item
Unicode support is limited to the Basic Multilingual Plane (16-bit
code points).
@end itemize

@subheading @acronym{SBCL}

@itemize
@item
Not all platforms support callbacks.

@end itemize


@c ===================================================================
@c CHAPTER: An Introduction to Foreign Interfaces and CFFI

@c This macro is merely a marker that I don't think I'll use after
@c all.
@macro tutorialsource {text}
@c \text\
@end macro

@c because I don't want to type this over and over
@macro clikicffi
http://www.cliki.net/CFFI
@end macro
@c TeX puts spurious newlines in when you use the above macro
@c in @examples &c.  So it is expanded below in some places.


@node Tutorial, Wrapper generators, Implementation Support, Top
@chapter An Introduction to Foreign Interfaces and @acronym{CFFI}

@c Above, I don't use the cffi macro because it breaks TeX.

@cindex tutorial, @cffi{}
Users of many popular languages bearing semantic similarity to Lisp,
such as Perl and Python, are accustomed to having access to popular C
libraries, such as @acronym{GTK}, by way of ``bindings''.  In Lisp, we
do something similar, but take a fundamentally different approach.
This tutorial first explains this difference, then explains how you
can use @cffi{}, a powerful system for calling out to C and C++ and
access C data from many Common Lisp implementations.

@cindex foreign functions and data
The concept can be generalized to other languages; at the time of
writing, only @cffi{}'s C support is fairly complete. Therefore, we
will interchangeably refer to @dfn{foreign functions} and @dfn{foreign
data}, and ``C functions'' and ``C data''.  At no time will the word
``foreign'' carry its usual, non-programming meaning.

This tutorial expects you to have a working understanding of both
Common Lisp and C, including the Common Lisp macro system.

@menu
* Tutorial-Comparison::         Why FFI?
* Tutorial-Getting a URL::      An FFI use case.
* Tutorial-Loading::            Load libcurl.so.
* Tutorial-Initializing::       Call a function in libcurl.so.
* Tutorial-easy_setopt::        An advanced libcurl function.
* Tutorial-Abstraction::        Why breaking it is necessary.
* Tutorial-Lisp easy_setopt::   Semi-Lispy option interface.
* Tutorial-Memory::             In C, you collect the garbage.
* Tutorial-Callbacks::          Make useful C function pointers.
* Tutorial-Completion::         Minimal get-url functionality.
* Tutorial-Types::              Defining new foreign types.
* Tutorial-Conclusion::         What's next?
@end menu


@node Tutorial-Comparison, Tutorial-Getting a URL, Tutorial, Tutorial
@section What makes Lisp different

The following sums up how bindings to foreign libraries are usually
implemented in other languages, then in Common Lisp:

@table @asis
@item Perl, Python, Java, other one-implementation languages
@cindex @acronym{SWIG}
@cindex Perl
@cindex Python
Bindings are implemented as shared objects written in C.  In some
cases, the C code is generated by a tool, such as @acronym{SWIG}, but
the result is the same: a new C library that manually translates
between the language implementation's objects, such as @code{PyObject}
in Python, and whatever C object is called for, often using C
functions provided by the implementation.  It also translates between
the calling conventions of the language and C.

@item Common Lisp
@cindex @acronym{SLIME}
Bindings are written in Lisp.  They can be created at-will by Lisp
programs.  Lisp programmers can write new bindings and add them to the
image, using a listener such as @acronym{SLIME}, as easily as with
regular Lisp definitions.  The only foreign library to load is the one
being wrapped---the one with the pure C interface; no C or other
non-Lisp compilation is required.
@end table

@cindex advantages of @acronym{FFI}
@cindex benefits of @acronym{FFI}
We believe the advantages of the Common Lisp approach far outweigh any
disadvantages.  Incremental development with a listener can be as
productive for C binding development as it is with other Lisp
development.  Keeping it ``in the [Lisp] family'', as it were, makes
it much easier for you and other Lisp programmers to load and use the
bindings.  Common Lisp implementations such as @acronym{CMUCL}, freed
from having to provide a C interface to their own objects, are thus
freed to be implemented in another language (as @acronym{CMUCL} is)
while still allowing programmers to call foreign functions.

@cindex minimal bindings
Perhaps the greatest advantage is that using an @acronym{FFI} doesn't
obligate you to become a professional binding developer.  Writers of
bindings for other languages usually end up maintaining or failing to
maintain complete bindings to the foreign library.  Using an
@acronym{FFI}, however, means if you only need one or two functions,
you can write bindings for only those functions, and be assured that
you can just as easily add to the bindings if need be.

@cindex C abstractions
@cindex abstractions in C
The removal of the C compiler, or C interpretation of any kind,
creates the main disadvantage: some of C's ``abstractions'' are not
available, violating information encapsulation.  For example,
@code{struct}s that must be passed on the stack, or used as return
values, without corresponding functional abstractions to create and
manage the @code{struct}s, must be declared explicitly in Lisp.  This
is fine for structs whose contents are ``public'', but is not so
pleasant when a struct is supposed to be ``opaque'' by convention,
even though it is not so defined.@footnote{Admittedly, this is an
advanced issue, and we encourage you to leave this text until you are
more familiar with how @cffi{} works.}

Without an abstraction to create the struct, Lisp needs to be able to
lay out the struct in memory, so must know its internal details.

@cindex workaround for C
In these cases, you can create a minimal C library to provide the
missing abstractions, without destroying all the advantages of the
Common Lisp approach discussed above.  In the case of @code{struct}s,
you can write simple, pure C functions that tell you how many bytes a
struct requires or allocate new structs, read and write fields of the
struct, or whatever operations are supposed to be
public.@footnote{This does not apply to structs whose contents are
intended to be part of the public library interface.  In those cases,
a pure Lisp struct definition is always preferred.  In fact, many
prefer to stay in Lisp and break the encapsulation anyway, placing the
burden of correct library interface definition on the library.}
@ref{The Groveller} automates this and other processes.

Another disadvantage appears when you would rather use the foreign
language than Lisp.  However, someone who prefers C to Lisp is not a
likely candidate for developing a Lisp interface to a C library.


@node Tutorial-Getting a URL, Tutorial-Loading, Tutorial-Comparison, Tutorial
@section Getting a @acronym{URL}

@cindex c@acronym{URL}
The widely available @code{libcurl} is a library for downloading files
over protocols like @acronym{HTTP}.  We will use @code{libcurl} with
@cffi{} to download a web page.

Please note that there are many other ways to download files from the
web, not least the @sc{cl-curl} project to provide bindings to
@code{libcurl} via a similar @acronym{FFI}.@footnote{Specifically,
@acronym{UFFI}, an older @acronym{FFI} that takes a somewhat different
approach compared to @cffi{}.  I believe that these days (December
2005) @cffi{} is more portable and actively developed, though not as
mature yet.  Consensus in the free @sc{unix} Common Lisp community
seems to be that @cffi{} is preferred for new development, though
@acronym{UFFI} will likely go on for quite some time as many projects
already use it.  @cffi{} includes the @code{UFFI-COMPAT} package for
complete compatibility with @acronym{UFFI}.}

@uref{http://curl.haxx.se/libcurl/c/libcurl-tutorial.html,,libcurl-tutorial(3)}
is a tutorial for @code{libcurl} programming in C.  We will follow
that to develop a binding to download a file.  We will also use
@file{curl.h}, @file{easy.h}, and the @command{man} pages for the
@code{libcurl} function, all available in the @samp{curl-dev} package
or equivalent for your system, or in the c@acronym{URL} source code
package.  If you have the development package, the headers should be
installed in @file{/usr/include/curl/}, and the @command{man} pages
may be accessed through your favorite @command{man} facility.


@node Tutorial-Loading, Tutorial-Initializing, Tutorial-Getting a URL, Tutorial
@section Loading foreign libraries

@cindex loading @cffi{}
@cindex requiring @cffi{}
First of all, we will create a package to work in.  You can save these
forms in a file, or just send them to the listener as they are.  If
creating bindings for an @acronym{ASDF} package of yours, you will
want to add @code{:cffi} to the @code{:depends-on} list in your
@file{.asd} file.  Otherwise, just use the @code{asdf:load-system} function to
load @cffi{}.

@tutorialsource{Initialization}
@lisp
(asdf:load-system :cffi)

;;; @lispcmt{Nothing special about the "CFFI-USER" package.  We're just}
;;; @lispcmt{using it as a substitute for your own CL package.}
(defpackage :cffi-user
  (:use :common-lisp :cffi))

(in-package :cffi-user)

(define-foreign-library libcurl
  (:darwin (:or "libcurl.3.dylib" "libcurl.dylib"))
  (:unix (:or "libcurl.so.3" "libcurl.so"))
  (t (:default "libcurl")))

(use-foreign-library libcurl)
@end lisp

@cindex foreign library load
@cindex library, foreign
Using @code{define-foreign-library} and @code{use-foreign-library}, we
have loaded @code{libcurl} into Lisp, much as the linker does when you
start a C program, or @code{common-lisp:load} does with a Lisp source
file or @acronym{FASL} file.  We special-cased for @sc{unix} machines
to always load a particular version, the one this tutorial was tested
with; for those who don't care, the @code{define-foreign-library}
clause @code{(t (:default "libcurl"))} should be satisfactory, and
will adapt to various operating systems.


@node Tutorial-Initializing, Tutorial-easy_setopt, Tutorial-Loading, Tutorial
@section Initializing @code{libcurl}

@cindex function definition
After the introductory matter, the tutorial goes on to present the
first function you should use.

@example
CURLcode curl_global_init(long flags);
@end example

@noindent
Let's pick this apart into appropriate Lisp code:

@tutorialsource{First CURLcode}
@lisp
;;; @lispcmt{A CURLcode is the universal error code.  curl/curl.h says}
;;; @lispcmt{no return code will ever be removed, and new ones will be}
;;; @lispcmt{added to the end.}
(defctype curl-code :int)

;;; @lispcmt{Initialize libcurl with FLAGS.}
(defcfun "curl_global_init" curl-code
  (flags :long))
@end lisp

@impnote{By default, CFFI assumes the UNIX viewpoint that there is one
C symbol namespace, containing all symbols in all loaded objects.
This is not so on Windows and Darwin, but we emulate UNIX's behaviour
there.  @ref{defcfun} for more details.}

Note the parallels with the original C declaration.  We've defined
@code{curl-code} as a wrapping type for @code{:int}; right now, it
only marks it as special, but later we will do something more
interesting with it.  The point is that we don't have to do it yet.

@cindex calling foreign functions
Looking at @file{curl.h}, @code{CURL_GLOBAL_NOTHING}, a possible value
for @code{flags} above, is defined as @samp{0}.  So we can now call
the function:

@example
@sc{cffi-user>} (curl-global-init 0)
@result{} 0
@end example

@cindex looks like it worked
Looking at @file{curl.h} again, @code{0} means @code{CURLE_OK}, so it
looks like the call succeeded.  Note that @cffi{} converted the
function name to a Lisp-friendly name.  You can specify your own name
if you want; use @code{("curl_global_init" @var{your-name-here})} as
the @var{name} argument to @code{defcfun}.

The tutorial goes on to have us allocate a handle.  For good measure,
we should also include the deallocator.  Let's look at these
functions:

@example
CURL *curl_easy_init( );
void curl_easy_cleanup(CURL *handle);
@end example

Advanced users may want to define special pointer types; we will
explore this possibility later.  For now, just treat every pointer as
the same:

@tutorialsource{curl_easy handles}
@lisp
(defcfun "curl_easy_init" :pointer)

(defcfun "curl_easy_cleanup" :void
  (easy-handle :pointer))
@end lisp

Now we can continue with the tutorial:

@example
@sc{cffi-user>} (defparameter *easy-handle* (curl-easy-init))
@result{} *EASY-HANDLE*
@sc{cffi-user>} *easy-handle*
@result{} #<FOREIGN-ADDRESS #x09844EE0>
@end example

@cindex pointers in Lisp
Note the print representation of a pointer.  It changes depending on
what Lisp you are using, but that doesn't make any difference to
@cffi{}.


@node Tutorial-easy_setopt, Tutorial-Abstraction, Tutorial-Initializing, Tutorial
@section Setting download options

The @code{libcurl} tutorial says we'll want to set many options before
performing any download actions.  This is done through
@code{curl_easy_setopt}:

@c That is literally ..., not an ellipsis.
@example
CURLcode curl_easy_setopt(CURL *curl, CURLoption option, ...);
@end example

@cindex varargs
@cindex foreign arguments
We've introduced a new twist: variable arguments.  There is no obvious
translation to the @code{defcfun} form, particularly as there are four
possible argument types.  Because of the way C works, we could define
four wrappers around @code{curl_easy_setopt}, one for each type; in
this case, however, we'll use the general-purpose macro
@code{foreign-funcall} to call this function.

@cindex enumeration, C
To make things easier on ourselves, we'll create an enumeration of the
kinds of options we want to set.  The @code{enum CURLoption} isn't the
most straightforward, but reading the @code{CINIT} C macro definition
should be enlightening.

@tutorialsource{CURLoption enumeration}
@lisp
(defmacro define-curl-options (name type-offsets &rest enum-args)
  "As with CFFI:DEFCENUM, except each of ENUM-ARGS is as follows:

    (NAME TYPE NUMBER)

Where the arguments are as they are with the CINIT macro defined
in curl.h, except NAME is a keyword.

TYPE-OFFSETS is a plist of TYPEs to their integer offsets, as
defined by the CURLOPTTYPE_LONG et al constants in curl.h."
  (flet ((enumerated-value (type offset)
           (+ (getf type-offsets type) offset)))
    `(progn
       (defcenum ,name
         ,@@(loop for (name type number) in enum-args
              collect (list name (enumerated-value type number))))
       ',name)))                ;@lispcmt{for REPL users' sanity}

(define-curl-options curl-option
    (long 0 objectpoint 10000 functionpoint 20000 off-t 30000)
  (:noprogress long 43)
  (:nosignal long 99)
  (:errorbuffer objectpoint 10)
  (:url objectpoint 2))
@end lisp

With some well-placed Emacs @code{query-replace-regexp}s, you could
probably similarly define the entire @code{CURLoption} enumeration.  I
have selected to transcribe a few that we will use in this tutorial.

If you're having trouble following the macrology, just macroexpand the
@code{curl-option} definition, or see the following macroexpansion,
conveniently downcased and reformatted:

@tutorialsource{DEFINE-CURL-OPTIONS macroexpansion}
@lisp
(progn
  (defcenum curl-option
    (:noprogress 43)
    (:nosignal 99)
    (:errorbuffer 10010)
    (:url 10002))
  'curl-option)
@end lisp

@noindent
That seems more than reasonable.  You may notice that we only use the
@var{type} to compute the real enumeration offset; we will also need
the type information later.

First, however, let's make sure a simple call to the foreign function
works:

@example
@sc{cffi-user>} (foreign-funcall "curl_easy_setopt"
               :pointer *easy-handle*
               curl-option :nosignal :long 1 curl-code)
@result{} 0
@end example

@code{foreign-funcall}, despite its surface simplicity, can be used to
call any C function.  Its first argument is a string, naming the
function to be called.  Next, for each argument, we pass the name of
the C type, which is the same as in @code{defcfun}, followed by a Lisp
object representing the data to be passed as the argument.  The final
argument is the return type, for which we use the @code{curl-code}
type defined earlier.

@code{defcfun} just puts a convenient fa@,cade on
@code{foreign-funcall}.@footnote{This isn't entirely true; some Lisps
don't support @code{foreign-funcall}, so @code{defcfun} is implemented
without it.  @code{defcfun} may also perform optimizations that
@code{foreign-funcall} cannot.}  Our earlier call to
@code{curl-global-init} could have been written as follows:

@example
@sc{cffi-user>} (foreign-funcall "curl_global_init" :long 0
                            curl-code)
@result{} 0
@end example

Before we continue, we will take a look at what @cffi{} can and can't
do, and why this is so.


@node Tutorial-Abstraction, Tutorial-Lisp easy_setopt, Tutorial-easy_setopt, Tutorial
@section Breaking the abstraction

@cindex breaking the abstraction
@cindex abstraction breaking
In @ref{Tutorial-Comparison,, What makes Lisp different}, we mentioned
that writing an @acronym{FFI} sometimes requires depending on
information not provided as part of the interface.  The easy option
@code{CURLOPT_WRITEDATA}, which we will not provide as part of the
Lisp interface, illustrates this issue.

Strictly speaking, the @code{curl-option} enumeration is not
necessary; we could have used @code{:int 99} instead of
@code{curl-option :nosignal} in our call to @code{curl_easy_setopt}
above.  We defined it anyway, in part to hide the fact that we are
breaking the abstraction that the C @code{enum} provides.  If the
c@acronym{URL} developers decide to change those numbers later, we
must change the Lisp enumeration, because enumeration values are not
provided in the compiled C library, @code{libcurl.so.3}.

@cffi{} works because the most useful things in C libraries ---
non-static functions and non-static variables --- are included
accessibly in @code{libcurl.so.3}.  A C compiler that violated this
would be considered a worthless compiler.

The other thing @code{define-curl-options} does is give the ``type''
of the third argument passed to @code{curl_easy_setopt}.  Using this
information, we can tell that the @code{:nosignal} option should
accept a long integer argument.  We can implicitly assume @code{t}
@equiv{} 1 and @code{nil} @equiv{} 0, as it is in C, which takes care
of the fact that @code{CURLOPT_NOSIGNAL} is really asking for a
boolean.

The ``type'' of @code{CURLOPT_WRITEDATA} is @code{objectpoint}.
However, it is really looking for a @code{FILE*}.
@code{CURLOPT_ERRORBUFFER} is looking for a @code{char*}, so there is
no obvious @cffi{} type but @code{:pointer}.

The first thing to note is that nowhere in the C interface includes
this information; it can only be found in the manual.  We could
disjoin these clearly different types ourselves, by splitting
@code{objectpoint} into @code{filepoint} and @code{charpoint}, but we
are still breaking the abstraction, because we have to augment the
entire enumeration form with this additional
information.@footnote{Another possibility is to allow the caller to
specify the desired C type of the third argument.  This is essentially
what happens in a call to the function written in C.}

@cindex streams and C
@cindex @sc{file}* and streams
The second is that the @code{CURLOPT_WRITEDATA} argument is completely
incompatible with the desired Lisp data, a
stream.@footnote{@xref{Other Kinds of Streams,,, libc, GNU C Library
Reference}, for a @acronym{GNU}-only way to extend the @code{FILE*}
type.  You could use this to convert Lisp streams to the needed C
data.  This would be quite involved and far outside the scope of this
tutorial.}  It is probably acceptable if we are controlling every file
we might want to use as this argument, in which case we can just call
the foreign function @code{fopen}.  Regardless, though, we can't write
to arbitrary streams, which is exactly what we want to do for this
application.

Finally, note that the @code{curl_easy_setopt} interface itself is a
hack, intended to work around some of the drawbacks of C.  The
definition of @code{Curl_setopt}, while long, is far less cluttered
than the equivalent disjoint-function set would be; in addition,
setting a new option in an old @code{libcurl} can generate a run-time
error rather than breaking the compile.  Lisp can just as concisely
generate functions as compare values, and the ``undefined function''
error is just as useful as any explicit error we could define here
might be.


@node Tutorial-Lisp easy_setopt, Tutorial-Memory, Tutorial-Abstraction, Tutorial
@section Option functions in Lisp

We could use @code{foreign-funcall} directly every time we wanted to
call @code{curl_easy_setopt}.  However, we can encapsulate some of the
necessary information with the following.

@lisp
;;; @lispcmt{We will use this type later in a more creative way.  For}
;;; @lispcmt{now, just consider it a marker that this isn't just any}
;;; @lispcmt{pointer.}
(defctype easy-handle :pointer)

(defmacro curl-easy-setopt (easy-handle enumerated-name
                            value-type new-value)
  "Call `curl_easy_setopt' on EASY-HANDLE, using ENUMERATED-NAME
as the OPTION.  VALUE-TYPE is the CFFI foreign type of the third
argument, and NEW-VALUE is the Lisp data to be translated to the
third argument.  VALUE-TYPE is not evaluated."
  `(foreign-funcall "curl_easy_setopt" easy-handle ,easy-handle
                    curl-option ,enumerated-name
                    ,value-type ,new-value curl-code))
@end lisp

Now we define a function for each kind of argument that encodes the
correct @code{value-type} in the above.  This can be done reasonably
in the @code{define-curl-options} macroexpansion; after all, that is
where the different options are listed!

@cindex Lispy C functions
We could make @code{cl:defun} forms in the expansion that simply call
@code{curl-easy-setopt}; however, it is probably easier and clearer to
use @code{defcfun}.  @code{define-curl-options} was becoming unwieldy,
so I defined some helpers in this new definition.

@smalllisp
(defun curry-curl-option-setter (function-name option-keyword)
  "Wrap the function named by FUNCTION-NAME with a version that
curries the second argument as OPTION-KEYWORD.

This function is intended for use in DEFINE-CURL-OPTION-SETTER."
  (setf (symbol-function function-name)
          (let ((c-function (symbol-function function-name)))
            (lambda (easy-handle new-value)
              (funcall c-function easy-handle option-keyword
                       new-value)))))

(defmacro define-curl-option-setter (name option-type
                                     option-value foreign-type)
  "Define (with DEFCFUN) a function NAME that calls
curl_easy_setopt.  OPTION-TYPE and OPTION-VALUE are the CFFI
foreign type and value to be passed as the second argument to
easy_setopt, and FOREIGN-TYPE is the CFFI foreign type to be used
for the resultant function's third argument.

This macro is intended for use in DEFINE-CURL-OPTIONS."
  `(progn
     (defcfun ("curl_easy_setopt" ,name) curl-code
       (easy-handle easy-handle)
       (option ,option-type)
       (new-value ,foreign-type))
     (curry-curl-option-setter ',name ',option-value)))

(defmacro define-curl-options (type-name type-offsets &rest enum-args)
  "As with CFFI:DEFCENUM, except each of ENUM-ARGS is as follows:

    (NAME TYPE NUMBER)

Where the arguments are as they are with the CINIT macro defined
in curl.h, except NAME is a keyword.

TYPE-OFFSETS is a plist of TYPEs to their integer offsets, as
defined by the CURLOPTTYPE_LONG et al constants in curl.h.

Also, define functions for each option named
set-`TYPE-NAME'-`OPTION-NAME', where OPTION-NAME is the NAME from
the above destructuring."
  (flet ((enumerated-value (type offset)
           (+ (getf type-offsets type) offset))
         ;; @lispcmt{map PROCEDURE, destructuring each of ENUM-ARGS}
         (map-enum-args (procedure)
           (mapcar (lambda (arg) (apply procedure arg)) enum-args))
         ;; @lispcmt{build a name like SET-CURL-OPTION-NOSIGNAL}
         (make-setter-name (option-name)
           (intern (concatenate
                    'string "SET-" (symbol-name type-name)
                    "-" (symbol-name option-name)))))
    `(progn
       (defcenum ,type-name
         ,@@(map-enum-args
            (lambda (name type number)
              (list name (enumerated-value type number)))))
       ,@@(map-enum-args
          (lambda (name type number)
            (declare (ignore number))
            `(define-curl-option-setter ,(make-setter-name name)
               ,type-name ,name ,(ecase type
                                   (long :long)
                                   (objectpoint :pointer)
                                   (functionpoint :pointer)
                                   (off-t :long)))))
       ',type-name)))
@end smalllisp

@noindent
Macroexpanding our @code{define-curl-options} form once more, we
see something different:

@lisp
(progn
  (defcenum curl-option
    (:noprogress 43)
    (:nosignal 99)
    (:errorbuffer 10010)
    (:url 10002))
  (define-curl-option-setter set-curl-option-noprogress
    curl-option :noprogress :long)
  (define-curl-option-setter set-curl-option-nosignal
    curl-option :nosignal :long)
  (define-curl-option-setter set-curl-option-errorbuffer
    curl-option :errorbuffer :pointer)
  (define-curl-option-setter set-curl-option-url
    curl-option :url :pointer)
  'curl-option)
@end lisp

@noindent
Macroexpanding one of the new @code{define-curl-option-setter}
forms yields the following:

@lisp
(progn
  (defcfun ("curl_easy_setopt" set-curl-option-nosignal) curl-code
    (easy-handle easy-handle)
    (option curl-option)
    (new-value :long))
  (curry-curl-option-setter 'set-curl-option-nosignal ':nosignal))
@end lisp

@noindent
Finally, let's try this out:

@example
@sc{cffi-user>} (set-curl-option-nosignal *easy-handle* 1)
@result{} 0
@end example

@noindent
Looks like it works just as well.  This interface is now reasonably
high-level to wash out some of the ugliness of the thinnest possible
@code{curl_easy_setopt} @acronym{FFI}, without obscuring the remaining
C bookkeeping details we will explore.


@node Tutorial-Memory, Tutorial-Callbacks, Tutorial-Lisp easy_setopt, Tutorial
@section Memory management

According to the documentation for @code{curl_easy_setopt}, the type
of the third argument when @var{option} is @code{CURLOPT_ERRORBUFFER}
is @code{char*}.  Above, we've defined
@code{set-curl-option-errorbuffer} to accept a @code{:pointer} as the
new option value.  However, there is a @cffi{} type @code{:string},
which translates Lisp strings to C strings when passed as arguments to
foreign function calls.  Why not, then, use @code{:string} as the
@cffi{} type of the third argument?  There are two reasons, both
related to the necessity of breaking abstraction described in
@ref{Tutorial-Abstraction,, Breaking the abstraction}.

The first reason also applies to @code{CURLOPT_URL}, which we will use
to illustrate the point.  Assuming we have changed the type of the
third argument underlying @code{set-curl-option-url} to
@code{:string}, look at these two equivalent forms.

@lisp
(set-curl-option-url *easy-handle* "http://www.cliki.net/CFFI")

@equiv{} (with-foreign-string (url "http://www.cliki.net/CFFI")
     (foreign-funcall "curl_easy_setopt" easy-handle *easy-handle*
                      curl-option :url :pointer url curl-code))
@end lisp

@noindent
The latter, in fact, is mostly equivalent to what a foreign function
call's macroexpansion actually does.  As you can see, the Lisp string
@code{"@clikicffi{}"} is copied into a @code{char} array and
null-terminated; the pointer to beginning of this array, now a C
string, is passed as a @cffi{} @code{:pointer} to the foreign
function.

@cindex dynamic extent
@cindex foreign values with dynamic extent
Unfortunately, the C abstraction has failed us, and we must break it.
While @code{:string} works well for many @code{char*} arguments, it
does not for cases like this.  As the @code{curl_easy_setopt}
documentation explains, ``The string must remain present until curl no
longer needs it, as it doesn't copy the string.''  The C string
created by @code{with-foreign-string}, however, only has dynamic
extent: it is ``deallocated'' when the body (above containing the
@code{foreign-funcall} form) exits.

@cindex premature deallocation
If we are supposed to keep the C string around, but it goes away, what
happens when some @code{libcurl} function tries to access the
@acronym{URL} string?  We have reentered the dreaded world of C
``undefined behavior''.  In some Lisps, it will probably get a chunk
of the Lisp/C stack.  You may segfault.  You may get some random piece
of other data from the heap.  Maybe, in a world where ``dynamic
extent'' is defined to be ``infinite extent'', everything will turn
out fine.  Regardless, results are likely to be almost universally
unpleasant.@footnote{``@i{But I thought Lisp was supposed to protect
me from all that buggy C crap!}''  Before asking a question like that,
remember that you are a stranger in a foreign land, whose residents
have a completely different set of values.}

Returning to the current @code{set-curl-option-url} interface, here is
what we must do:

@lisp
(let (easy-handle)
  (unwind-protect
    (with-foreign-string (url "http://www.cliki.net/CFFI")
      (setf easy-handle (curl-easy-init))
      (set-curl-option-url easy-handle url)
      #|@lispcmt{do more with the easy-handle, like actually get the URL}|#)
    (when easy-handle
      (curl-easy-cleanup easy-handle))))
@end lisp

@c old comment to luis: I go on to say that this isn't obviously
@c extensible to new option settings that require C strings to stick
@c around, as it would involve re-evaluating the unwind-protect form
@c with more dynamic memory allocation.  So I plan to show how to
@c write something similar to ObjC's NSAutoreleasePool, to be managed
@c with a simple unwind-protect form.

@noindent
That is fine for the single string defined here, but for every string
option we want to pass, we have to surround the body of
@code{with-foreign-string} with another @code{with-foreign-string}
wrapper, or else do some extremely error-prone pointer manipulation
and size calculation in advance.  We could alleviate some of the pain
with a recursively expanding macro, but this would not remove the need
to modify the block every time we want to add an option, anathema as
it is to a modular interface.

Before modifying the code to account for this case, consider the other
reason we can't simply use @code{:string} as the foreign type.  In C,
a @code{char *} is a @code{char *}, not necessarily a string.  The
option @code{CURLOPT_ERRORBUFFER} accepts a @code{char *}, but does
not expect anything about the data there.  However, it does expect
that some @code{libcurl} function we call later can write a C string
of up to 255 characters there.  We, the callers of the function, are
expected to read the C string at a later time, exactly the opposite of
what @code{:string} implies.

With the semantics for an input string in mind --- namely, that the
string should be kept around until we @code{curl_easy_cleanup} the
easy handle --- we are ready to extend the Lisp interface:

@lisp
(defvar *easy-handle-cstrings* (make-hash-table)
  "Hashtable of easy handles to lists of C strings that may be
safely freed after the handle is freed.")

(defun make-easy-handle ()
  "Answer a new CURL easy interface handle, to which the lifetime
of C strings may be tied.  See `add-curl-handle-cstring'."
  (let ((easy-handle (curl-easy-init)))
    (setf (gethash easy-handle *easy-handle-cstrings*) '())
    easy-handle))

(defun free-easy-handle (handle)
  "Free CURL easy interface HANDLE and any C strings created to
be its options."
  (curl-easy-cleanup handle)
  (mapc #'foreign-string-free
        (gethash handle *easy-handle-cstrings*))
  (remhash handle *easy-handle-cstrings*))

(defun add-curl-handle-cstring (handle cstring)
  "Add CSTRING to be freed when HANDLE is, answering CSTRING."
  (car (push cstring (gethash handle *easy-handle-cstrings*))))
@end lisp

@noindent
Here we have redefined the interface to create and free handles, to
associate a list of allocated C strings with each handle while it
exists.  The strategy of using different function names to wrap around
simple foreign functions is more common than the solution implemented
earlier with @code{curry-curl-option-setter}, which was to modify the
function name's function slot.@footnote{There are advantages and
disadvantages to each approach; I chose to @code{(setf
symbol-function)} earlier because it entailed generating fewer magic
function names.}

Incidentally, the next step is to redefine
@code{curry-curl-option-setter} to allocate C strings for the
appropriate length of time, given a Lisp string as the
@code{new-value} argument:

@lisp
(defun curry-curl-option-setter (function-name option-keyword)
  "Wrap the function named by FUNCTION-NAME with a version that
curries the second argument as OPTION-KEYWORD.

This function is intended for use in DEFINE-CURL-OPTION-SETTER."
  (setf (symbol-function function-name)
          (let ((c-function (symbol-function function-name)))
            (lambda (easy-handle new-value)
              (funcall c-function easy-handle option-keyword
                       (if (stringp new-value)
                         (add-curl-handle-cstring
                          easy-handle
                          (foreign-string-alloc new-value))
                         new-value))))))
@end lisp

@noindent
A quick analysis of the code shows that you need only reevaluate the
@code{curl-option} enumeration definition to take advantage of these
new semantics.  Now, for good measure, let's reallocate the handle
with the new functions we just defined, and set its @acronym{URL}:

@example
@sc{cffi-user>} (curl-easy-cleanup *easy-handle*)
@result{} NIL
@sc{cffi-user>} (setf *easy-handle* (make-easy-handle))
@result{} #<FOREIGN-ADDRESS #x09844EE0>
@sc{cffi-user>} (set-curl-option-nosignal *easy-handle* 1)
@result{} 0
@sc{cffi-user>} (set-curl-option-url *easy-handle*
                                "http://www.cliki.net/CFFI")
@result{} 0
@end example

@cindex strings
For fun, let's inspect the Lisp value of the C string that was created
to hold @code{"@clikicffi{}"}.  By virtue of the implementation of
@code{add-curl-handle-cstring}, it should be accessible through the
hash table defined:

@example
@sc{cffi-user>} (foreign-string-to-lisp
            (car (gethash *easy-handle* *easy-handle-cstrings*)))
@result{} "http://www.cliki.net/CFFI"
@end example

@noindent
Looks like that worked, and @code{libcurl} now knows what
@acronym{URL} we want to retrieve.

Finally, we turn back to the @code{:errorbuffer} option mentioned at
the beginning of this section.  Whereas the abstraction added to
support string inputs works fine for cases like @code{CURLOPT_URL}, it
hides the detail of keeping the C string; for @code{:errorbuffer},
however, we need that C string.

In a moment, we'll define something slightly cleaner, but for now,
remember that you can always hack around anything.  We're modifying
handle creation, so make sure you free the old handle before
redefining @code{free-easy-handle}.

@smalllisp
(defvar *easy-handle-errorbuffers* (make-hash-table)
  "Hashtable of easy handles to C strings serving as error
writeback buffers.")

;;; @lispcmt{An extra byte is very little to pay for peace of mind.}
(defparameter *curl-error-size* 257
  "Minimum char[] size used by cURL to report errors.")

(defun make-easy-handle ()
  "Answer a new CURL easy interface handle, to which the lifetime
of C strings may be tied.  See `add-curl-handle-cstring'."
  (let ((easy-handle (curl-easy-init)))
    (setf (gethash easy-handle *easy-handle-cstrings*) '())
    (setf (gethash easy-handle *easy-handle-errorbuffers*)
            (foreign-alloc :char :count *curl-error-size*
                           :initial-element 0))
    easy-handle))

(defun free-easy-handle (handle)
  "Free CURL easy interface HANDLE and any C strings created to
be its options."
  (curl-easy-cleanup handle)
  (foreign-free (gethash handle *easy-handle-errorbuffers*))
  (remhash handle *easy-handle-errorbuffers*)
  (mapc #'foreign-string-free
        (gethash handle *easy-handle-cstrings*))
  (remhash handle *easy-handle-cstrings*))

(defun get-easy-handle-error (handle)
  "Answer a string containing HANDLE's current error message."
  (foreign-string-to-lisp
   (gethash handle *easy-handle-errorbuffers*)))
@end smalllisp

Be sure to once again set the options we've set thus far.  You may
wish to define yet another wrapper function to do this.


@node Tutorial-Callbacks, Tutorial-Completion, Tutorial-Memory, Tutorial
@section Calling Lisp from C

If you have been reading
@uref{http://curl.haxx.se/libcurl/c/curl_easy_setopt.html,,
@code{curl_easy_setopt(3)}}, you should have noticed that some options
accept a function pointer.  In particular, we need one function
pointer to set as @code{CURLOPT_WRITEFUNCTION}, to be called by
@code{libcurl} rather than the reverse, in order to receive data as it
is downloaded.

A binding writer without the aid of @acronym{FFI} usually approaches
this problem by writing a C function that accepts C data, converts to
the language's internal objects, and calls the callback provided by
the user, again in a reverse of usual practices.

The @cffi{} approach to callbacks precisely mirrors its differences
with the non-@acronym{FFI} approach on the ``calling C from Lisp''
side, which we have dealt with exclusively up to now.  That is, you
define a callback function in Lisp using @code{defcallback}, and
@cffi{} effectively creates a C function to be passed as a function
pointer.

@impnote{This is much trickier than calling C functions from Lisp, as
it literally involves somehow generating a new C function that is as
good as any created by the compiler.  Therefore, not all Lisps support
them.  @xref{Implementation Support}, for information about @cffi{}
support issues in this and other areas.  You may want to consider
changing to a Lisp that supports callbacks in order to continue with
this tutorial.}

@cindex callback definition
@cindex defining callbacks
Defining a callback is very similar to defining a callout; the main
difference is that we must provide some Lisp forms to be evaluated as
part of the callback.  Here is the signature for the function the
@code{:writefunction} option takes:

@example
size_t
@var{function}(void *ptr, size_t size, size_t nmemb, void *stream);
@end example

@impnote{size_t is almost always an unsigned int.  You can get this
and many other types using feature tests for your system by using
cffi-grovel.}

The above signature trivially translates into a @cffi{}
@code{defcallback} form, as follows.

@lisp
;;; @lispcmt{Alias in case size_t changes.}
(defctype size :unsigned-int)

;;; @lispcmt{To be set as the CURLOPT_WRITEFUNCTION of every easy handle.}
(defcallback easy-write size ((ptr :pointer) (size size)
                              (nmemb size) (stream :pointer))
  (let ((data-size (* size nmemb)))
    (handler-case
      ;; @lispcmt{We use the dynamically-bound *easy-write-procedure* to}
      ;; @lispcmt{call a closure with useful lexical context.}
      (progn (funcall (symbol-value '*easy-write-procedure*)
                      (foreign-string-to-lisp ptr :count data-size))
             data-size)         ;@lispcmt{indicates success}
      ;; @lispcmt{The WRITEFUNCTION should return something other than the}
      ;; @lispcmt{#bytes available to signal an error.}
      (error () (if (zerop data-size) 1 0)))))
@end lisp

First, note the correlation of the first few forms, used to declare
the C function's signature, with the signature in C syntax.  We
provide a Lisp name for the function, its return type, and a name and
type for each argument.

In the body, we call the dynamically-bound
@code{*easy-write-procedure*} with a ``finished'' translation, of
pulling together the raw data and size into a Lisp string, rather than
deal with the data directly.  As part of calling
@code{curl_easy_perform} later, we'll bind that variable to a closure
with more useful lexical bindings than the top-level
@code{defcallback} form.

Finally, we make a halfhearted effort to prevent non-local exits from
unwinding the C stack, covering the most likely case with an
@code{error} handler, which is usually triggered
unexpectedly.@footnote{Unfortunately, we can't protect against
@emph{all} non-local exits, such as @code{return}s and @code{throw}s,
because @code{unwind-protect} cannot be used to ``short-circuit'' a
non-local exit in Common Lisp, due to proposal @code{minimal} in
@uref{http://www.lisp.org/HyperSpec/Issues/iss152-writeup.html,
@acronym{ANSI} issue @sc{Exit-Extent}}.  Furthermore, binding an
@code{error} handler prevents higher-up code from invoking restarts
that may be provided under the callback's dynamic context.  Such is
the way of compromise.}  The reason is that most C code is written to
understand its own idiosyncratic error condition, implemented above in
the case of @code{curl_easy_perform}, and more ``undefined behavior''
can result if we just wipe C stack frames without allowing them to
execute whatever cleanup actions as they like.

Using the @code{CURLoption} enumeration in @file{curl.h} once more, we
can describe the new option by modifying and reevaluating
@code{define-curl-options}.

@lisp
(define-curl-options curl-option
    (long 0 objectpoint 10000 functionpoint 20000 off-t 30000)
  (:noprogress long 43)
  (:nosignal long 99)
  (:errorbuffer objectpoint 10)
  (:url objectpoint 2)
  (:writefunction functionpoint 11)) ;@lispcmt{new item here}
@end lisp

Finally, we can use the defined callback and the new
@code{set-curl-option-writefunction} to finish configuring the easy
handle, using the @code{callback} macro to retrieve a @cffi{}
@code{:pointer}, which works like a function pointer in C code.

@example
@sc{cffi-user>} (set-curl-option-writefunction
            *easy-handle* (callback easy-write))
@result{} 0
@end example


@node Tutorial-Completion, Tutorial-Types, Tutorial-Callbacks, Tutorial
@section A complete @acronym{FFI}?

@c TeX goes insane on @uref{@clikicffi{}}

With all options finally set and a medium-level interface developed,
we can finish the definition and retrieve
@uref{http://www.cliki.net/CFFI}, as is done in the tutorial.

@lisp
(defcfun "curl_easy_perform" curl-code
  (handle easy-handle))
@end lisp

@example
@sc{cffi-user>} (with-output-to-string (contents)
             (let ((*easy-write-procedure*
                     (lambda (string)
                       (write-string string contents))))
               (declare (special *easy-write-procedure*))
               (curl-easy-perform *easy-handle*)))
@result{} "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"
@enddots{}
Now fear, comprehensively</P>
"
@end example

Of course, that itself is slightly unwieldy, so you may want to define
a function around it that simply retrieves a @acronym{URL}.  I will
leave synthesis of all the relevant @acronym{REPL} forms presented
thus far into a single function as an exercise for the reader.

The remaining sections of this tutorial explore some advanced features
of @cffi{}; the definition of new types will receive special
attention.  Some of these features are essential for particular
foreign function calls; some are very helpful when trying to develop a
Lispy interface to C.


@node Tutorial-Types, Tutorial-Conclusion, Tutorial-Completion, Tutorial
@section Defining new types

We've occasionally used the @code{defctype} macro in previous sections
as a kind of documentation, much what you'd use @code{typedef} for in
C.  We also tried one special kind of type definition, the
@code{defcenum} type.  @xref{defcstruct}, for a definition macro that
may come in handy if you need to use C @code{struct}s as data.

@cindex type definition
@cindex data in Lisp and C
@cindex translating types
However, all of these are mostly sugar for the powerful underlying
foreign type interface called @dfn{type translators}.  You can easily
define new translators for any simple named foreign type.  Since we've
defined the new type @code{curl-code} to use as the return type for
various @code{libcurl} functions, we can use that to directly convert
c@acronym{URL} errors to Lisp errors.

@code{defctype}'s purpose is to define simple @code{typedef}-like
aliases.  In order to use @dfn{type translators} we must use the
@code{define-foreign-type} macro.  So let's redefine @code{curl-code}
using it.

@lisp
(define-foreign-type curl-code-type ()
  ()
  (:actual-type :int)
  (:simple-parser curl-code))
@end lisp

@code{define-foreign-type} is a thin wrapper around @code{defclass}.
For now, all you need to know in the context of this example is that
it does what @code{(defctype curl-code :int)} would do and,
additionally, defines a new class @code{curl-code-type} which we will
take advantage of shortly.

The @code{CURLcode} enumeration seems to follow the typical error code
convention of @samp{0} meaning all is well, and each non-zero integer
indicating a different kind of error.  We can apply that trivially to
differentiate between normal exits and error exits.

@lisp
(define-condition curl-code-error (error)
  (($code :initarg :curl-code :reader curl-error-code))
  (:report (lambda (c stream)
             (format stream "libcurl function returned error ~A"
                            (curl-error-code c))))
  (:documentation "Signalled when a libcurl function answers
a code other than CURLE_OK."))

(defmethod translate-from-foreign (value (type curl-code-type))
  "Raise a CURL-CODE-ERROR if VALUE, a curl-code, is non-zero."
  (if (zerop value)
      :curle-ok
      (error 'curl-code-error :curl-code value)))
@end lisp

@noindent
The heart of this translator is new method
@code{translate-from-foreign}.  By specializing the @var{type}
parameter on @code{curl-code-type}, we immediately modify the behavior
of every function that returns a @code{curl-code} to pass the result
through this new method.

To see the translator in action, try invoking a function that returns
a @code{curl-code}.  You need to reevaluate the respective
@code{defcfun} form so that it picks up the new @code{curl-code}
definition.

@example
@sc{cffi-user>} (set-curl-option-nosignal *easy-handle* 1)
@result{} :CURLE-OK
@end example

@noindent
As the result was @samp{0}, the new method returned @code{:curle-ok},
just as specified.@footnote{It might be better to return
@code{(values)} than @code{:curle-ok} in real code, but this is good
for illustration.}  I will leave disjoining the separate
@code{CURLcode}s into condition types and improving the @code{:report}
function as an exercise for you.

The creation of @code{*easy-handle-cstrings*} and
@code{*easy-handle-errorbuffers*} as properties of @code{easy-handle}s
is a kluge.  What we really want is a Lisp structure that stores these
properties along with the C pointer.  Unfortunately,
@code{easy-handle} is currently just a fancy name for the foreign type
@code{:pointer}; the actual pointer object varies from Common Lisp
implementation to implementation, needing only to satisfy
@code{pointerp} and be returned from @code{make-pointer} and friends.

One solution that would allow us to define a new Lisp structure to
represent @code{easy-handle}s would be to write a wrapper around every
function that currently takes an @code{easy-handle}; the wrapper would
extract the pointer and pass it to the foreign function.  However, we
can use type translators to more elegantly integrate this
``translation'' into the foreign function calling framework, using
@code{translate-to-foreign}.

@smalllisp
(defclass easy-handle ()
  ((pointer :initform (curl-easy-init)
            :documentation "Foreign pointer from curl_easy_init")
   (error-buffer
    :initform (foreign-alloc :char :count *curl-error-size*
                             :initial-element 0)
    :documentation "C string describing last error")
   (c-strings :initform '()
              :documentation "C strings set as options"))
  (:documentation "I am a parameterization you may pass to
curl-easy-perform to perform a cURL network protocol request."))

(defmethod initialize-instance :after ((self easy-handle) &key)
  (set-curl-option-errorbuffer self (slot-value self 'error-buffer)))

(defun add-curl-handle-cstring (handle cstring)
  "Add CSTRING to be freed when HANDLE is, answering CSTRING."
  (car (push cstring (slot-value handle 'c-strings))))

(defun get-easy-handle-error (handle)
  "Answer a string containing HANDLE's current error message."
  (foreign-string-to-lisp
   (slot-value handle 'error-buffer)))

(defun free-easy-handle (handle)
  "Free CURL easy interface HANDLE and any C strings created to
be its options."
  (with-slots (pointer error-buffer c-strings) handle
    (curl-easy-cleanup pointer)
    (foreign-free error-buffer)
    (mapc #'foreign-string-free c-strings)))

(define-foreign-type easy-handle-type ()
  ()
  (:actual-type :pointer)
  (:simple-parser easy-handle))

(defmethod translate-to-foreign (handle (type easy-handle-type))
  "Extract the pointer from an easy-HANDLE."
  (slot-value handle 'pointer))
@end smalllisp

While we changed some of the Lisp functions defined earlier to use
@acronym{CLOS} slots rather than hash tables, the foreign functions
work just as well as they did before.

@cindex limitations of type translators
The greatest strength, and the greatest limitation, of the type
translator comes from its generalized interface.  As stated
previously, we could define all foreign function calls in terms of the
primitive foreign types provided by @cffi{}.  The type translator
interface allows us to cleanly specify the relationship between Lisp
and C data, independent of where it appears in a function call.  This
independence comes at a price; for example, it cannot be used to
modify translation semantics based on other arguments to a function
call.  In these cases, you should rely on other features of Lisp,
rather than the powerful, yet domain-specific, type translator
interface.


@node Tutorial-Conclusion,  , Tutorial-Types, Tutorial
@section What's next?

@cffi{} provides a rich and powerful foundation for communicating with
foreign libraries; as we have seen, it is up to you to make that
experience a pleasantly Lispy one.  This tutorial does not cover all
the features of @cffi{}; please see the rest of the manual for
details.  In particular, if something seems obviously missing, it is
likely that either code or a good reason for lack of code is already
present.

@impnote{There are some other things in @cffi{} that might deserve
tutorial sections, such as free-translated-object, or structs.  Let us
know which ones you care about.}


@c ===================================================================
@c CHAPTER: Wrapper generators

@node Wrapper generators, Foreign Types, Tutorial, Top
@chapter Wrapper generators

@cffi{}'s interface is designed for human programmers, being aimed at
aesthetic as well as technical sophistication.  However, there are a
few programs aimed at translating C and C++ header files, or
approximations thereof, into @cffi{} forms constituting a foreign
interface to the symbols in those files.

These wrapper generators are known to support output of @cffi{} forms.

@table @asis
@item @uref{http://www.cliki.net/Verrazano,Verrazano}
Designed specifically for Common Lisp.  Uses @acronym{GCC}'s parser
output in @acronym{XML} format to discover functions, variables, and
other header file data.  This means you need @acronym{GCC} to generate
forms; on the other hand, the parser employed is mostly compliant with
@acronym{ANSI} C.

@item @uref{http://www.cliki.net/SWIG,SWIG}
A foreign interface generator originally designed to generate Python
bindings, it has been ported to many other systems, including @cffi{}
in version 1.3.28.  Includes its own C declaration munger, not
intended to be fully-compliant with @acronym{ANSI} C.
@end table

First, this manual does not describe use of these other programs; they
have documentation of their own.  If you have problems using a
generated interface, please look at the output @cffi{} forms and
verify that they are a correct @cffi{} interface to the library in
question; if they are correct, contact @cffi{} developers with
details, keeping in mind that they communicate in terms of those forms
rather than any particular wrapper generator.  Otherwise, contact the
maintainers of the wrapper generator you are using, provided you can
reasonably expect more accuracy from the generator.

When is more accuracy an unreasonable expectation?  As described in
the tutorial (@pxref{Tutorial-Abstraction,, Breaking the
abstraction}), the information in C declarations is insufficient to
completely describe every interface.  In fact, it is quite common to
run into an interface that cannot be handled automatically, and
generators should be excused from generating a complete interface in
these cases.

As further described in the tutorial, the thinnest Lisp interface to a
C function is not always the most pleasant one.  In many cases, you
will want to manually write a Lispier interface to the C functions
that interest you.

Wrapper generators should be treated as time-savers, not complete
automation of the full foreign interface writing job.  Reports of the
amount of work done by generators vary from 30% to 90%.  The
incremental development style enabled by @cffi{} generally reduces
this proportion below that for languages like Python.

@c Where I got the above 30-90% figures:
@c 30%: lemonodor's post about SWIG
@c 90%: Balooga on #lisp.  He said 99%, but that's probably an
@c      exaggeration (leave it to me to pass judgement :)
@c -stephen


@c ===================================================================
@c CHAPTER: Foreign Types

@node Foreign Types, Pointers, Wrapper generators, Top
@chapter Foreign Types

Foreign types describe how data is translated back and forth between C
and Lisp. @cffi{} provides various built-in types and allows the user to
define new types.

@menu
* Built-In Types::
* Other Types::
* Defining Foreign Types::
* Foreign Type Translators::
* Optimizing Type Translators::
* Foreign Structure Types::
* Allocating Foreign Objects::

Dictionary

* convert-from-foreign::
* convert-to-foreign::
* defbitfield::
* defcstruct::
* defcunion::
* defctype::
* defcenum::
@c * define-type-spec-parser::
* define-foreign-type::
* define-parse-method::
@c * explain-foreign-slot-value:
* foreign-bitfield-symbols::
* foreign-bitfield-value::
* foreign-enum-keyword::
* foreign-enum-value::
* foreign-slot-names::
* foreign-slot-offset::
* foreign-slot-pointer::
* foreign-slot-value::
* foreign-type-alignment::
* foreign-type-size::
* free-converted-object::
* free-translated-object::
* translate-from-foreign::
* translate-to-foreign::
* translate-into-foreign-memory::
* with-foreign-slots::
@end menu

@node Built-In Types, Other Types, Foreign Types, Foreign Types
@section Built-In Types

@ForeignType{:char}
@ForeignType{:unsigned-char}
@ForeignType{:short}
@ForeignType{:unsigned-short}
@ForeignType{:int}
@ForeignType{:unsigned-int}
@ForeignType{:long}
@ForeignType{:unsigned-long}
@ForeignType{:long-long}
@ForeignType{:unsigned-long-long}

These types correspond to the native C integer types according to the
@acronym{ABI} of the Lisp implementation's host system.

@code{:long-long} and @code{:unsigned-long-long} are not supported
natively on all implementations. However, they are emulated by
@code{mem-ref} and @code{mem-set}.

When those types are @strong{not} available, the symbol
@code{cffi-sys::no-long-long} is pushed into @code{*features*}.

@ForeignType{:uchar}
@ForeignType{:ushort}
@ForeignType{:uint}
@ForeignType{:ulong}
@ForeignType{:llong}
@ForeignType{:ullong}

For convenience, the above types are provided as shortcuts for
@code{unsigned-char}, @code{unsigned-short}, @code{unsigned-int},
@code{unsigned-long}, @code{long-long} and @code{unsigned-long-long},
respectively.

@ForeignType{:int8}
@ForeignType{:uint8}
@ForeignType{:int16}
@ForeignType{:uint16}
@ForeignType{:int32}
@ForeignType{:uint32}
@ForeignType{:int64}
@ForeignType{:uint64}
@ForeignType{:size}
@ForeignType{:ssize}
@ForeignType{:intptr}
@ForeignType{:uintptr}
@ForeignType{:ptrdiff}
@ForeignType{:offset}

Foreign integer types of specific sizes, corresponding to the C types
defined in @code{stdint.h}.

@c @ForeignType{:time}

@c Foreign integer types corresponding to the standard C types (without
@c the @code{_t} suffix).

@c @impnote{These are not implemented yet. --luis}

@c @impnote{I'm sure there are more of these that could be useful, let's
@c add any types that can't be defined portably to this list as
@c necessary. --james}

@ForeignType{:float}
@ForeignType{:double}

On all systems, the @code{:float} and @code{:double} types represent a
C @code{float} and @code{double}, respectively. On most but not all
systems, @code{:float} and @code{:double} represent a Lisp
@code{single-float} and @code{double-float}, respectively. It is not
so useful to consider the relationship between Lisp types and C types
as isomorphic, as simply to recognize the relationship, and relative
precision, among each respective category.

@ForeignType{:long-double}

This type is only supported on SCL.

@ForeignType{:pointer &optional type}

A foreign pointer to an object of any type, corresponding to
@code{void *}.  You can optionally specify type of pointer
(e.g. @code{(:pointer :char)}).  Although @cffi{} won't do anything
with that information yet, it is useful for documentation purposes.

@ForeignType{:void}

No type at all. Only valid as the return type of a function.

@node Other Types, Defining Foreign Types, Built-In Types, Foreign Types
@section Other Types

@cffi{} also provides a few useful types that aren't built-in C
types.

@ForeignType{:string}

The @code{:string} type performs automatic conversion between Lisp and
C strings. Note that, in the case of functions the converted C string
will have dynamic extent (i.e.@: it will be automatically freed after
the foreign function returns).

In addition to Lisp strings, this type will accept foreign pointers
and pass them unmodified.

A method for @ref{free-translated-object} is specialized for this
type. So, for example, foreign strings allocated by this type and
passed to a foreign function will be freed after the function
returns.

@lisp
CFFI> (foreign-funcall "getenv" :string "SHELL" :string)
@result{} "/bin/bash"

CFFI> (with-foreign-string (str "abcdef")
        (foreign-funcall "strlen" :string str :int))
@result{} 6
@end lisp

@ForeignType{:string+ptr}

Like @code{:string} but returns a list with two values when convert
from C to Lisp: a Lisp string and the C string's foreign pointer.

@lisp
CFFI> (foreign-funcall "getenv" :string "SHELL" :string+ptr)
@result{} ("/bin/bash" #.(SB-SYS:INT-SAP #XBFFFFC6F))
@end lisp

@ForeignType{:boolean &optional (base-type :int)}

The @code{:boolean} type converts between a Lisp boolean and a C
boolean. It canonicalizes to @var{base-type} which is @code{:int} by
default.

@lisp
(convert-to-foreign nil :boolean) @result{} 0
(convert-to-foreign t :boolean) @result{} 1
(convert-from-foreign 0 :boolean) @result{} nil
(convert-from-foreign 1 :boolean) @result{} t
@end lisp

@ForeignType{:bool}

The @code{:bool} type represents the C99 @code{_Bool} or C++
@code{bool}. Its size is usually 1 byte except on OSX where it's an
@code{int}.

@ForeignType{:wrapper base-type &key to-c from-c}

The @code{:wrapper} type stores two symbols passed to the @var{to-c}
and @var{from-c} arguments. When a value is being translated to or
from C, this type @code{funcall}s the respective symbol.

@code{:wrapper} types will be typedefs for @var{base-type} and will
inherit its translators, if any.

Here's an example of how the @code{:boolean} type could be defined in
terms of @code{:wrapper}.

@lisp
(defun bool-c-to-lisp (value)
  (not (zerop value)))

(defun bool-lisp-to-c (value)
  (if value 1 0))

(defctype my-bool (:wrapper :int :from-c bool-c-to-lisp
                                 :to-c bool-lisp-to-c))

(convert-to-foreign nil 'my-bool) @result{} 0
(convert-from-foreign 1 'my-bool) @result{} t
@end lisp

@node Defining Foreign Types, Foreign Type Translators, Other Types, Foreign Types
@section Defining Foreign Types

You can define simple C-like @code{typedef}s through the
@code{defctype} macro. Defining a typedef is as simple as giving
@code{defctype} a new name and the name of the type to be wrapped.

@lisp
;;; @lispcmt{Define MY-INT as an alias for the built-in type :INT.}
(defctype my-int :int)
@end lisp

With this type definition, one can, for instance, declare arguments to
foreign functions as having the type @code{my-int}, and they will be
passed as integers.

@subheading More complex types

@cffi{} offers another way to define types through
@code{define-foreign-type}, a thin wrapper macro around
@code{defclass}. As an example, let's go through the steps needed to
define a @code{(my-string &key encoding)} type. First, we need to
define our type class:

@lisp
(define-foreign-type my-string-type ()
  ((encoding :reader string-type-encoding :initarg :encoding))
  (:actual-type :pointer))
@end lisp

The @code{:actual-type} class option tells CFFI that this type will
ultimately be passed to and received from foreign code as a
@code{:pointer}. Now you need to tell CFFI how to parse a type
specification such as @code{(my-string :encoding :utf8)} into an
instance of @code{my-string-type}.  We do that with
@code{define-parse-method}:

@lisp
(define-parse-method my-string (&key (encoding :utf-8))
  (make-instance 'my-string-type :encoding encoding))
@end lisp

The next section describes how make this type actually translate
between C and Lisp strings.

@node Foreign Type Translators, Optimizing Type Translators, Defining Foreign Types, Foreign Types
@section Foreign Type Translators

Type translators are used to automatically convert Lisp values to or
from foreign values.  For example, using type translators, one can
take the @code{my-string} type defined in the previous section and
specify that it should:

@itemize
@item
convert C strings to Lisp strings;
@item
convert Lisp strings to newly allocated C strings;
@item
free said C strings when they are no longer needed.
@end itemize

In order to tell @cffi{} how to automatically convert Lisp values to
foreign values, define a specialized method for the
@code{translate-to-foreign} generic function:

@lisp
;;; @lispcmt{Define a method that converts Lisp strings to C strings.}
(defmethod translate-to-foreign (string (type my-string-type))
  (foreign-string-alloc string :encoding (string-type-encoding type)))
@end lisp

@noindent
From now on, whenever an object is passed as a @code{my-string} to a
foreign function, this method will be invoked to convert the Lisp
value. To perform the inverse operation, which is needed for functions
that return a @code{my-string}, specialize the
@code{translate-from-foreign} generic function in the same manner:

@lisp
;;; @lispcmt{Define a method that converts C strings to Lisp strings.}
(defmethod translate-from-foreign (pointer (type my-string-type))
  (foreign-string-to-lisp pointer :encoding (string-type-encoding type)))
@end lisp

@noindent
When a @code{translate-to-foreign} method requires allocation of
foreign memory, you must also define a @code{free-translated-object}
method to free the memory once the foreign object is no longer needed,
otherwise you'll be faced with memory leaks.  This generic function is
called automatically by @cffi{} when passing objects to foreign
functions. Let's do that:

@lisp
;;; @lispcmt{Free strings allocated by translate-to-foreign.}
(defmethod free-translated-object (pointer (type my-string-type) param)
  (declare (ignore param))
  (foreign-string-free pointer))
@end lisp

@noindent
In this specific example, we don't need the @var{param} argument, so
we ignore it. See @ref{free-translated-object}, for an explanation of
its purpose and how you can use it.

A type translator does not necessarily need to convert the value.  For
example, one could define a typedef for @code{:pointer} that ensures,
in the @code{translate-to-foreign} method, that the value is not a
null pointer, signalling an error if a null pointer is passed.  This
would prevent some pointer errors when calling foreign functions that
cannot handle null pointers.

@strong{Please note:} these methods are meant as extensible hooks
only, and you should not call them directly.  Use
@code{convert-to-foreign}, @code{convert-from-foreign} and
@code{free-converted-object} instead.

@xref{Tutorial-Types,, Defining new types}, for another example of
type translators.

@node Optimizing Type Translators, Foreign Structure Types, Foreign Type Translators, Foreign Types
@section Optimizing Type Translators

@cindex type translators, optimizing
@cindex compiler macros for type translation
@cindex defining type-translation compiler macros
Being based on generic functions, the type translation mechanism
described above can add a bit of overhead.  This is usually not
significant, but we nevertheless provide a way of getting rid of the
overhead for the cases where it matters.

A good way to understand this issue is to look at the code generated
by @code{defcfun}. Consider the following example using the previously
defined @code{my-string} type:

@lisp
CFFI> (macroexpand-1 '(defcfun foo my-string (x my-string)))
;; @lispcmt{(simplified, downcased, etc...)}
(defun foo (x)
  (multiple-value-bind (#:G2019 #:PARAM3149)
      (translate-to-foreign x #<MY-STRING-TYPE @{11ED5A79@}>)
    (unwind-protect
        (translate-from-foreign
         (foreign-funcall "foo" :pointer #:G2019 :pointer)
         #<MY-STRING-TYPE @{11ED5659@}>)
      (free-translated-object #:G2019 #<MY-STRING-TYPE @{11ED51A79@}>
                              #:PARAM3149))))
@end lisp

@noindent
In order to get rid of those generic function calls, @cffi{} has
another set of extensible generic functions that provide functionality
similar to @acronym{CL}'s compiler macros:
@code{expand-to-foreign-dyn}, @code{expand-to-foreign} and
@code{expand-from-foreign}. Here's how one could define a
@code{my-boolean} with them:

@lisp
(define-foreign-type my-boolean-type ()
  ()
  (:actual-type :int)
  (:simple-parser my-boolean))

(defmethod expand-to-foreign (value (type my-boolean-type))
  `(if ,value 1 0))

(defmethod expand-from-foreign (value (type my-boolean-type))
  `(not (zerop ,value)))
@end lisp

@noindent
And here's what the macroexpansion of a function using this type would
look like:

@lisp
CFFI> (macroexpand-1 '(defcfun bar my-boolean (x my-boolean)))
;; @lispcmt{(simplified, downcased, etc...)}
(defun bar (x)
  (let ((#:g3182 (if x 1 0)))
    (not (zerop (foreign-funcall "bar" :int #:g3182 :int)))))
@end lisp

@noindent
No generic function overhead.

Let's go back to our @code{my-string} type.  The expansion interface
has no equivalent of @code{free-translated-object}; you must instead
define a method on @code{expand-to-foreign-dyn}, the third generic
function in this interface.  This is especially useful when you can
allocate something much more efficiently if you know the object has
dynamic extent, as is the case with function calls that don't save the
relevant allocated arguments.

This exactly what we need for the @code{my-string} type:

@lisp
(defmethod expand-from-foreign (form (type my-string-type))
  `(foreign-string-to-lisp ,form))

(defmethod expand-to-foreign-dyn (value var body (type my-string-type))
  (let ((encoding (string-type-encoding type)))
    `(with-foreign-string (,var ,value :encoding ',encoding)
       ,@@body)))
@end lisp

@noindent
So let's look at the macro expansion:

@lisp
CFFI> (macroexpand-1 '(defcfun foo my-string (x my-string)))
;; @lispcmt{(simplified, downcased, etc...)}
(defun foo (x)
  (with-foreign-string (#:G2021 X :encoding ':utf-8)
    (foreign-string-to-lisp
     (foreign-funcall "foo" :pointer #:g2021 :pointer))))
@end lisp

@noindent
Again, no generic function overhead.

@subheading Other details

To short-circuit expansion and use the @code{translate-*} functions
instead, simply call the next method.  Return its result in cases
where your method cannot generate an appropriate replacement for it.
This analogous to the @code{&whole form} mechanism compiler macros
provide.

The @code{expand-*} methods have precedence over their
@code{translate-*} counterparts and are guaranteed to be used in
@code{defcfun}, @code{foreign-funcall}, @code{defcvar} and
@code{defcallback}.  If you define a method on each of the
@code{expand-*} generic functions, you are guaranteed to have full
control over the expressions generated for type translation in these
macros.

They may or may not be used in other @cffi{} operators that need to
translate between Lisp and C data; you may only assume that
@code{expand-*} methods will probably only be called during Lisp
compilation.

@code{expand-to-foreign-dyn} has precedence over
@code{expand-to-foreign} and is only used in @code{defcfun} and
@code{foreign-funcall}, only making sense in those contexts.

@strong{Important note:} this set of generic functions is called at
macroexpansion time.  Methods are defined when loaded or evaluated,
not compiled.  You are responsible for ensuring that your
@code{expand-*} methods are defined when the @code{foreign-funcall} or
other forms that use them are compiled.  One way to do this is to put
the method definitions earlier in the file and inside an appropriate
@code{eval-when} form; another way is to always load a separate Lisp
or @acronym{FASL} file containing your @code{expand-*} definitions
before compiling files with forms that ought to use them.  Otherwise,
they will not be found and the runtime translators will be used
instead.

@node Foreign Structure Types, Allocating Foreign Objects, Optimizing Type Translators, Foreign Types
@section Foreign Structure Types

For more involved C types than simple aliases to built-in types, such
as you can make with @code{defctype}, @cffi{} allows declaration of
structures and unions with @code{defcstruct} and @code{defcunion}.

For example, consider this fictional C structure declaration holding
some personal information:

@example
struct person @{
  int number;
  char* reason;
@};
@end example

@noindent
The equivalent @code{defcstruct} form follows:

@lisp
(defcstruct person
  (number :int)
  (reason :string))
@end lisp

@c LMH structure translation
By default, @ref{convert-from-foreign} (and also @ref{mem-ref}) will
make a plist with slot names as keys, and @ref{convert-to-foreign} will
translate such a plist to a foreign structure.  A user wishing to define
other translations should use the @code{:class} argument to
@ref{defcstruct}, and then define methods for
@ref{translate-from-foreign} and
@ref{translate-into-foreign-memory} that specialize on this class,
possibly calling @code{call-next-method} to translate from and to the
plists rather than provide a direct interface to the foreign object.
The macro @code{translation-forms-for-class} will generate the forms
necessary to translate a Lisp class into a foreign structure and vice
versa.
@c Write separate function doc section for translation-forms-for-class?
@c Examples, perhaps taken from the tests?

Please note that this interface is only for those that must know about
the values contained in a relevant struct.  If the library you are
interfacing returns an opaque pointer that needs only be passed to
other C library functions, by all means just use @code{:pointer} or a
type-safe definition munged together with @code{defctype} and type
translation.  To pass or return a structure by value to a function, load
the cffi-libffi system and specify the structure as @code{(:struct
@var{structure-name})}.  To pass or return the pointer, you can use
either @code{:pointer} or @code{(:pointer (:struct
@var{structure-name}))}.

@subheading Optimizing translate-into-foreign-memory

Just like how @ref{translate-from-foreign} had
@code{expand-from-foreign} to optimize away the generic function call
and @ref{translate-to-foreign} had the same in
@code{expand-to-foreign}, @ref{translate-into-foreign-memory} has
@code{expand-into-foreign-memory}.

Let's use our @code{person} struct in an example. However, we are
going to spice it up by using a lisp struct rather than a plist to
represent the person in lisp.

First we redefine @code{person} very slightly.

@lisp
(defcstruct (person :class c-person)
  (number :int)
  (reason :string))
@end lisp

By adding @code{:class} we can specialize the @code{translate-*}
methods on the type @code{c-person}.

Next we define a lisp struct to use instead of the plists.

@lisp
(defstruct lisp-person
  (number 0 :type integer)
  (reason "" :type string))
@end lisp

And now let's define the type translators we know already:

@lisp
(defmethod translate-from-foreign (ptr (type c-person))
  (with-foreign-slots ((number reason) ptr (:struct person))
    (make-lisp-person :number number :reason reason)))

(defmethod expand-from-foreign (ptr (type c-person))
  `(with-foreign-slots ((number reason) ,ptr (:struct person))
     (make-lisp-person :number number :reason reason)))

(defmethod translate-into-foreign-memory (value (type c-person) ptr)
  (with-foreign-slots ((number reason) ptr (:struct person))
    (setf number (lisp-person-number value)
          reason (lisp-person-reason value))))
@end lisp

At this point everything works, we can convert to and from our
@code{lisp-person} and foreign @code{person}. If we macroexpand

@lisp
(setf (mem-aref ptr '(:struct person)) x)
@end lisp

we get something like:

@lisp
(let ((#:store879 x))
  (translate-into-foreign-memory #:store879 #<c-person person>
                                 (inc-pointer ptr 0))
  #:store879)
@end lisp

Which is good, but now we can do better and get rid of that generic
function call to @code{translate-into-foreign-memory}.

@lisp
(defmethod expand-into-foreign-memory (value (type c-person) ptr)
  `(with-foreign-slots ((number reason) ,ptr (:struct person))
     (setf number (lisp-person-number ,value)
           reason (lisp-person-reason ,value))))
@end lisp

Now we can expand again so see the changes:

@lisp
;; this:
(setf (mem-aref ptr '(:struct person)) x)

;; expands to this
;; (simplified, downcased, etc..)
(let ((#:store887 x))
  (with-foreign-slots ((number reason) (inc-pointer ptr 0) (:struct person))
    (setf number (lisp-person-number #:store887)
          reason (lisp-person-reason #:store887))) #:store887)
@end lisp

And there we are, no generic function overhead.

@subheading Compatibility note

Previous versions of CFFI accepted the
``bare'' @var{structure-name} as a type specification, which was
interpreted as a pointer to the structure.  This is deprecated and
produces a style warning.  Using this deprecated form means that
@ref{mem-aref} retains its prior meaning and returns a pointer.  Using
the @code{(:struct @var{structure-name})} form for the type,
@ref{mem-aref} provides a Lisp object translated from the
structure (by default a plist).  Thus the semantics are consistent with all
types in returning the object as represented in Lisp, and not a pointer,
with the exception of the ``bare'' structure compatibility retained.
In order to obtain the pointer, you should use the function @ref{mem-aptr}.

See @ref{defcstruct} for more details.

@node Allocating Foreign Objects, convert-from-foreign, Foreign Structure Types, Foreign Types
@section Allocating Foreign Objects

@c I moved this because I moved with-foreign-object to the Pointers
@c chapter, where foreign-alloc is.

@xref{Allocating Foreign Memory}.


@c ===================================================================
@c CONVERT-FROM-FOREIGN

@page
@node convert-from-foreign, convert-to-foreign, Allocating Foreign Objects, Foreign Types
@heading convert-from-foreign
@subheading Syntax
@Function{convert-from-foreign foreign-value type @res{} value}

@subheading Arguments and Values

@table @var
@item foreign-value
The primitive C value as returned from a primitive foreign function or
from @code{convert-to-foreign}.

@item type
A @cffi{} type specifier.

@item value
The Lisp value translated from @var{foreign-value}.
@end table

@subheading Description

This is an external interface to the type translation facility.  In
the implementation, all foreign functions are ultimately defined as
type translation wrappers around primitive foreign function
invocations.

This function is available mostly for inspection of the type
translation process, and possibly optimization of special cases of
your foreign function calls.

Its behavior is better described under @code{translate-from-foreign}'s
documentation.

@subheading Examples

@lisp
CFFI-USER> (convert-to-foreign "a boat" :string)
@result{} #<FOREIGN-ADDRESS #x097ACDC0>
@result{} T
CFFI-USER> (convert-from-foreign * :string)
@result{} "a boat"
@end lisp

@subheading See Also
@seealso{convert-to-foreign} @*
@seealso{free-converted-object} @*
@seealso{translate-from-foreign}


@c ===================================================================
@c CONVERT-TO-FOREIGN

@page
@node convert-to-foreign, defbitfield, convert-from-foreign, Foreign Types
@heading convert-to-foreign
@subheading Syntax
@Function{convert-to-foreign value type @res{} foreign-value, alloc-params}

@subheading Arguments and Values

@table @var
@item value
The Lisp object to be translated to a foreign object.

@item type
A @cffi{} type specifier.

@item foreign-value
The primitive C value, ready to be passed to a primitive foreign
function.

@item alloc-params
Something of a translation state; you must pass it to
@code{free-converted-object} along with the foreign value for that to
work.
@end table

@subheading Description

This is an external interface to the type translation facility.  In
the implementation, all foreign functions are ultimately defined as
type translation wrappers around primitive foreign function
invocations.

This function is available mostly for inspection of the type
translation process, and possibly optimization of special cases of
your foreign function calls.

Its behavior is better described under @code{translate-to-foreign}'s
documentation.

@subheading Examples

@lisp
CFFI-USER> (convert-to-foreign t :boolean)
@result{} 1
@result{} NIL
CFFI-USER> (convert-to-foreign "hello, world" :string)
@result{} #<FOREIGN-ADDRESS #x097C5F80>
@result{} T
CFFI-USER> (code-char (mem-aref * :char 5))
@result{} #\,
@end lisp

@subheading See Also
@seealso{convert-from-foreign} @*
@seealso{free-converted-object} @*
@seealso{translate-to-foreign}


@c ===================================================================
@c DEFBITFIELD

@page
@node defbitfield, defcstruct, convert-to-foreign, Foreign Types
@heading defbitfield
@subheading Syntax
@Macro{defbitfield name-and-options &body masks}

masks ::= [docstring] @{ (symbol value) @}* @*
name-and-options ::= name | (name &optional (base-type :int)) @*

@subheading Arguments and Values

@table @var
@item name
The name of the new bitfield type.

@item docstring
A documentation string, ignored.

@item base-type
A symbol denoting a foreign type.

@item symbol
A Lisp symbol.

@item value
An integer representing a bitmask.
@end table

@subheading Description
The @code{defbitfield} macro is used to define foreign types that map
lists of symbols to integer values.

If @var{value} is omitted, it will be computed as follows: find the
greatest @var{value} previously used, including those so computed,
with only a single 1-bit in its binary representation (that is, powers
of two), and left-shift it by one.  This rule guarantees that a
computed @var{value} cannot clash with previous values, but may clash
with future explicitly specified values.

Symbol lists will be automatically converted to values and vice versa
when being passed as arguments to or returned from foreign functions,
respectively. The same applies to any other situations where an object
of a bitfield type is expected.

Types defined with @code{defbitfield} canonicalize to @var{base-type}
which is @code{:int} by default.

@subheading Examples
@lisp
(defbitfield open-flags
  (:rdonly #x0000)
  :wronly               ;@lispcmt{#x0001}
  :rdwr                 ;@lispcmt{@dots{}}
  :nonblock
  :append
  (:creat  #x0200))
  ;; @lispcmt{etc@dots{}}

CFFI> (foreign-bitfield-symbols 'open-flags #b1101)
@result{} (:WRONLY :NONBLOCK :APPEND)

CFFI> (foreign-bitfield-value 'open-flags '(:rdwr :creat))
@result{} 514   ; #x0202

(defcfun ("open" unix-open) :int
  (path :string)
  (flags open-flags)
  (mode :uint16)) ; unportable

CFFI> (unix-open "/tmp/foo" '(:wronly :creat) #o644)
@result{} #<an fd>

;;; @lispcmt{Consider also the following lispier wrapper around open()}
(defun lispier-open (path mode &rest flags)
  (unix-open path flags mode))
@end lisp

@subheading See Also
@seealso{foreign-bitfield-value} @*
@seealso{foreign-bitfield-symbols}


@c ===================================================================
@c DEFCSTRUCT

@page
@node defcstruct, defcunion, defbitfield, Foreign Types
@heading defcstruct
@subheading Syntax
@Macro{defcstruct name-and-options &body doc-and-slots @res{} name}

name-and-options ::= structure-name | (structure-name &key size) @*
doc-and-slots ::= [docstring] @{ (slot-name slot-type &key count offset) @}*

@subheading Arguments and Values

@table @var
@item structure-name
The name of new structure type.

@item docstring
A documentation string, ignored.

@item slot-name
A symbol naming the slot.  It must be unique among slot names in this
structure.

@item size
Use this option to override the size (in bytes) of the struct.

@item slot-type
The type specifier for the slot.

@item count
Used to declare an array of size @var{count} inside the
structure.  Defaults to @code{1} as such an array and a single element
are semantically equivalent.

@item offset
Overrides the slot's offset. The next slot's offset is calculated
based on this one.
@end table

@subheading Description
This defines a new @cffi{} aggregate type akin to C @code{struct}s.
In other words, it specifies that foreign objects of the type
@var{structure-name} are groups of different pieces of data, or
``slots'', of the @var{slot-type}s, distinguished from each other by
the @var{slot-name}s.  Each structure is located in memory at a
position, and the slots are allocated sequentially beginning at that
point in memory (with some padding allowances as defined by the C
@acronym{ABI}, unless otherwise requested by specifying an
@var{offset} from the beginning of the structure (offset 0).

In other words, it is isomorphic to the C @code{struct}, giving
several extra features.

There are two kinds of slots, for the two kinds of @cffi{} types:

@table @dfn
@item Simple
Contain a single instance of a type that canonicalizes to a built-in
type, such as @code{:long} or @code{:pointer}.  Used for simple
@cffi{} types.

@item Aggregate
Contain an embedded structure or union, or an array of objects.  Used
for aggregate @cffi{} types.
@end table

The use of @acronym{CLOS} terminology for the structure-related
features is intentional; structure definitions are very much like
classes with (far) fewer features.

@subheading Examples
@lisp
(defcstruct point
  "Point structure."
  (x :int)
  (y :int))

CFFI> (with-foreign-object (ptr 'point)
        ;; @lispcmt{Initialize the slots}
        (setf (foreign-slot-value ptr 'point 'x) 42
              (foreign-slot-value ptr 'point 'y) 42)
        ;; @lispcmt{Return a list with the coordinates}
        (with-foreign-slots ((x y) ptr point)
          (list x y)))
@result{} (42 42)
@end lisp

@lisp
;; @lispcmt{Using the :size and :offset options to define a partial structure.}
;; @lispcmt{(this is useful when you are interested in only a few slots}
;; @lispcmt{of a big foreign structure)}

(defcstruct (foo :size 32)
  "Some struct with 32 bytes."
                        ; @lispcmt{<16 bytes we don't care about>}
  (x :int :offset 16)   ; @lispcmt{an int at offset 16}
  (y :int)              ; @lispcmt{another int at offset 16+sizeof(int)}
                        ; @lispcmt{<a couple more bytes we don't care about>}
  (z :char :offset 24)) ; @lispcmt{a char at offset 24}
                        ; @lispcmt{<7 more bytes ignored (since size is 32)>}

CFFI> (foreign-type-size 'foo)
@result{} 32
@end lisp

@lisp
;;; @lispcmt{Using :count to define arrays inside of a struct.}
(defcstruct video_tuner
  (name :char :count 32))
@end lisp

@subheading See Also
@seealso{foreign-slot-pointer} @*
@seealso{foreign-slot-value} @*
@seealso{with-foreign-slots}


@c ===================================================================
@c DEFCUNION

@page
@node defcunion, defctype, defcstruct, Foreign Types
@heading defcunion
@subheading Syntax
@Macro{defcunion name &body doc-and-slots @res{} name}

doc-and-slots ::= [docstring] @{ (slot-name slot-type &key count) @}*

@subheading Arguments and Values

@table @var
@item name
The name of new union type.

@item docstring
A documentation string, ignored.

@item slot-name
A symbol naming the slot.

@item slot-type
The type specifier for the slot.

@item count
Used to declare an array of size @var{count} inside the
structure.
@end table

@subheading Description
A union is a structure in which all slots have an offset of zero.  It
is isomorphic to the C @code{union}.  Therefore, you should use the
usual foreign structure operations for accessing a union's slots.

@subheading Examples
@lisp
(defcunion uint32-bytes
  (int-value :unsigned-int)
  (bytes :unsigned-char :count 4))
@end lisp

@subheading See Also
@seealso{foreign-slot-pointer} @*
@seealso{foreign-slot-value}


@c ===================================================================
@c DEFCTYPE

@page
@node defctype, defcenum, defcunion, Foreign Types
@heading defctype
@subheading Syntax
@Macro{defctype name base-type &optional documentation}

@subheading Arguments and Values

@table @var
@item name
The name of the new foreign type.

@item base-type
A symbol or a list defining the new type.

@item documentation
A documentation string, currently ignored.
@end table

@subheading Description
The @code{defctype} macro provides a mechanism similar to C's
@code{typedef} to define new types. The new type inherits
@var{base-type}'s translators, if any. There is no way to define
translations for types defined with @code{defctype}.  For that,
you should use @ref{define-foreign-type}.

@subheading Examples
@lisp
(defctype my-string :string
  "My own string type.")

(defctype long-bools (:boolean :long)
  "Booleans that map to C longs.")
@end lisp

@subheading See Also
@seealso{define-foreign-type}


@c ===================================================================
@c DEFCENUM

@page
@node defcenum, define-foreign-type, defctype, Foreign Types
@heading defcenum
@subheading Syntax
@Macro{defcenum name-and-options &body enum-list}

enum-list ::= [docstring] @{ keyword | (keyword value) @}* @*
name-and-options ::= name | (name &optional (base-type :int) &key allow-undeclared-values) @*

@subheading Arguments and Values

@table @var
@item name
The name of the new enum type.

@item docstring
A documentation string, ignored.

@item base-type
A symbol denoting a foreign type.

@item allow-undeclared-values
Whether to pass through integer values that were not explicitly declared
in the enum when translating from foreign memory.

@item keyword
A keyword symbol.

@item value
An index value for a keyword.
@end table

@subheading Description
The @code{defcenum} macro is used to define foreign types that map
keyword symbols to integer values, similar to the C @code{enum} type.

If @var{value} is omitted its value will either be 0, if it's the
first entry, or it it will continue the progression from the last
specified value.

Keywords will be automatically converted to values and vice-versa when
being passed as arguments to or returned from foreign functions,
respectively. The same applies to any other situations where an object
of an @code{enum} type is expected.

If a value should be translated to lisp that is not declared in the
enum, an error will be signalled. You can elide this error and instead
make it pass the original enum value by specifying
@var{allow-undeclared-values}. This can be useful for very large
enumerations of which we only care about a subset of values, or for
enumerations that should allow for client or vendor extensions that we
cannot know about.

Types defined with @code{defcenum} canonicalize to @var{base-type}
which is @code{:int} by default.

@subheading Examples
@lisp
(defcenum boolean
  :no
  :yes)

CFFI> (foreign-enum-value 'boolean :no)
@result{} 0
@end lisp

@lisp
(defcenum numbers
  (:one 1)
  :two
  (:four 4))

CFFI> (foreign-enum-keyword 'numbers 2)
@result{} :TWO
@end lisp

@subheading See Also
@seealso{foreign-enum-value} @*
@seealso{foreign-enum-keyword}


@c ===================================================================
@c DEFINE-FOREIGN-TYPE

@page
@node define-foreign-type, define-parse-method, defcenum, Foreign Types
@heading define-foreign-type
@subheading Syntax
@Macro{define-foreign-type class-name supers slots &rest options @res{} class-name}

options ::= (@code{:actual-type} @var{type}) | @
    (@code{:simple-parser} @var{symbol}) | @
    @emph{regular defclass option}

@subheading Arguments and Values

@table @var
@item class-name
A symbol naming the new foreign type class.

@item supers
A list of symbols naming the super classes.

@item slots
A list of slot definitions, passed to @code{defclass}.
@end table

@subheading Description

@c TODO rewrite

The macro @code{define-foreign-type} defines a new class
@var{class-name}. It is a thin wrapper around @code{defclass}. Among
other things, it ensures that @var{class-name} becomes a subclass of
@var{foreign-type}, what you need to know about that is that there's
an initarg @code{:actual-type} which serves the same purpose as
@code{defctype}'s @var{base-type} argument.

@c TODO mention the type translators here
@c FIX FIX

@subheading Examples
Taken from @cffi{}'s @code{:boolean} type definition:

@lisp
(define-foreign-type :boolean (&optional (base-type :int))
  "Boolean type. Maps to an :int by default. Only accepts integer types."
  (ecase base-type
    ((:char
      :unsigned-char
      :int
      :unsigned-int
      :long
      :unsigned-long) base-type)))

CFFI> (canonicalize-foreign-type :boolean)
@result{} :INT
CFFI> (canonicalize-foreign-type '(:boolean :long))
@result{} :LONG
CFFI> (canonicalize-foreign-type '(:boolean :float))
;; @lispcmt{@error{} signalled by ECASE.}
@end lisp

@subheading See Also
@seealso{defctype} @*
@seealso{define-parse-method}


@c ===================================================================
@c DEFINE-PARSE-METHOD

@page
@node define-parse-method, foreign-bitfield-symbols, define-foreign-type, Foreign Types
@heading define-parse-method
@subheading Syntax
@Macro{define-parse-method name lambda-list &body body @res{} name}

@subheading Arguments and Values

@table @var
@item type-name
A symbol naming the new foreign type.

@item lambda-list
A lambda list which is the argument list of the new foreign type.

@item body
One or more forms that provide a definition of the new foreign type.
@end table

@subheading Description


@c TODO: update example. The boolean type is probably a good choice.

@subheading Examples
Taken from @cffi{}'s @code{:boolean} type definition:

@lisp
(define-foreign-type :boolean (&optional (base-type :int))
  "Boolean type. Maps to an :int by default. Only accepts integer types."
  (ecase base-type
    ((:char
      :unsigned-char
      :int
      :unsigned-int
      :long
      :unsigned-long) base-type)))

CFFI> (canonicalize-foreign-type :boolean)
@result{} :INT
CFFI> (canonicalize-foreign-type '(:boolean :long))
@result{} :LONG
CFFI> (canonicalize-foreign-type '(:boolean :float))
;; @lispcmt{@error{} signalled by ECASE.}
@end lisp

@subheading See Also
@seealso{define-foreign-type}


@c ===================================================================
@c EXPLAIN-FOREIGN-SLOT-VALUE

@c @node explain-foreign-slot-value
@c @heading explain-foreign-slot-value
@c @subheading Syntax
@c @Macro{explain-foreign-slot-value ptr type &rest slot-names}

@c @subheading Arguments and Values

@c @table @var
@c @item ptr
@c ...

@c @item type
@c ...

@c @item slot-names
@c ...
@c @end table

@c @subheading Description
@c This macro translates the slot access that would occur by calling
@c @code{foreign-slot-value} with the same arguments into an equivalent
@c expression in C and prints it to @code{*standard-output*}.

@c @emph{Note: this is not implemented yet.}

@c @subheading Examples
@c @lisp
@c CFFI> (explain-foreign-slot-value ptr 'timeval 'tv-secs)
@c @result{} ptr->tv_secs

@c CFFI> (explain-foreign-slot-value emp 'employee 'hire-date 'tv-usecs)
@c @result{} emp->hire_date.tv_usecs
@c @end lisp

@c @subheading See Also


@c ===================================================================
@c FOREIGN-BITFIELD-SYMBOLS

@page
@node foreign-bitfield-symbols, foreign-bitfield-value, define-parse-method, Foreign Types
@heading foreign-bitfield-symbols
@subheading Syntax
@Function{foreign-bitfield-symbols type value @res{} symbols}

@subheading Arguments and Values

@table @var
@item type
A bitfield type.

@item value
An integer.

@item symbols
A potentially shared list of symbols.
@code{nil}.
@end table

@subheading Description
The function @code{foreign-bitfield-symbols} returns a possibly shared
list of symbols that correspond to @var{value} in @var{type}.

@subheading Examples
@lisp
(defbitfield flags
  (flag-a 1)
  (flag-b 2)
  (flag-c 4))

CFFI> (foreign-bitfield-symbols 'flags #b101)
@result{} (FLAG-A FLAG-C)
@end lisp

@subheading See Also
@seealso{defbitfield} @*
@seealso{foreign-bitfield-value}


@c ===================================================================
@c FOREIGN-BITFIELD-VALUE

@page
@node foreign-bitfield-value, foreign-enum-keyword, foreign-bitfield-symbols, Foreign Types
@heading foreign-bitfield-value
@subheading Syntax
@Function{foreign-bitfield-value type symbols @res{} value}

@subheading Arguments and Values

@table @var
@item type
A @code{bitfield} type.

@item symbol
A Lisp symbol.

@item value
An integer.
@end table

@subheading Description
The function @code{foreign-bitfield-value} returns the @var{value} that
corresponds to the symbols in the @var{symbols} list.

@subheading Examples
@lisp
(defbitfield flags
  (flag-a 1)
  (flag-b 2)
  (flag-c 4))

CFFI> (foreign-bitfield-value 'flags '(flag-a flag-c))
@result{} 5  ; #b101
@end lisp

@subheading See Also
@seealso{defbitfield} @*
@seealso{foreign-bitfield-symbols}


@c ===================================================================
@c FOREIGN-ENUM-KEYWORD

@page
@node foreign-enum-keyword, foreign-enum-value, foreign-bitfield-value, Foreign Types
@heading foreign-enum-keyword
@subheading Syntax
@Function{foreign-enum-keyword type value &key errorp @res{} keyword}

@subheading Arguments and Values

@table @var
@item type
An @code{enum} type.

@item value
An integer.

@item errorp
If true (the default), signal an error if @var{value} is not defined
in @var{type}.  If false, @code{foreign-enum-keyword} returns
@code{nil}.

@item keyword
A keyword symbol.
@end table

@subheading Description
The function @code{foreign-enum-keyword} returns the keyword symbol
that corresponds to @var{value} in @var{type}.

An error is signaled if @var{type} doesn't contain such @var{value}
and @var{errorp} is true.

@subheading Examples
@lisp
(defcenum boolean
  :no
  :yes)

CFFI> (foreign-enum-keyword 'boolean 1)
@result{} :YES
@end lisp

@subheading See Also
@seealso{defcenum} @*
@seealso{foreign-enum-value}


@c ===================================================================
@c FOREIGN-ENUM-VALUE

@page
@node foreign-enum-value, foreign-slot-names, foreign-enum-keyword, Foreign Types
@heading foreign-enum-value
@subheading Syntax
@Function{foreign-enum-value type keyword &key errorp @res{} value}

@subheading Arguments and Values

@table @var
@item type
An @code{enum} type.

@item keyword
A keyword symbol.

@item errorp
If true (the default), signal an error if @var{keyword} is not
defined in @var{type}.  If false, @code{foreign-enum-value} returns
@code{nil}.

@item value
An integer.
@end table

@subheading Description
The function @code{foreign-enum-value} returns the @var{value} that
corresponds to @var{keyword} in @var{type}.

An error is signaled if @var{type} doesn't contain such
@var{keyword}, and @var{errorp} is true.

@subheading Examples
@lisp
(defcenum boolean
  :no
  :yes)

CFFI> (foreign-enum-value 'boolean :yes)
@result{} 1
@end lisp

@subheading See Also
@seealso{defcenum} @*
@seealso{foreign-enum-keyword}


@c ===================================================================
@c FOREIGN-SLOT-NAMES

@page
@node foreign-slot-names, foreign-slot-offset, foreign-enum-value, Foreign Types
@heading foreign-slot-names
@subheading Syntax
@Function{foreign-slot-names type @res{} names}

@subheading Arguments and Values

@table @var
@item type
A foreign struct type.

@item names
A list.
@end table

@subheading Description
The function @code{foreign-slot-names} returns a potentially shared
list of slot @var{names} for the given structure @var{type}. This list
has no particular order.

@subheading Examples
@lisp
(defcstruct timeval
  (tv-secs :long)
  (tv-usecs :long))

CFFI> (foreign-slot-names '(:struct timeval))
@result{} (TV-SECS TV-USECS)
@end lisp

@subheading See Also
@seealso{defcstruct} @*
@seealso{foreign-slot-offset} @*
@seealso{foreign-slot-value} @*
@seealso{foreign-slot-pointer}


@c ===================================================================
@c FOREIGN-SLOT-OFFSET

@page
@node foreign-slot-offset, foreign-slot-pointer, foreign-slot-names, Foreign Types
@heading foreign-slot-offset
@subheading Syntax
@Function{foreign-slot-offset type slot-name @res{} offset}

@subheading Arguments and Values

@table @var
@item type
A foreign struct type.

@item slot-name
A symbol.

@item offset
An integer.
@end table

@subheading Description
The function @code{foreign-slot-offset} returns the @var{offset} in
bytes of a slot in a foreign struct type.

@subheading Examples
@lisp
(defcstruct timeval
  (tv-secs :long)
  (tv-usecs :long))

CFFI> (foreign-slot-offset '(:struct timeval) 'tv-secs)
@result{} 0
CFFI> (foreign-slot-offset '(:struct timeval) 'tv-usecs)
@result{} 4
@end lisp

@subheading See Also
@seealso{defcstruct} @*
@seealso{foreign-slot-names} @*
@seealso{foreign-slot-pointer} @*
@seealso{foreign-slot-value}


@c ===================================================================
@c FOREIGN-SLOT-POINTER

@page
@node foreign-slot-pointer, foreign-slot-value, foreign-slot-offset, Foreign Types
@heading foreign-slot-pointer
@subheading Syntax
@Function{foreign-slot-pointer ptr type slot-name @res{} pointer}

@subheading Arguments and Values

@table @var
@item ptr
A pointer to a structure.

@item type
A foreign structure type.

@item slot-names
A slot name in the @var{type}.

@item pointer
A pointer to the slot @var{slot-name}.
@end table

@subheading Description
Returns a pointer to the location of the slot @var{slot-name} in a
foreign object of type @var{type} at @var{ptr}. The returned pointer
points inside the structure. Both the pointer and the memory it points
to have the same extent as @var{ptr}.

For aggregate slots, this is the same value returned by
@code{foreign-slot-value}.

@subheading Examples
@lisp
(defcstruct point
  "Pointer structure."
  (x :int)
  (y :int))

CFFI> (with-foreign-object (ptr '(:struct point))
        (foreign-slot-pointer ptr '(:struct point) 'x))
@result{} #<FOREIGN-ADDRESS #xBFFF6E60>
;; @lispcmt{Note: the exact pointer representation varies from lisp to lisp.}
@end lisp

@subheading See Also
@seealso{defcstruct} @*
@seealso{foreign-slot-value} @*
@seealso{foreign-slot-names} @*
@seealso{foreign-slot-offset}


@c ===================================================================
@c FOREIGN-SLOT-VALUE

@page
@node foreign-slot-value, foreign-type-alignment, foreign-slot-pointer, Foreign Types
@heading foreign-slot-value
@subheading Syntax
@Accessor{foreign-slot-value ptr type slot-name @res{} object}

@subheading Arguments and Values

@table @var
@item ptr
A pointer to a structure.

@item type
A foreign structure type.

@item slot-name
A symbol naming a slot in the structure type.

@item object
The object contained in the slot specified by @var{slot-name}.
@end table

@subheading Description
For simple slots, @code{foreign-slot-value} returns the value of the
object, such as a Lisp integer or pointer. In C, this would be
expressed as @code{ptr->slot}.

For aggregate slots, a pointer inside the structure to the beginning
of the slot's data is returned. In C, this would be expressed as
@code{&ptr->slot}. This pointer and the memory it points to have the
same extent as @var{ptr}.

There are compiler macros for @code{foreign-slot-value} and its
@code{setf} expansion that open code the memory access when
@var{type} and @var{slot-names} are constant at compile-time.

@subheading Examples
@lisp
(defcstruct point
  "Pointer structure."
  (x :int)
  (y :int))

CFFI> (with-foreign-object (ptr '(:struct point))
        ;; @lispcmt{Initialize the slots}
        (setf (foreign-slot-value ptr '(:struct point) 'x) 42
              (foreign-slot-value ptr '(:struct point) 'y) 42)
        ;; @lispcmt{Return a list with the coordinates}
        (with-foreign-slots ((x y) ptr (:struct point))
          (list x y)))
@result{} (42 42)
@end lisp

@subheading See Also
@seealso{defcstruct} @*
@seealso{foreign-slot-names} @*
@seealso{foreign-slot-offset} @*
@seealso{foreign-slot-pointer} @*
@seealso{with-foreign-slots}


@c ===================================================================
@c FOREIGN-TYPE-ALIGNMENT

@page
@node foreign-type-alignment, foreign-type-size, foreign-slot-value, Foreign Types
@heading foreign-type-alignment
@subheading Syntax
@c XXX: This is actually a generic function.
@Function{foreign-type-alignment type @res{} alignment}

@subheading Arguments and Values

@table @var
@item type
A foreign type.

@item alignment
An integer.
@end table

@subheading Description
The function @code{foreign-type-alignment} returns the
@var{alignment} of @var{type} in bytes.

@subheading Examples
@lisp
CFFI> (foreign-type-alignment :char)
@result{} 1
CFFI> (foreign-type-alignment :short)
@result{} 2
CFFI> (foreign-type-alignment :int)
@result{} 4
@end lisp

@lisp
(defcstruct foo
  (a :char))

CFFI> (foreign-type-alignment '(:struct foo))
@result{} 1
@end lisp

@subheading See Also
@seealso{foreign-type-size}


@c ===================================================================
@c FOREIGN-TYPE-SIZE

@page
@node foreign-type-size, free-converted-object, foreign-type-alignment, Foreign Types
@heading foreign-type-size
@subheading Syntax
@c XXX: this is actually a generic function.
@Function{foreign-type-size type @res{} size}

@subheading Arguments and Values

@table @var
@item type
A foreign type.

@item size
An integer.
@end table

@subheading Description
The function @code{foreign-type-size} return the @var{size} of
@var{type} in bytes.  This includes any padding within and following
the in-memory representation as needed to create an array of
@var{type} objects.

@subheading Examples
@lisp
(defcstruct foo
  (a :double)
  (c :char))

CFFI> (foreign-type-size :double)
@result{} 8
CFFI> (foreign-type-size :char)
@result{} 1
CFFI> (foreign-type-size '(:struct foo))
@result{} 16
@end lisp

@subheading See Also
@seealso{foreign-type-alignment}


@c ===================================================================
@c FREE-CONVERTED-OBJECT

@page
@node free-converted-object, free-translated-object, foreign-type-size, Foreign Types
@heading free-converted-object
@subheading Syntax
@Function{free-converted-object foreign-value type params}

@subheading Arguments and Values

@table @var
@item foreign-value
The C object to be freed.

@item type
A @cffi{} type specifier.

@item params
The state returned as the second value from @code{convert-to-foreign};
used to implement the third argument to @code{free-translated-object}.
@end table

@subheading Description

The return value is unspecified.

This is an external interface to the type translation facility.  In
the implementation, all foreign functions are ultimately defined as
type translation wrappers around primitive foreign function
invocations.

This function is available mostly for inspection of the type
translation process, and possibly optimization of special cases of
your foreign function calls.

Its behavior is better described under @code{free-translated-object}'s
documentation.

@subheading Examples

@lisp
CFFI-USER> (convert-to-foreign "a boat" :string)
@result{} #<FOREIGN-ADDRESS #x097ACDC0>
@result{} T
CFFI-USER> (free-converted-object * :string t)
@result{} NIL
@end lisp

@subheading See Also
@seealso{convert-from-foreign} @*
@seealso{convert-to-foreign} @*
@seealso{free-translated-object}


@c ===================================================================
@c FREE-TRANSLATED-OBJECT

@c TODO: update

@page
@node free-translated-object, translate-from-foreign, free-converted-object, Foreign Types
@heading free-translated-object
@subheading Syntax
@GenericFunction{free-translated-object value type-name param}

@subheading Arguments and Values

@table @var
@item pointer
The foreign value returned by @code{translate-to-foreign}.

@item type-name
A symbol naming a foreign type defined by @code{defctype}.

@item param
The second value, if any, returned by @code{translate-to-foreign}.
@end table

@subheading Description
This generic function may be specialized by user code to perform
automatic deallocation of foreign objects as they are passed to C
functions.

Any methods defined on this generic function must EQL-specialize the
@var{type-name} parameter on a symbol defined as a foreign type by
the @code{defctype} macro.

@subheading See Also
@seealso{Foreign Type Translators} @*
@seealso{translate-to-foreign}


@c ===================================================================
@c TRANSLATE-FROM-FOREIGN

@c TODO: update

@page
@node translate-from-foreign, translate-to-foreign, free-translated-object, Foreign Types
@heading translate-from-foreign
@subheading Syntax
@GenericFunction{translate-from-foreign foreign-value type-name @
                                        @res{} lisp-value}

@subheading Arguments and Values

@table @var
@item foreign-value
The foreign value to convert to a Lisp object.

@item type-name
A symbol naming a foreign type defined by @code{defctype}.

@item lisp-value
The lisp value to pass in place of @code{foreign-value} to Lisp code.
@end table

@subheading Description
This generic function is invoked by @cffi{} to convert a foreign value to
a Lisp value, such as when returning from a foreign function, passing
arguments to a callback function, or accessing a foreign variable.

To extend the @cffi{} type system by performing custom translations, this
method may be specialized by @sc{eql}-specializing @code{type-name} on a
symbol naming a foreign type defined with @code{defctype}.  This
method should return the appropriate Lisp value to use in place of the
foreign value.

The results are undefined if the @code{type-name} parameter is
specialized in any way except an @sc{eql} specializer on a foreign type
defined with @code{defctype}.  Specifically, translations may not be
defined for built-in types.

@subheading See Also
@seealso{Foreign Type Translators} @*
@seealso{translate-to-foreign} @*
@seealso{free-translated-object}


@c ===================================================================
@c TRANSLATE-TO-FOREIGN

@c TODO: update

@page
@node translate-to-foreign, translate-into-foreign-memory, translate-from-foreign, Foreign Types
@heading translate-to-foreign
@subheading Syntax
@GenericFunction{translate-to-foreign lisp-value type-name @
                                      @res{} foreign-value, alloc-param}

@subheading Arguments and Values

@table @var
@item lisp-value
The Lisp value to convert to foreign representation.

@item type-name
A symbol naming a foreign type defined by @code{defctype}.

@item foreign-value
The foreign value to pass in place of @code{lisp-value} to foreign code.

@item alloc-param
If present, this value will be passed to
@code{free-translated-object}.
@end table

@subheading Description
This generic function is invoked by @cffi{} to convert a Lisp value to a
foreign value, such as when passing arguments to a foreign function,
returning a value from a callback, or setting a foreign variable.  A
``foreign value'' is one appropriate for passing to the next-lowest
translator, including the low-level translators that are ultimately
invoked invisibly with @cffi{}.

To extend the @cffi{} type system by performing custom translations, this
method may be specialized by @sc{eql}-specializing @code{type-name} on a
symbol naming a foreign type defined with @code{defctype}.  This
method should return the appropriate foreign value to use in place of
the Lisp value.

In cases where @cffi{} can determine the lifetime of the foreign object
returned by this method, it will invoke @code{free-translated-object}
on the foreign object at the appropriate time.  If
@code{translate-to-foreign} returns a second value, it will be passed
as the @code{param} argument to @code{free-translated-object}.  This
can be used to establish communication between the allocation and
deallocation methods.

The results are undefined if the @code{type-name} parameter is
specialized in any way except an @sc{eql} specializer on a foreign type
defined with @code{defctype}.  Specifically, translations may not be
defined for built-in types.

@subheading See Also
@seealso{Foreign Type Translators} @*
@seealso{translate-from-foreign} @*
@seealso{free-translated-object}


@c ===================================================================
@c TRANSLATE-INTO-FOREIGN-MEMORY

@page
@node translate-into-foreign-memory, with-foreign-slots, translate-to-foreign, Foreign Types
@heading translate-into-foreign-memory
@subheading Syntax
@GenericFunction{translate-into-foreign-memory lisp-value type-name pointer}

@subheading Arguments and Values

@table @var
@item lisp-value
The Lisp value to convert to foreign representation.

@item type-name
A symbol or list @code{(:struct @var{structure-name})} naming a foreign type defined by @code{defctype}.

@item pointer
The foreign pointer where the translated object should be stored.
@end table

@subheading Description
Translate the Lisp value into the foreign memory location given by
pointer.  The return value is not used.

@c ===================================================================
@c WITH-FOREIGN-SLOTS

@page
@node with-foreign-slots,  , translate-into-foreign-memory, Foreign Types
@heading with-foreign-slots
@subheading Syntax
@Macro{with-foreign-slots (vars ptr type) &body body}

@subheading Arguments and Values

@table @var
@item vars
A list with binding descriptors; each is either a symbol, or list with
up to 3 elements: an optional new name to bind, an optional symbol 
@code{:pointer} and finally the required slot symbol.

@item ptr
A foreign pointer to a structure.

@item type
A structure type.

@item body
A list of forms to be executed.
@end table

@subheading Description
The @code{with-foreign-slots} macro establishes a lexical environment for
referring to the foreign slots of @var{type} addressed by @var{ptr}.
Like Common Lisp's @code{with-slots} macro, each var in @var{vars} may
be a symbol naming a slot, or a list @code{(name slot)} which creates a 
binding to a slot with a different name.
Prefixing the slot name with @code{:pointer} creates a binding to a
foreign pointer that addresses the slot rather than its value.  Both
@code{(:pointer slot)} and @code{(name :pointer slot)} are acceptable.

@subheading Examples
@lisp
(defcstruct tm
  (sec :int)
  (min :int)
  (hour :int)
  (mday :int)
  (mon  :int)
  (year :int)
  (wday :int)
  (yday :int)
  (isdst  :boolean)
  (zone   :string)
  (gmtoff :long))

CFFI> (with-foreign-object (time :int)
        (setf (mem-ref time :int)
              (foreign-funcall "time" :pointer (null-pointer) :int))
        (foreign-funcall "gmtime" :pointer time (:pointer (:struct tm))))
@result{} #<A Mac Pointer #x102A30>
CFFI> (with-foreign-slots ((sec min hour (day-of-month mday) mon year) * (:struct tm))
        (format nil "~A:~A:~A, ~A/~A/~A"
                hour min sec (+ 1900 year) mon day-of-month))
@result{} "7:22:47, 2005/8/2"
@end lisp

@subheading See Also
@seealso{defcstruct} @*
@seealso{defcunion} @*
@seealso{foreign-slot-value}


@c ===================================================================
@c CHAPTER: Pointers

@node Pointers, Strings, Foreign Types, Top
@chapter Pointers

All C data in @cffi{} is referenced through pointers.  This includes
defined C variables that hold immediate values, and integers.

To see why this is, consider the case of the C integer.  It is not
only an arbitrary representation for an integer, congruent to Lisp's
fixnums; the C integer has a specific bit pattern in memory defined by
the C @acronym{ABI}.  Lisp has no such constraint on its fixnums;
therefore, it only makes sense to think of fixnums as C integers if
you assume that @cffi{} converts them when necessary, such as when
storing one for use in a C function call, or as the value of a C
variable.  This requires defining an area of memory@footnote{The
definition of @dfn{memory} includes the @acronym{CPU} registers.},
represented through an effective address, and storing it there.

Due to this compartmentalization, it only makes sense to manipulate
raw C data in Lisp through pointers to it.  For example, while there
may be a Lisp representation of a @code{struct} that is converted to C
at store time, you may only manipulate its raw data through a pointer.
The C compiler does this also, albeit informally.

@menu
* Basic Pointer Operations::
* Allocating Foreign Memory::
* Accessing Foreign Memory::

Dictionary

* foreign-free::
* foreign-alloc::
* foreign-symbol-pointer::
* inc-pointer::
* incf-pointer::
* make-pointer::
* mem-aptr::
* mem-aref::
* mem-ref::
* null-pointer::
* null-pointer-p::
* pointerp::
* pointer-address::
* pointer-eq::
* with-foreign-object::
* with-foreign-objects::
* with-foreign-pointer::
@end menu

@node Basic Pointer Operations, Allocating Foreign Memory, Pointers, Pointers
@section Basic Pointer Operations

Manipulating pointers proper can be accomplished through most of the
other operations defined in the Pointers dictionary, such as
@code{make-pointer}, @code{pointer-address}, and @code{pointer-eq}.
When using them, keep in mind that they merely manipulate the Lisp
representation of pointers, not the values they point to.

@deftp {Lisp Type} foreign-pointer
The pointers' representations differ from implementation to
implementation and have different types.  @code{foreign-pointer}
provides a portable type alias to each of these types.
@end deftp


@node Allocating Foreign Memory, Accessing Foreign Memory, Basic Pointer Operations, Pointers
@section Allocating Foreign Memory

@cffi{} provides support for stack and heap C memory allocation.
Stack allocation, done with @code{with-foreign-object}, is sometimes
called ``dynamic'' allocation in Lisp, because memory allocated as
such has dynamic extent, much as with @code{let} bindings of special
variables.

This should not be confused with what C calls ``dynamic'' allocation,
or that done with @code{malloc} and friends.  This sort of heap
allocation is done with @code{foreign-alloc}, creating objects that
exist until freed with @code{foreign-free}.


@node Accessing Foreign Memory, foreign-free, Allocating Foreign Memory, Pointers
@section Accessing Foreign Memory

When manipulating raw C data, consider that all pointers are pointing
to an array.  When you only want one C value, such as a single
@code{struct}, this array only has one such value.  It is worthwhile
to remember that everything is an array, though, because this is also
the semantic that C imposes natively.

C values are accessed as the @code{setf}-able places defined by
@code{mem-aref} and @code{mem-ref}.  Given a pointer and a @cffi{}
type (@pxref{Foreign Types}), either of these will dereference the
pointer, translate the C data there back to Lisp, and return the
result of said translation, performing the reverse operation when
@code{setf}-ing.  To decide which one to use, consider whether you
would use the array index operator @code{[@var{n}]} or the pointer
dereference @code{*} in C; use @code{mem-aref} for array indexing and
@code{mem-ref} for pointer dereferencing.


@c ===================================================================
@c FOREIGN-FREE

@page
@node foreign-free, foreign-alloc, Accessing Foreign Memory, Pointers
@heading foreign-free
@subheading Syntax
@Function{foreign-free ptr @res{} undefined}

@subheading Arguments and Values

@table @var
@item ptr
A foreign pointer.
@end table

@subheading Description
The @code{foreign-free} function frees a @code{ptr} previously
allocated by @code{foreign-alloc}. The consequences of freeing a given
pointer twice are undefined.

@subheading Examples

@lisp
CFFI> (foreign-alloc :int)
@result{} #<A Mac Pointer #x1022E0>
CFFI> (foreign-free *)
@result{} NIL
@end lisp

@subheading See Also
@seealso{foreign-alloc} @*
@seealso{with-foreign-pointer}


@c ===================================================================
@c FOREIGN-ALLOC

@page
@node foreign-alloc, foreign-symbol-pointer, foreign-free, Pointers
@heading foreign-alloc
@subheading Syntax
@Function{foreign-alloc type &key initial-element initial-contents (count 1) @
                        null-terminated-p @res{} pointer}

@subheading Arguments and Values

@table @var
@item type
A foreign type.

@item initial-element
A Lisp object.

@item initial-contents
A sequence.

@item count
An integer. Defaults to 1 or the length of @var{initial-contents} if
supplied.

@item null-terminated-p
A boolean, false by default.

@item pointer
A foreign pointer to the newly allocated memory.
@end table

@subheading Description
The @code{foreign-alloc} function allocates enough memory to hold
@var{count} objects of type @var{type} and returns a
@var{pointer}. This memory must be explicitly freed using
@code{foreign-free} once it is no longer needed.

If @var{initial-element} is supplied, it is used to initialize the
@var{count} objects the newly allocated memory holds.

If an @var{initial-contents} sequence is supplied, it must have a
length less than or equal to @var{count} and each of its elements
will be used to initialize the contents of the newly allocated
memory.

If @var{count} is omitted and @var{initial-contents} is specified, it
will default to @code{(length @var{initial-contents})}.

@var{initial-element} and @var{initial-contents} are mutually
exclusive.

When @var{null-terminated-p} is true,
@code{(1+ (max @var{count} (length @var{initial-contents})))} elements
are allocated and the last one is set to @code{NULL}. Note that in
this case @var{type} must be a pointer type (ie. a type that
canonicalizes to @code{:pointer}), otherwise an error is signaled.

@subheading Examples
@lisp
CFFI> (foreign-alloc :char)
@result{} #<A Mac Pointer #x102D80>     ; @lispcmt{A pointer to 1 byte of memory.}

CFFI> (foreign-alloc :char :count 20)
@result{} #<A Mac Pointer #x1024A0>     ; @lispcmt{A pointer to 20 bytes of memory.}

CFFI> (foreign-alloc :int :initial-element 12)
@result{} #<A Mac Pointer #x1028B0>
CFFI> (mem-ref * :int)
@result{} 12

CFFI> (foreign-alloc :int :initial-contents '(1 2 3))
@result{} #<A Mac Pointer #x102950>
CFFI> (loop for i from 0 below 3
            collect (mem-aref * :int i))
@result{} (1 2 3)

CFFI> (foreign-alloc :int :initial-contents #(1 2 3))
@result{} #<A Mac Pointer #x102960>
CFFI> (loop for i from 0 below 3
            collect (mem-aref * :int i))
@result{} (1 2 3)

;;; @lispcmt{Allocate a char** pointer that points to newly allocated memory}
;;; @lispcmt{by the :string type translator for the string "foo".}
CFFI> (foreign-alloc :string :initial-element "foo")
@result{} #<A Mac Pointer #x102C40>
@end lisp

@lisp
;;; @lispcmt{Allocate a null-terminated array of strings.}
;;; @lispcmt{(Note: FOREIGN-STRING-TO-LISP returns NIL when passed a null pointer)}
CFFI> (foreign-alloc :string
                     :initial-contents '("foo" "bar" "baz")
                     :null-terminated-p t)
@result{} #<A Mac Pointer #x102D20>
CFFI> (loop for i from 0 below 4
            collect (mem-aref * :string i))
@result{} ("foo" "bar" "baz" NIL)
CFFI> (progn
        (dotimes (i 3)
          (foreign-free (mem-aref ** :pointer i)))
        (foreign-free **))
@result{} nil
@end lisp

@subheading See Also
@seealso{foreign-free} @*
@seealso{with-foreign-object} @*
@seealso{with-foreign-pointer}


@c ===================================================================
@c FOREIGN-SYMBOL-POINTER

@page
@node foreign-symbol-pointer, inc-pointer, foreign-alloc, Pointers
@heading foreign-symbol-pointer
@subheading Syntax
@Function{foreign-symbol-pointer foreign-name &key library @res{} pointer}

@subheading Arguments and Values

@table @var
@item foreign-name
A string.

@item pointer
A foreign pointer, or @code{nil}.

@item library
A Lisp symbol or an instance of @code{foreign-library}.
@end table

@subheading Description
The function @code{foreign-symbol-pointer} will return a foreign
pointer corresponding to the foreign symbol denoted by the string
@var{foreign-name}.  If a foreign symbol named @var{foreign-name}
doesn't exist, @code{nil} is returned.

ABI name manglings will be performed on @var{foreign-name} by
@code{foreign-symbol-pointer} if necessary. (eg: adding a leading
underscore on darwin/ppc)

@var{library} should name a foreign library as defined by
@code{define-foreign-library}, @code{:default} (which is the default)
or an instance of @code{foreign-library} as returned by
@code{load-foreign-library}.

@strong{Important note:} do not keep these pointers across saved Lisp
cores as the foreign-library may move across sessions.

@subheading Examples

@lisp
CFFI> (foreign-symbol-pointer "errno")
@result{} #<A Mac Pointer #xA0008130>
CFFI> (foreign-symbol-pointer "strerror")
@result{} #<A Mac Pointer #x9002D0F8>
CFFI> (foreign-funcall-pointer * () :int (mem-ref ** :int) :string)
@result{} "No such file or directory"

CFFI> (foreign-symbol-pointer "inexistent symbol")
@result{} NIL
@end lisp

@subheading See Also
@seealso{defcvar}


@c ===================================================================
@c INC-POINTER

@page
@node inc-pointer, incf-pointer, foreign-symbol-pointer, Pointers
@heading inc-pointer
@subheading Syntax
@Function{inc-pointer pointer offset @res{} new-pointer}

@subheading Arguments and Values

@table @var
@item pointer
@itemx new-pointer
A foreign pointer.

@item offset
An integer.
@end table

@subheading Description
The function @code{inc-pointer} will return a @var{new-pointer} pointing
@var{offset} bytes past @var{pointer}.

@subheading Examples

@lisp
CFFI> (foreign-string-alloc "Common Lisp")
@result{} #<A Mac Pointer #x102EA0>
CFFI> (inc-pointer * 7)
@result{} #<A Mac Pointer #x102EA7>
CFFI> (foreign-string-to-lisp *)
@result{} "Lisp"
@end lisp

@subheading See Also
@seealso{incf-pointer} @*
@seealso{make-pointer} @*
@seealso{pointerp} @*
@seealso{null-pointer} @*
@seealso{null-pointer-p}


@c ===================================================================
@c INCF-POINTER

@page
@node incf-pointer, make-pointer, inc-pointer, Pointers
@heading incf-pointer
@subheading Syntax
@Macro{incf-pointer place &optional (offset 1) @res{} new-pointer}

@subheading Arguments and Values

@table @var
@item place
A @code{setf} place.

@item new-pointer
A foreign pointer.

@item offset
An integer.
@end table

@subheading Description
The @code{incf-pointer} macro takes the foreign pointer from
@var{place} and creates a @var{new-pointer} incremented by
@var{offset} bytes and which is stored in @var{place}.

@subheading Examples

@lisp
CFFI> (defparameter *two-words* (foreign-string-alloc "Common Lisp"))
@result{} *TWO-WORDS*
CFFI> (defparameter *one-word* *two-words*)
@result{} *ONE-WORD*
CFFI> (incf-pointer *one-word* 7)
@result{} #.(SB-SYS:INT-SAP #X00600457)
CFFI> (foreign-string-to-lisp *one-word*)
@result{} "Lisp"
CFFI> (foreign-string-to-lisp *two-words*)
@result{} "Common Lisp"
@end lisp

@subheading See Also
@seealso{inc-pointer} @*
@seealso{make-pointer} @*
@seealso{pointerp} @*
@seealso{null-pointer} @*
@seealso{null-pointer-p}


@c ===================================================================
@c MAKE-POINTER

@page
@node make-pointer, mem-aptr, incf-pointer, Pointers
@heading make-pointer
@subheading Syntax
@Function{make-pointer address @res{} ptr}

@subheading Arguments and Values

@table @var
@item address
An integer.

@item ptr
A foreign pointer.
@end table

@subheading Description
The function @code{make-pointer} will return a foreign pointer
pointing to @var{address}.

@subheading Examples

@lisp
CFFI> (make-pointer 42)
@result{} #<FOREIGN-ADDRESS #x0000002A>
CFFI> (pointerp *)
@result{} T
CFFI> (pointer-address **)
@result{} 42
CFFI> (inc-pointer *** -42)
@result{} #<FOREIGN-ADDRESS #x00000000>
CFFI> (null-pointer-p *)
@result{} T
CFFI> (typep ** 'foreign-pointer)
@result{} T
@end lisp

@subheading See Also
@seealso{inc-pointer} @*
@seealso{null-pointer} @*
@seealso{null-pointer-p} @*
@seealso{pointerp} @*
@seealso{pointer-address} @*
@seealso{pointer-eq} @*
@seealso{mem-ref}


@c ===================================================================
@c MEM-APTR

@page
@node mem-aptr, mem-aref, make-pointer, Pointers
@heading mem-aptr
@subheading Syntax
@Accessor{mem-aptr ptr type &optional (index 0)}

@subheading Arguments and Values

@table @var
@item ptr
A foreign pointer.

@item type
A foreign type.

@item index
An integer.

@item new-value
A Lisp value compatible with @var{type}.
@end table

@subheading Description
The @code{mem-aptr} function finds the pointer to an element of the array.

@lisp
(mem-aptr ptr type n)

;; @lispcmt{is identical to:}

(inc-pointer ptr (* n (foreign-type-size type)))
@end lisp

@subheading Examples

@lisp
CFFI> (with-foreign-string (str "Hello, foreign world!")
        (mem-aptr str :char 6))
@result{} #.(SB-SYS:INT-SAP #X0063D4B6)
@end lisp

@c ===================================================================
@c MEM-AREF

@page
@node mem-aref, mem-ref, mem-aptr, Pointers
@heading mem-aref
@subheading Syntax
@Accessor{mem-aref ptr type &optional (index 0)}

(setf (@strong{mem-aref} @emph{ptr type &optional (index 0)) new-value})

@subheading Arguments and Values

@table @var
@item ptr
A foreign pointer.

@item type
A foreign type.

@item index
An integer.

@item new-value
A Lisp value compatible with @var{type}.
@end table

@subheading Description
The @code{mem-aref} function is similar to @code{mem-ref} but will
automatically calculate the offset from an @var{index}.

@lisp
(mem-aref ptr type n)

;; @lispcmt{is identical to:}

(mem-ref ptr type (* n (foreign-type-size type)))
@end lisp

@subheading Examples

@lisp
CFFI> (with-foreign-string (str "Hello, foreign world!")
        (mem-aref str :char 6))
@result{} 32
CFFI> (code-char *)
@result{} #\Space

CFFI> (with-foreign-object (array :int 10)
        (loop for i below 10
              do (setf (mem-aref array :int i) (random 100)))
        (loop for i below 10 collect (mem-aref array :int i)))
@result{} (22 7 22 52 69 1 46 93 90 65)
@end lisp

@subheading Compatibility Note

For compatibility with older versions of CFFI, @ref{mem-aref} will
produce a pointer for the deprecated bare structure specification, but
it is consistent with other types for the current specification form
@code{(:struct @var{structure-name})} and provides a Lisp object
translated from the structure (by default a plist).  In order to obtain
the pointer, you should use the new function @ref{mem-aptr}.

@subheading See Also
@seealso{mem-ref} @*
@seealso{mem-aptr}

@c ===================================================================
@c MEM-REF

@page
@node mem-ref, null-pointer, mem-aref, Pointers
@heading mem-ref
@subheading Syntax
@Accessor{mem-ref ptr type &optional offset @res{} object}

@subheading Arguments and Values

@table @var
@item ptr
A pointer.

@item type
A foreign type.

@item offset
An integer (in byte units).

@item object
The value @var{ptr} points to.
@end table

@subheading Description
@subheading Examples

@lisp
CFFI> (with-foreign-string (ptr "Saluton")
        (setf (mem-ref ptr :char 3) (char-code #\a))
        (loop for i from 0 below 8
              collect (code-char (mem-ref ptr :char i))))
@result{} (#\S #\a #\l #\a #\t #\o #\n #\Null)
CFFI> (setq ptr-to-int (foreign-alloc :int))
@result{} #<A Mac Pointer #x1047D0>
CFFI> (mem-ref ptr-to-int :int)
@result{} 1054619
CFFI> (setf (mem-ref ptr-to-int :int) 1984)
@result{} 1984
CFFI> (mem-ref ptr-to-int :int)
@result{} 1984
@end lisp

@subheading See Also
@seealso{mem-aref}


@c ===================================================================
@c NULL-POINTER

@page
@node null-pointer, null-pointer-p, mem-ref, Pointers
@heading null-pointer
@subheading Syntax
@Function{null-pointer @res{} pointer}

@subheading Arguments and Values

@table @var
@item pointer
A @code{NULL} pointer.
@end table

@subheading Description
The function @code{null-pointer} returns a null pointer.

@subheading Examples

@lisp
CFFI> (null-pointer)
@result{} #<A Null Mac Pointer>
CFFI> (pointerp *)
@result{} T
@end lisp

@subheading See Also
@seealso{null-pointer-p} @*
@seealso{make-pointer}


@c ===================================================================
@c NULL-POINTER-P

@page
@node null-pointer-p, pointerp, null-pointer, Pointers
@heading null-pointer-p
@subheading Syntax
@Function{null-pointer-p ptr @res{} boolean}

@subheading Arguments and Values

@table @var
@item ptr
A foreign pointer that may be a null pointer.

@item boolean
@code{T} or @code{NIL}.
@end table

@subheading Description
The function @code{null-pointer-p} returns true if @var{ptr} is a null
pointer and false otherwise.

@subheading Examples

@lisp
CFFI> (null-pointer-p (null-pointer))
@result{} T
@end lisp

@lisp
(defun contains-str-p (big little)
  (not (null-pointer-p
        (foreign-funcall "strstr" :string big :string little :pointer))))

CFFI> (contains-str-p "Popcorns" "corn")
@result{} T
CFFI> (contains-str-p "Popcorns" "salt")
@result{} NIL
@end lisp

@subheading See Also
@seealso{null-pointer} @*
@seealso{pointerp}


@c ===================================================================
@c POINTERP

@page
@node pointerp, pointer-address, null-pointer-p, Pointers
@heading pointerp
@subheading Syntax
@Function{pointerp ptr @res{} boolean}

@subheading Arguments and Values

@table @var
@item ptr
An object that may be a foreign pointer.

@item boolean
@code{T} or @code{NIL}.
@end table

@subheading Description
The function @code{pointerp} returns true if @var{ptr} is a foreign
pointer and false otherwise.

@subheading Implementation-specific Notes
In Allegro CL, foreign pointers are integers thus in this
implementation @code{pointerp} will return true for any ordinary integer.

@subheading Examples

@lisp
CFFI> (foreign-alloc 32)
@result{} #<A Mac Pointer #x102D20>
CFFI> (pointerp *)
@result{} T
CFFI> (pointerp "this is not a pointer")
@result{} NIL
@end lisp

@subheading See Also
@seealso{make-pointer}
@seealso{null-pointer-p}


@c ===================================================================
@c POINTER-ADDRESS

@page
@node pointer-address, pointer-eq, pointerp, Pointers
@heading pointer-address
@subheading Syntax
@Function{pointer-address ptr @res{} address}

@subheading Arguments and Values

@table @var
@item ptr
A foreign pointer.

@item address
An integer.
@end table

@subheading Description
The function @code{pointer-address} will return the @var{address} of
a foreign pointer @var{ptr}.

@subheading Examples

@lisp
CFFI> (pointer-address (null-pointer))
@result{} 0
CFFI> (pointer-address (make-pointer 123))
@result{} 123
@end lisp

@subheading See Also
@seealso{make-pointer} @*
@seealso{inc-pointer} @*
@seealso{null-pointer} @*
@seealso{null-pointer-p} @*
@seealso{pointerp} @*
@seealso{pointer-eq} @*
@seealso{mem-ref}


@c ===================================================================
@c POINTER-EQ

@page
@node pointer-eq, with-foreign-object, pointer-address, Pointers
@heading pointer-eq
@subheading Syntax
@Function{pointer-eq ptr1 ptr2 @res{} boolean}

@subheading Arguments and Values

@table @var
@item ptr1
@itemx ptr2
A foreign pointer.

@item boolean
@code{T} or @code{NIL}.
@end table

@subheading Description
The function @code{pointer-eq} returns true if @var{ptr1} and
@var{ptr2} point to the same memory address and false otherwise.

@subheading Implementation-specific Notes
The representation of foreign pointers varies across the various Lisp
implementations as does the behaviour of the built-in Common Lisp
equality predicates. Comparing two pointers that point to the same
address with @code{EQ} Lisps will return true on some Lisps, others require
more general predicates like @code{EQL} or @code{EQUALP} and finally
some will return false using any of these predicates. Therefore, for
portability, you should use @code{POINTER-EQ}.

@subheading Examples
This is an example using @acronym{SBCL}, see the
implementation-specific notes above.

@lisp
CFFI> (eql (null-pointer) (null-pointer))
@result{} NIL
CFFI> (pointer-eq (null-pointer) (null-pointer))
@result{} T
@end lisp

@subheading See Also
@seealso{inc-pointer}


@c ===================================================================
@c WITH-FOREIGN-OBJECT

@page
@node with-foreign-object, with-foreign-pointer, pointer-eq, Pointers
@heading with-foreign-object, with-foreign-objects
@subheading Syntax
@Macro{with-foreign-object (var type &optional count) &body body}

@anchor{with-foreign-objects}
@Macro{with-foreign-objects (bindings) &body body}

bindings ::= @{(var type &optional count)@}* @*

@subheading Arguments and Values

@table @var
@item var
A symbol.

@item type
A foreign type, evaluated.

@item count
An integer.
@end table

@subheading Description
The macros @code{with-foreign-object} and @code{with-foreign-objects}
bind @var{var} to a pointer to @var{count} newly allocated objects
of type @var{type} during @var{body}. The buffer has dynamic extent
and may be stack allocated if supported by the host Lisp.

@subheading Examples

@lisp
CFFI> (with-foreign-object (array :int 10)
        (dotimes (i 10)
          (setf (mem-aref array :int i) (random 100)))
        (loop for i below 10
              collect (mem-aref array :int i)))
@result{} (22 7 22 52 69 1 46 93 90 65)
@end lisp

@subheading See Also
@seealso{foreign-alloc}


@c ===================================================================
@c WITH-FOREIGN-POINTER

@page
@node with-foreign-pointer,  , with-foreign-object, Pointers
@heading with-foreign-pointer
@subheading Syntax
@Macro{with-foreign-pointer (var size &optional size-var) &body body}

@subheading Arguments and Values

@table @var
@item var
@itemx size-var
A symbol.

@item size
An integer.

@item body
A list of forms to be executed.
@end table

@subheading Description
The @code{with-foreign-pointer} macro, binds @var{var} to @var{size}
bytes of foreign memory during @var{body}. The pointer in @var{var}
is invalid beyond the dynamic extend of @var{body} and may be
stack-allocated if supported by the implementation.

If @var{size-var} is supplied, it will be bound to @var{size} during
@var{body}.

@subheading Examples

@lisp
CFFI> (with-foreign-pointer (string 4 size)
        (setf (mem-ref string :char (1- size)) 0)
        (lisp-string-to-foreign "Popcorns" string size)
        (loop for i from 0 below size
              collect (code-char (mem-ref string :char i))))
@result{} (#\P #\o #\p #\Null)
@end lisp

@subheading See Also
@seealso{foreign-alloc} @*
@seealso{foreign-free}


@c ===================================================================
@c CHAPTER: Strings

@node Strings, Variables, Pointers, Top
@chapter Strings

As with many languages, Lisp and C have special support for logical
arrays of characters, going so far as to give them a special name,
``strings''.  In that spirit, @cffi{} provides special support for
translating between Lisp and C strings.

The @code{:string} type and the symbols related below also serve as an
example of what you can do portably with @cffi{}; were it not
included, you could write an equally functional @file{strings.lisp}
without referring to any implementation-specific symbols.

@menu
Dictionary

* *default-foreign-encoding*::
* foreign-string-alloc::
* foreign-string-free::
* foreign-string-to-lisp::
* lisp-string-to-foreign::
* with-foreign-string::
* with-foreign-strings::
* with-foreign-pointer-as-string::
@end menu


@c ===================================================================
@c *DEFAULT-FOREIGN-ENCODING*

@page
@node *default-foreign-encoding*, foreign-string-alloc, Strings, Strings
@heading *default-foreign-encoding*
@subheading Syntax

@Variable{*default-foreign-encoding*}

@subheading Value type

A keyword.

@subheading Initial value

@code{:utf-8}

@subheading Description

This special variable holds the default foreign encoding.

@subheading Examples

@lisp
CFFI> *default-foreign-encoding*
:utf-8
CFFI> (foreign-funcall "strdup" (:string :encoding :utf-16) "foo" :string)
"f"
CFFI> (let ((*default-foreign-encoding* :utf-16))
        (foreign-funcall "strdup" (:string :encoding :utf-16) "foo" :string))
"foo"
@end lisp

@subheading See also

@seealso{Other Types} (@code{:string} type) @*
@seealso{foreign-string-alloc} @*
@seealso{foreign-string-to-lisp} @*
@seealso{lisp-string-to-foreign} @*
@seealso{with-foreign-string} @*
@seealso{with-foreign-pointer-as-string}


@c ===================================================================
@c FOREIGN-STRING-ALLOC

@page
@node foreign-string-alloc, foreign-string-free, *default-foreign-encoding*, Strings
@heading foreign-string-alloc
@subheading Syntax
@Function{foreign-string-alloc string &key encoding null-terminated-p @
                               start end @res{} pointer}

@subheading Arguments and Values

@table @emph
@item @var{string}
A Lisp string.

@item @var{encoding}
Foreign encoding. Defaults to @code{*default-foreign-encoding*}.

@item @var{null-terminated-p}
Boolean, defaults to true.

@item @var{start}, @var{end}
Bounding index designators of @var{string}. 0 and @code{nil}, by
default.

@item @var{pointer}
A pointer to the newly allocated foreign string.
@end table

@subheading Description
The @code{foreign-string-alloc} function allocates foreign memory
holding a copy of @var{string} converted using the specified
@var{encoding}. @var{Start} specifies an offset into @var{string} and
@var{end} marks the position following the last element of the foreign
string.

This string must be freed with @code{foreign-string-free}.

If @var{null-terminated-p} is false, the string will not be
null-terminated.

@subheading Examples

@lisp
CFFI> (defparameter *str* (foreign-string-alloc "Hello, foreign world!"))
@result{} #<FOREIGN-ADDRESS #x00400560>
CFFI> (foreign-funcall "strlen" :pointer *str* :int)
@result{} 21
@end lisp

@subheading See Also
@seealso{foreign-string-free} @*
@seealso{with-foreign-string}
@c @seealso{:string}


@c ===================================================================
@c FOREIGN-STRING-FREE

@page
@node foreign-string-free, foreign-string-to-lisp, foreign-string-alloc, Strings
@heading foreign-string-free
@subheading Syntax
@Function{foreign-string-free pointer}

@subheading Arguments and Values

@table @var
@item pointer
A pointer to a string allocated by @code{foreign-string-alloc}.
@end table

@subheading Description
The @code{foreign-string-free} function frees a foreign string
allocated by @code{foreign-string-alloc}.

@subheading Examples

@subheading See Also
@seealso{foreign-string-alloc}


@c ===================================================================
@c FOREIGN-STRING-TO-LISP

@page
@node foreign-string-to-lisp, lisp-string-to-foreign, foreign-string-free, Strings
@heading foreign-string-to-lisp
@subheading Syntax
@Function{foreign-string-to-lisp ptr &key offset count max-chars @
                                 encoding @res{} string}

@subheading Arguments and Values

@table @var
@item ptr
A pointer.

@item offset
An integer greater than or equal to 0. Defauls to 0.

@item count
Either @code{nil} (the default), or an integer greater than or equal to 0.

@item max-chars
An integer greater than or equal to 0.
@code{(1- array-total-size-limit)}, by default.

@item encoding
Foreign encoding. Defaults to @code{*default-foreign-encoding*}.

@item string
A Lisp string.
@end table

@subheading Description
The @code{foreign-string-to-lisp} function converts at most
@var{count} octets from @var{ptr} into a Lisp string, using the
defined @var{encoding}.

If @var{count} is @code{nil} (the default), characters are copied
until @var{max-chars} is reached or a @code{NULL} character is found.

If @var{ptr} is a null pointer, returns @code{nil}.

Note that the @code{:string} type will automatically convert between
Lisp strings and foreign strings.

@subheading Examples

@lisp
CFFI> (foreign-funcall "getenv" :string "HOME" :pointer)
@result{} #<FOREIGN-ADDRESS #xBFFFFFD5>
CFFI> (foreign-string-to-lisp *)
@result{} "/Users/luis"
@end lisp

@subheading See Also
@seealso{lisp-string-to-foreign} @*
@seealso{foreign-string-alloc}
@c @seealso{:string}


@c ===================================================================
@c LISP-STRING-TO-FOREIGN

@page
@node lisp-string-to-foreign, with-foreign-string, foreign-string-to-lisp, Strings
@heading lisp-string-to-foreign
@subheading Syntax
@Function{lisp-string-to-foreign string buffer bufsize &key start @
                                 end offset encoding @res{} buffer}

@subheading Arguments and Values

@table @emph
@item @var{string}
A Lisp string.

@item @var{buffer}
A foreign pointer.

@item @var{bufsize}
An integer.

@item @var{start}, @var{end}
Bounding index designators of @var{string}. 0 and @code{nil}, by
default.

@item @var{offset}
An integer greater than or equal to 0. Defauls to 0.

@item @var{encoding}
Foreign encoding. Defaults to @code{*default-foreign-encoding*}.
@end table

@subheading Description
The @code{lisp-string-to-foreign} function copies at most
@var{bufsize}-1 octets from a Lisp @var{string} using the specified
@var{encoding} into @var{buffer}+@var{offset}. The foreign string will
be null-terminated.

@var{Start} specifies an offset into @var{string} and
@var{end} marks the position following the last element of the foreign
string.

@subheading Examples

@lisp
CFFI> (with-foreign-pointer-as-string (str 255)
        (lisp-string-to-foreign "Hello, foreign world!" str 6))
@result{} "Hello"
@end lisp

@subheading See Also
@seealso{foreign-string-alloc} @*
@seealso{foreign-string-to-lisp} @*
@seealso{with-foreign-pointer-as-string}


@c ===================================================================
@c WITH-FOREIGN-STRING

@page
@node with-foreign-string, with-foreign-pointer-as-string, lisp-string-to-foreign, Strings
@heading with-foreign-string, with-foreign-strings
@subheading Syntax
@Macro{with-foreign-string (var-or-vars string &rest args) &body body}

@anchor{with-foreign-strings}
@Macro{with-foreign-strings (bindings) &body body}

var-or-vars ::= var | (var &optional octet-size-var) @*
bindings ::= @{(var-or-vars string &rest args)@}*

@subheading Arguments and Values

@table @emph
@item @var{var}, @var{byte-size-var}
A symbol.

@item @var{string}
A Lisp string.

@item @var{body}
A list of forms to be executed.
@end table

@subheading Description
The @code{with-foreign-string} macro will bind @var{var} to a newly
allocated foreign string containing @var{string}. @var{Args} is passed
to the underlying @code{foreign-string-alloc} call.

If @var{octet-size-var} is provided, it will be bound the length of
foreign string in octets including the null terminator.

@subheading Examples

@lisp
CFFI> (with-foreign-string (foo "12345")
        (foreign-funcall "strlen" :pointer foo :int))
@result{} 5
@end lisp

@subheading See Also
@seealso{foreign-string-alloc} @*
@seealso{with-foreign-pointer-as-string}


@c ===================================================================
@c WITH-FOREIGN-POINTER-AS-STRING

@page
@node with-foreign-pointer-as-string,  , with-foreign-string, Strings
@heading with-foreign-pointer-as-string
@subheading Syntax
@Macro{with-foreign-pointer-as-string (var-or-vars size @
                                      &rest args) &body body @res{} string}

@var{var-or-vars} ::= var | (var &optional size-var)
@subheading Arguments and Values

@table @var
@item var
@itemx size-var
A symbol.

@item size
An integer

@item args
Arguments to be passed to @code{foreign-string-to-lisp} to create the returned string.

@item body
List of forms to be executed.

@item string
A Lisp string.
@end table

@subheading Description
The @code{with-foreign-pointer-as-string} macro is similar to
@code{with-foreign-pointer} except that the allocated buffer is
transformed into a lisp string and returned once @code{body} has
finished executing.

A foreign buffer of size @code{size} is bound to @code{var} during the
execution of @code{body}. If @code{size-var} is specified, it is bound
to the value of @code{size}. The return value is constructed by
transforming the foreign buffer into a lisp string using
@code{foreign-string-to-lisp}, which is given @code{args} as
arguments.

@subheading Examples

@lisp
CFFI> (with-foreign-pointer-as-string ((str str-size) 6 :encoding :ascii)
        (lisp-string-to-foreign "Hello, foreign world!" str str-size))
@result{} "Hello"
@end lisp

@subheading See Also
@seealso{foreign-string-alloc} @*
@seealso{with-foreign-string} @*
@seealso{with-foreign-pointer}


@c ===================================================================
@c CHAPTER: Variables

@node Variables, Functions, Strings, Top
@chapter Variables

@menu
Dictionary

* defcvar::
* get-var-pointer::
@end menu


@c ===================================================================
@c DEFCVAR

@page
@node defcvar, get-var-pointer, Variables, Variables
@heading defcvar
@subheading Syntax
@Macro{defcvar name-and-options type &optional documentation @res{} lisp-name}

@var{name-and-options} ::= name | (name &key read-only (library :default)) @*
@var{name} ::= lisp-name [foreign-name] | foreign-name [lisp-name] @*

@subheading Arguments and Values

@table @var
@item foreign-name
A string denoting a foreign function.

@item lisp-name
A symbol naming the Lisp function to be created.

@item type
A foreign type.

@item read-only
A boolean.

@item documentation
A Lisp string; not evaluated.
@end table

@subheading Description
The @code{defcvar} macro defines a symbol macro @var{lisp-name} that looks
up @var{foreign-name} and dereferences it acording to @var{type}.  It
can also be @code{setf}ed, unless @var{read-only} is true, in which
case an error will be signaled.

When one of @var{lisp-name} or @var{foreign-name} is omitted, the
other is automatically derived using the following rules:

@itemize
@item
Foreign names are converted to Lisp names by uppercasing, replacing
underscores with hyphens, and wrapping around asterisks.
@item
Lisp names are converted to foreign names by lowercasing, replacing
hyphens with underscores, and removing asterisks, if any.
@end itemize

@subheading Examples

@lisp
CFFI> (defcvar "errno" :int)
@result{} *ERRNO*
CFFI> (foreign-funcall "strerror" :int *errno* :string)
@result{} "Inappropriate ioctl for device"
CFFI> (setf *errno* 1)
@result{} 1
CFFI> (foreign-funcall "strerror" :int *errno* :string)
@result{} "Operation not permitted"
@end lisp

Trying to modify a read-only foreign variable:

@lisp
CFFI> (defcvar ("errno" +error-number+ :read-only t) :int)
@result{} +ERROR-NUMBER+
CFFI> (setf +error-number+ 12)
;; @lispcmt{@error{} Trying to modify read-only foreign var: +ERROR-NUMBER+.}
@end lisp

@emph{Note that accessing @code{errno} this way won't work with every
implementation of the C standard library.}

@subheading See Also
@seealso{get-var-pointer}


@c ===================================================================
@c GET-VAR-POINTER

@page
@node get-var-pointer,  , defcvar, Variables
@heading get-var-pointer
@subheading Syntax
@Function{get-var-pointer symbol @res{} pointer}

@subheading Arguments and Values

@table @var
@item symbol
A symbol denoting a foreign variable defined with @code{defcvar}.

@item pointer
A foreign pointer.
@end table

@subheading Description
The function @code{get-var-pointer} will return a @var{pointer} to the
foreign global variable @var{symbol} previously defined with
@code{defcvar}.

@subheading Examples

@lisp
CFFI> (defcvar "errno" :int :read-only t)
@result{} *ERRNO*
CFFI> *errno*
@result{} 25
CFFI> (get-var-pointer '*errno*)
@result{} #<A Mac Pointer #xA0008130>
CFFI> (mem-ref * :int)
@result{} 25
@end lisp

@subheading See Also
@seealso{defcvar}


@c ===================================================================
@c CHAPTER: Functions

@node Functions, Libraries, Variables, Top
@chapter Functions

@menu
@c * Defining Foreign Functions::
@c * Calling Foreign Functions::

Dictionary

* defcfun::
* foreign-funcall::
* foreign-funcall-pointer::
* foreign-funcall-varargs::
* foreign-funcall-pointer-varargs::
* translate-camelcase-name::
* translate-name-from-foreign::
* translate-name-to-foreign::
* translate-underscore-separated-name::
@end menu

@c @node Calling Foreign Functions
@c @section Calling Foreign Functions

@c @node Defining Foreign Functions
@c @section Defining Foreign Functions


@c ===================================================================
@c DEFCFUN

@page
@node defcfun, foreign-funcall, Functions, Functions
@heading defcfun
@subheading Syntax
@Macro{defcfun name-and-options return-type &body [docstring] arguments [&rest] @
               @res{} lisp-name}

@var{name-and-options} ::= @var{name} | (@var{name} &key @var{library} @var{convention}) @*
@var{name} ::= @var{lisp-name} [@var{foreign-name}] | @var{foreign-name} [@var{lisp-name}] @*
@var{arguments} ::= @{ (@var{arg-name} @var{arg-type}) @}* @*

@subheading Arguments and Values

@table @var
@item foreign-name
A string denoting a foreign function.

@item lisp-name
A symbol naming the Lisp function to be created.

@item arg-name
A symbol.

@item return-type
@itemx arg-type
A foreign type.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.

@item library
A symbol designating a foreign library.

@item docstring
A documentation string.
@end table

@subheading Description
The @code{defcfun} macro provides a declarative interface for defining
Lisp functions that call foreign functions.

When one of @var{lisp-name} or @var{foreign-name} is omitted, the
other is automatically derived using the following rules:

@itemize
@item
Foreign names are converted to Lisp names by uppercasing and replacing
underscores with hyphens.
@item
Lisp names are converted to foreign names by lowercasing and replacing
hyphens with underscores.
@end itemize

If you place the symbol @code{&rest} in the end of the argument list
after the fixed arguments, @code{defcfun} will treat the foreign
function as a @strong{variadic function}. The variadic arguments
should be passed in a way similar to what @code{foreign-funcall} would
expect. Unlike @code{foreign-funcall} though, @code{defcfun} will take
care of doing argument promotion. Note that in this case
@code{defcfun} will generate a Lisp @emph{macro} instead of a
function and will only work for Lisps that support
@code{foreign-funcall.}

If a foreign structure is to be passed or returned by value (that is,
the type is of the form @code{(:struct ...)}), then the cffi-libffi system
must be loaded, which in turn depends on
@uref{http://sourceware.org/libffi/,libffi}, including the header files.
Failure to load that system will result in an error.
Variadic functions cannot at present accept or return structures by
value.

@subheading Examples

@lisp
(defcfun "strlen" :int
  "Calculate the length of a string."
  (n :string))

CFFI> (strlen "123")
@result{} 3
@end lisp

@lisp
(defcfun ("abs" c-abs) :int (n :int))

CFFI> (c-abs -42)
@result{} 42
@end lisp

Function without arguments:

@lisp
(defcfun "rand" :int)

CFFI> (rand)
@result{} 1804289383
@end lisp

Variadic function example:

@lisp
(defcfun "sprintf" :int
  (str :pointer)
  (control :string)
  &rest)

CFFI> (with-foreign-pointer-as-string (s 100)
        (sprintf s "%c %d %.2f %s" :char 90 :short 42 :float pi
                 :string "super-locrian"))
@result{} "A 42 3.14 super-locrian"
@end lisp

@subheading See Also
@seealso{foreign-funcall} @*
@seealso{foreign-funcall-pointer} @*
@seealso{foreign-funcall-varargs} @*
@seealso{foreign-funcall-pointer-varargs}


@c ===================================================================
@c FOREIGN-FUNCALL

@page
@node foreign-funcall, foreign-funcall-pointer, defcfun, Functions
@heading foreign-funcall
@subheading Syntax
@Macro{foreign-funcall name-and-options &rest arguments @res{} return-value}

@var{arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{name-and-options} ::= @var{name} | (@var{name} &key @var{library} @var{convention}) @*

@subheading Arguments and Values

@table @var
@item name
A Lisp string.

@item arg-type
A foreign type.

@item arg
An argument of type @var{arg-type}.

@item return-type
A foreign type, @code{:void} by default.

@item return-value
A lisp object.

@item library
A lisp symbol; not evaluated.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.
@end table

@subheading Description
The @code{foreign-funcall} macro is the main primitive for calling
foreign functions.

If a foreign structure is to be passed or returned by value (that is,
the type is of the form @code{(:struct ...)}), then the cffi-libffi system
must be loaded, which in turn depends on
@uref{http://sourceware.org/libffi/,libffi}, including the header files.
Failure to load that system will result in an error.
Variadic functions cannot at present accept or return structures by
value.

@emph{Note: The return value of foreign-funcall on functions with a
:void return type is still undefined.}

@subheading Implementation-specific Notes
@itemize
@item
Corman Lisp does not support @code{foreign-funcall}. On
implementations that @strong{don't} support @code{foreign-funcall}
@code{cffi-sys::no-foreign-funcall} will be present in
@code{*features*}. Note: in these Lisps you can still use the
@code{defcfun} interface.
@end itemize

@subheading Examples

@lisp
CFFI> (foreign-funcall "strlen" :string "foo" :int)
@result{} 3
@end lisp

Given the C code:

@example
void print_number(int n)
@{
    printf("N: %d\n", n);
@}
@end example

@lisp
CFFI> (foreign-funcall "print_number" :int 123456)
@print{} N: 123456
@result{} NIL
@end lisp

@noindent
Or, equivalently:

@lisp
CFFI> (foreign-funcall "print_number" :int 123456 :void)
@print{} N: 123456
@result{} NIL
@end lisp

@lisp
CFFI> (foreign-funcall "printf" :string (format nil "%s: %d.~%")
                       :string "So long and thanks for all the fish"
                       :int 42 :int)
@print{} So long and thanks for all the fish: 42.
@result{} 41
@end lisp

@subheading See Also
@seealso{defcfun} @*
@seealso{foreign-funcall-pointer}


@c ===================================================================
@c FOREIGN-FUNCALL-POINTER

@page
@node foreign-funcall-pointer, foreign-funcall-varargs, foreign-funcall, Functions
@heading foreign-funcall-pointer
@subheading Syntax
@Macro{foreign-funcall-pointer pointer options &rest arguments @res{} return-value}

@var{arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{options} ::= (&key @var{convention}) @*

@subheading Arguments and Values

@table @var
@item pointer
A foreign pointer.

@item arg-type
A foreign type.

@item arg
An argument of type @var{arg-type}.

@item return-type
A foreign type, @code{:void} by default.

@item return-value
A lisp object.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.
@end table

@subheading Description
The @code{foreign-funcall} macro is the main primitive for calling
foreign functions.

@emph{Note: The return value of foreign-funcall on functions with a
:void return type is still undefined.}

@subheading Implementation-specific Notes
@itemize
@item
Corman Lisp does not support @code{foreign-funcall}. On
implementations that @strong{don't} support @code{foreign-funcall}
@code{cffi-sys::no-foreign-funcall} will be present in
@code{*features*}. Note: in these Lisps you can still use the
@code{defcfun} interface.
@end itemize

@subheading Examples

@lisp
CFFI> (foreign-funcall-pointer (foreign-symbol-pointer "abs") ()
                               :int -42 :int)
@result{} 42
@end lisp

@subheading See Also
@seealso{defcfun} @*
@seealso{foreign-funcall}


@c ===================================================================
@c FOREIGN-FUNCALL-VARARGS

@page
@node foreign-funcall-varargs, foreign-funcall-pointer-varargs, foreign-funcall-pointer, Functions
@heading foreign-funcall-varargs
@subheading Syntax
@Macro{foreign-funcall-varargs name-and-options (fixed-arguments) &rest arguments @res{} return-value}

@var{fixed-arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{name-and-options} ::= @var{name} | (@var{name} &key @var{library} @var{convention}) @*

@subheading Arguments and Values

@table @var
@item name
A Lisp string.

@item arg-type
A foreign type.

@item arg
An argument of type @var{arg-type}.

@item return-type
A foreign type, @code{:void} by default.

@item return-value
A lisp object.

@item library
A lisp symbol; not evaluated.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.
@end table

@subheading Description
The @code{foreign-funcall-varargs} macro is the main primitive for
calling foreign variadic functions. It behaves similarily to
@code{foreign-funcall} except @code{fixed-arguments} are distinguished
from the remaining arguments.

@subheading Examples

@lisp
CFFI> (with-foreign-pointer-as-string (s 100)
        (setf (mem-ref s :char) 0)
        (foreign-funcall-varargs
         "sprintf" (:pointer s :string) "%.2f")
         :double (coerce pi 'double-float) :int))
@result{} 3.14
@end lisp


@c ===================================================================
@c FOREIGN-FUNCALL-POINTER-VARARGS

@page
@node foreign-funcall-pointer-varargs, translate-camelcase-name, foreign-funcall-varargs, Functions
@heading foreign-funcall-pointer-varargs
@subheading Syntax
@Macro{foreign-funcall-pointer-varargs pointer options (fixed-arguments) &rest arguments @res{} return-value}

@var{fixed-arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{arguments} ::= @{ @var{arg-type} @var{arg} @}* [@var{return-type}] @*
@var{options} ::= (&key @var{convention}) @*

@subheading Arguments and Values

@table @var
@item pointer
A foreign pointer.

@item arg-type
A foreign type.

@item arg
An argument of type @var{arg-type}.

@item return-type
A foreign type, @code{:void} by default.

@item return-value
A lisp object.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.
@end table

@subheading Description
The @code{foreign-funcall-pointer-varargs} macro is the main primitive
for calling foreign variadic functions. It behaves similarily to
@code{foreign-funcall-pointer} except @code{fixed-arguments} are
distinguished from the remaining arguments.

@subheading Examples

@lisp
CFFI> (with-foreign-pointer-as-string (s 100)
        (setf (mem-ref s :char) 0)
        (foreign-funcall-pointer-varargs
         (foreign-symbol-pointer "sprintf") () (:pointer s :string "%.2f")
         :double (coerce pi 'double-float) :int))
@result{} 3.14
@end lisp


@c ===================================================================
@c TRANSLATE-CAMELCASE-NAME

@page
@node translate-camelcase-name, translate-name-from-foreign, foreign-funcall-pointer-varargs, Functions
@heading translate-camelcase-name
@subheading Syntax
@Function{translate-camelcase-name name &key upper-initial-p special-words @res{} return-value}

@subheading Arguments and Values

@table @var
@item name
Either a symbol or a string.

@item upper-initial-p
A generalized boolean.

@item special words
A list of strings.

@item return-value
If @var{name} is a symbol, this is a string, and vice versa.
@end table

@subheading Description
@code{translate-camelcase-name} is a helper function for
specializations of @code{translate-name-from-foreign} and
@code{translate-name-to-foreign}. It handles the common case of
converting between foreign camelCase names and lisp
names. @var{upper-initial-p} indicates whether the first letter of the
foreign name should be uppercase. @var{special-words} is a list of
strings that should be treated atomically in translation. This list is
case-sensitive.

@subheading Examples

@lisp
CFFI> (translate-camelcase-name some-xml-function)
@result{} "someXmlFunction"
CFFI> (translate-camelcase-name some-xml-function :upper-initial-p t)
@result{} "SomeXmlFunction"
CFFI> (translate-camelcase-name some-xml-function :special-words '("XML"))
@result{} "someXMLFunction"
CFFI> (translate-camelcase-name "someXMLFunction")
@result{} SOME-X-M-L-FUNCTION
CFFI> (translate-camelcase-name "someXMLFunction" :special-words '("XML"))
@result{} SOME-XML-FUNCTION
@end lisp

@subheading See Also
@seealso{translate-name-from-foreign} @*
@seealso{translate-name-to-foreign} @*
@seealso{translate-underscore-separated-name}


@c ===================================================================
@c TRANSLATE-NAME-FROM-FOREIGN

@page
@node translate-name-from-foreign, translate-name-to-foreign, translate-camelcase-name, Functions
@heading translate-name-from-foreign
@subheading Syntax
@Function{translate-name-from-foreign foreign-name package &optional varp @res{} symbol}

@subheading Arguments and Values

@table @var
@item foreign-name
A string denoting a foreign function.

@item package
A Lisp package

@item varp
A generalized boolean.

@item symbol
The Lisp symbol to be used a function name.
@end table

@subheading Description
@code{translate-name-from-foreign} is used by @ref{defcfun} to handle
the conversion of foreign names to lisp names. By default, it
translates using @ref{translate-underscore-separated-name}. However,
you can create specialized methods on this function to make
translating more closely match the foreign library's naming
conventions.

Specialize @var{package} on some package. This allows other packages
to load libraries with different naming conventions.

@subheading Examples

@lisp
CFFI> (defcfun "someXmlFunction" ...)
@result{} SOMEXMLFUNCTION
CFFI> (defmethod translate-name-from-foreign ((spec string)
                                              (package (eql *package*))
                                              &optional varp)
        (let ((name (translate-camelcase-name spec)))
          (if varp (intern (format nil "*~a*" name)) name)))
@result{} #<STANDARD-METHOD TRANSLATE-NAME-FROM-FOREIGN (STRING (EQL #<Package "SOME-PACKAGE">))>
CFFI> (defcfun "someXmlFunction" ...)
@result{} SOME-XML-FUNCTION
@end lisp

@subheading See Also
@seealso{defcfun} @*
@seealso{translate-camelcase-name} @*
@seealso{translate-name-to-foreign} @*
@seealso{translate-underscore-separated-name}


@c ===================================================================
@c TRANSLATE-NAME-TO-FOREIGN

@page
@node translate-name-to-foreign, translate-underscore-separated-name, translate-name-from-foreign, Functions
@heading translate-name-to-foreign
@subheading Syntax
@Function{translate-name-to-foreign lisp-name package &optional varp @res{} string}

@subheading Arguments and Values

@table @var
@item lisp-name
A symbol naming the Lisp function to be created.

@item package
A Lisp package

@item varp
A generalized boolean.

@item string
The string representing the foreign function name.
@end table

@subheading Description
@code{translate-name-to-foreign} is used by @ref{defcfun} to handle
the conversion of lisp names to foreign names. By default, it
translates using @ref{translate-underscore-separated-name}. However,
you can create specialized methods on this function to make
translating more closely match the foreign library's naming
conventions.

Specialize @var{package} on some package. This allows other packages
to load libraries with different naming conventions.

@subheading Examples

@lisp
CFFI> (defcfun some-xml-function ...)
@result{} "some_xml_function"
CFFI> (defmethod translate-name-to-foreign ((spec symbol)
                                            (package (eql *package*))
                                            &optional varp)
        (let ((name (translate-camelcase-name spec)))
          (if varp (subseq name 1 (1- (length name))) name)))
@result{} #<STANDARD-METHOD TRANSLATE-NAME-TO-FOREIGN (STRING (EQL #<Package "SOME-PACKAGE">))>
CFFI> (defcfun some-xml-function ...)
@result{} "someXmlFunction"
@end lisp

@subheading See Also
@seealso{defcfun} @*
@seealso{translate-camelcase-name} @*
@seealso{translate-name-from-foreign} @*
@seealso{translate-underscore-separated-name}


@c ===================================================================
@c TRANSLATE-UNDERSCORE-SEPARATED-NAME

@page
@node translate-underscore-separated-name,  , translate-name-to-foreign, Functions
@heading translate-underscore-separated-name
@subheading Syntax
@Function{translate-underscore-separated-name name @res{} return-value}

@subheading Arguments and Values

@table @var
@item name
Either a symbol or a string.

@item return-value
If @var{name} is a symbol, this is a string, and vice versa.
@end table

@subheading Description
@code{translate-underscore-separated-name} is a helper function for
specializations of @ref{translate-name-from-foreign} and
@ref{translate-name-to-foreign}. It handles the common case of
converting between foreign underscore_separated names and lisp names.

@subheading Examples

@lisp
CFFI> (translate-underscore-separated-name some-xml-function)
@result{} "some_xml_function"
CFFI> (translate-camelcase-name "some_xml_function")
@result{} SOME-XML-FUNCTION
@end lisp

@subheading See Also
@seealso{translate-name-from-foreign} @*
@seealso{translate-name-to-foreign} @*
@seealso{translate-camelcase-name}


@c ===================================================================
@c CHAPTER: Libraries

@node Libraries, Callbacks, Functions, Top
@chapter Libraries

@menu
* Defining a library::
* Library definition style::

Dictionary

* close-foreign-library::       Close a foreign library.
* *darwin-framework-directories*::  Search path for Darwin frameworks.
* define-foreign-library::      Explain how to load a foreign library.
* *foreign-library-directories*::  Search path for shared libraries.
* load-foreign-library::        Load a foreign library.
* load-foreign-library-error::  Signalled on failure of its namesake.
* use-foreign-library::         Load a foreign library when needed.
@end menu


@node Defining a library, Library definition style, Libraries, Libraries
@section Defining a library

Almost all foreign code you might want to access exists in some kind
of shared library.  The meaning of @dfn{shared library} varies among
platforms, but for our purposes, we will consider it to include
@file{.so} files on @sc{unix}, frameworks on Darwin (and derivatives
like Mac @acronym{OS X}), and @file{.dll} files on Windows.

Bringing one of these libraries into the Lisp image is normally a
two-step process.

@enumerate
@item
Describe to @cffi{} how to load the library at some future point,
depending on platform and other factors, with a
@code{define-foreign-library} top-level form.

@item
Load the library so defined with either a top-level
@code{use-foreign-library} form or by calling the function
@code{load-foreign-library}.
@end enumerate

@xref{Tutorial-Loading,, Loading foreign libraries}, for a working
example of the above two steps.


@node Library definition style, close-foreign-library, Defining a library, Libraries
@section Library definition style

Looking at the @code{libcurl} library definition presented earlier,
you may ask why we did not simply do this:

@lisp
(define-foreign-library libcurl
  (t (:default "libcurl")))
@end lisp

@noindent
Indeed, this would work just as well on the computer on which I tested
the tutorial.  There are a couple of good reasons to provide the
@file{.so}'s current version number, however.  Namely, the versionless
@file{.so} is not packaged on most @sc{unix} systems along with the
actual, fully-versioned library; instead, it is included in the
``development'' package along with C headers and static @file{.a}
libraries.

The reason @cffi{} does not try to account for this lies in the
meaning of the version numbers.  A full treatment of shared library
versions is beyond this manual's scope; see @ref{Versioning,, Library
interface versions, libtool, @acronym{GNU} Libtool}, for helpful
information for the unfamiliar.  For our purposes, consider that a
mismatch between the library version with which you tested and the
installed library version may cause undefined
behavior.@footnote{Windows programmers may chafe at adding a
@sc{unix}-specific clause to @code{define-foreign-library}.  Instead,
ask why the Windows solution to library incompatibility is ``include
your own version of every library you use with every program''.}

@impnote{Maybe some notes should go here about OS X, which I know
little about.  --stephen}


@c ===================================================================
@c CLOSE-FOREIGN-LIBRARY

@page
@node close-foreign-library, *darwin-framework-directories*, Library definition style, Libraries
@heading close-foreign-library
@subheading Syntax
@Function{close-foreign-library library @res{} success}

@subheading Arguments and Values

@table @var
@item library
A symbol or an instance of @code{foreign-library}.

@item success
A Lisp boolean.
@end table

@subheading Description

Closes @var{library} which can be a symbol designating a library
define through @code{define-foreign-library} or an instance of
@code{foreign-library} as returned by @code{load-foreign-library}.

@c @subheading Examples
@c @xref{Tutorial-Loading,, Loading foreign libraries}.

@subheading See Also

@seealso{define-foreign-library} @*
@seealso{load-foreign-library} @*
@seealso{use-foreign-library}


@c ===================================================================
@c *DARWIN-FRAMEWORK-DIRECTORIES*

@page
@node *darwin-framework-directories*, define-foreign-library, close-foreign-library, Libraries
@heading *darwin-framework-directories*
@subheading Syntax

@Variable{*darwin-framework-directories*}

@subheading Value type

A list, in which each element is a string, a pathname, or a simple
Lisp expression.

@subheading Initial value

A list containing the following, in order: an expression corresponding
to Darwin path @file{~/Library/Frameworks/},
@code{#P"/Library/Frameworks/"}, and
@code{#P"/System/Library/Frameworks/"}.

@subheading Description

The meaning of ``simple Lisp expression'' is explained in
@ref{*foreign-library-directories*}.  In contrast to that variable,
this is not a fallback search path; the default value described above
is intended to be a reasonably complete search path on Darwin systems.

@subheading Examples

@lisp
CFFI> (let ((lib (load-foreign-library '(:framework "OpenGL"))))
        (foreign-library-pathname lib))
@result{} #P"/System/Library/Frameworks/OpenGL.framework/OpenGL"
@end lisp

@subheading See also

@seealso{*foreign-library-directories*} @*
@seealso{define-foreign-library}


@c ===================================================================
@c DEFINE-FOREIGN-LIBRARY

@page
@node define-foreign-library, *foreign-library-directories*, *darwin-framework-directories*, Libraries
@heading define-foreign-library

@subheading Syntax

@Macro{define-foreign-library name-and-options @{ load-clause @}* @res{} name}

name-and-options ::= name | (name &key canary convention search-path) @*
load-clause ::= (feature library &key convention search-path) @*

@subheading Arguments and Values

@table @var
@item name
A symbol.

@item feature
A feature expression.

@item library
A library designator.

@item canary
A string denoting a foreign symbol that will be searched in core
before attempting to load the library. If that symbol is found, the
library is assumed to be preloaded (either statically or dynamically
linked) and @code{load-foreign-library} only marks the library as
loaded.

Some implementations (Clisp, ECL, SBCL) natively support static
linking, sometimes referred to as a @emph{link kit}.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}

@item search-path
A path or list of paths where the library will be searched if not found in
system-global directories. Paths specified in a load clause take priority over
paths specified as library option, with *foreign-library-directories* having
lowest priority.
@end table

@subheading Description

Creates a new library designator called @var{name}.  The
@var{load-clause}s describe how to load that designator when passed to
@code{load-foreign-library} or @code{use-foreign-library}.

When trying to load the library @var{name}, the relevant function
searches the @var{load-clause}s in order for the first one where
@var{feature} evaluates to true.  That happens for any of the
following situations:

@enumerate 1
@item
If @var{feature} is a symbol present in @code{common-lisp:*features*}.

@item
If @var{feature} is a list, depending on @code{(first @var{feature})},
a keyword:

@table @code
@item :and
All of the feature expressions in @code{(rest @var{feature})} are
true.

@item :or
At least one of the feature expressions in @code{(rest @var{feature})}
is true.

@item :not
The feature expression @code{(second @var{feature})} is not true.
@end table

@item
Finally, if @var{feature} is @code{t}, this @var{load-clause} is
picked unconditionally.
@end enumerate

Upon finding the first true @var{feature}, the library loader then
loads the @var{library}.  The meaning of ``library designator'' is
described in @ref{load-foreign-library}.

Functions associated to a library defined by
@code{define-foreign-library} (e.g. through @code{defcfun}'s
@code{:library} option, will inherit the library's options.  The
precedence is as follows:

@enumerate 1
@item
@code{defcfun}/@code{foreign-funcall} specific options;

@item
@var{load-clause} options;

@item
global library options (the @var{name-and-options} argument)
@end enumerate


@subheading Examples

@xref{Tutorial-Loading,, Loading foreign libraries}.


@subheading See Also

@seealso{close-foreign-library} @*
@seealso{load-foreign-library}


@c ===================================================================
@c *FOREIGN-LIBRARY-DIRECTORIES*

@page
@node *foreign-library-directories*, load-foreign-library, define-foreign-library, Libraries
@heading *foreign-library-directories*
@subheading Syntax

@Variable{*foreign-library-directories*}

@subheading Value type

A list, in which each element is a string, a pathname, or a simple
Lisp expression.

@subheading Initial value

The empty list.

@subheading Description

You should not have to use this variable.

Most, if not all, Lisps supported by @cffi{} have a reasonable default
search algorithm for foreign libraries.  For example, Lisps for
@sc{unix} usually call
@uref{http://www.opengroup.org/onlinepubs/009695399/functions/dlopen.html,,
@code{dlopen(3)}}, which in turn looks in the system library
directories.  Only if that fails does @cffi{} look for the named
library file in these directories, and load it from there if found.

Thus, this is intended to be a @cffi{}-only fallback to the library
search configuration provided by your operating system.  For example,
if you distribute a foreign library with your Lisp package, you can
add the library's containing directory to this list and portably
expect @cffi{} to find it.

A @dfn{simple Lisp expression} is intended to provide functionality
commonly used in search paths such as
@acronym{ASDF}'s@footnote{@xref{Using asdf to load systems,,, asdf,
asdf: another system definition facility}, for information on
@code{asdf:*central-registry*}.}, and is defined recursively as
follows:@footnote{See @code{mini-eval} in @file{libraries.lisp} for
the source of this definition.  As is always the case with a Lisp
@code{eval}, it's easier to understand the Lisp definition than the
english.}

@enumerate
@item
A list, whose @samp{first} is a function designator, and whose
@samp{rest} is a list of simple Lisp expressions to be evaluated and
passed to the so-designated function.  The result is the result of the
function call.

@item
A symbol, whose result is its symbol value.

@item
Anything else evaluates to itself.
@end enumerate

The result of evaluating the @dfn{simple Lisp expression} should yield
a @emph{designator} for a @emph{list} of @emph{pathname designators}.

@strong{Note}: in Common Lisp, @code{#p"/foo/bar"} designates the
@emph{bar} file within the @emph{/foo} directory whereas
@code{#p"/foo/bar/"} designates the @emph{/foo/bar} directory. Keep
that in mind when customising the value of
@code{*foreign-library-directories*}.


@subheading Examples

@example
$ ls
@print{} liblibli.so    libli.lisp
@end example

@noindent
In @file{libli.lisp}:

@lisp
(pushnew #P"/home/sirian/lisp/libli/" *foreign-library-directories*
         :test #'equal)

(load-foreign-library '(:default "liblibli"))
@end lisp

@noindent
The following example would achieve the same effect:

@lisp
(pushnew '(merge-pathnames #p"lisp/libli/" (user-homedir-pathname))
          *foreign-library-directories*
          :test #'equal)
@result{} ((MERGE-PATHNAMES #P"lisp/libli/" (USER-HOMEDIR-PATHNAME)))

(load-foreign-library '(:default "liblibli"))
@end lisp

@subheading See also

@seealso{*darwin-framework-directories*} @*
@seealso{define-foreign-library}


@c ===================================================================
@c LOAD-FOREIGN-LIBRARY

@page
@node load-foreign-library, load-foreign-library-error, *foreign-library-directories*, Libraries
@heading load-foreign-library
@subheading Syntax
@Function{load-foreign-library library-designator @res{} library}

@subheading Arguments and Values

@table @var
@item library-designator
A library designator.

@item library-designator
An instance of @code{foreign-library}.
@end table

@subheading Description

Load the library indicated by @var{library-designator}. A @dfn{library
designator} is defined as follows:

@enumerate
@item
If a symbol, is considered a name previously defined with
@code{define-foreign-library}.

@item
If a string or pathname, passed as a namestring directly to the
implementation's foreign library loader.  If that fails, search the
directories in @code{*foreign-library-directories*} with
@code{cl:probe-file}; if found, the absolute path is passed to the
implementation's loader.

@item
If a list, the meaning depends on @code{(first @var{library})}:

@table @code
@item :framework
The second list element is taken to be a Darwin framework name, which
is then searched in @code{*darwin-framework-directories*}, and loaded
when found.

@item :or
Each remaining list element, itself a @dfn{library designator}, is loaded in
order, until one succeeds.

@item :default
The name is transformed according to the platform's naming convention
to shared libraries, and the resultant string is loaded as a @dfn{library
designator}.  For example, on @sc{unix}, the name is suffixed with
@file{.so}.
@end table
@end enumerate

If the library is already loaded it will be reloaded.

If the load fails, signal a @code{load-foreign-library-error}.

@strong{Please note:} For system libraries, you should not need to
specify the directory containing the library.  Each operating system
has its own idea of a default search path, and you should rely on it
when it is reasonable.

@subheading Implementation-specific Notes
On ECL platforms where its dynamic FFI is not supported (ie. when
@code{:dffi} is not present in @code{*features*}),
@code{cffi:load-foreign-library} does not work and you must use ECL's
own @code{ffi:load-foreign-library} with a constant string argument.

@subheading Examples

@xref{Tutorial-Loading,, Loading foreign libraries}.

@subheading See Also

@seealso{close-foreign-library} @*
@seealso{*darwin-framework-directories*} @*
@seealso{define-foreign-library} @*
@seealso{*foreign-library-directories*} @*
@seealso{load-foreign-library-error} @*
@seealso{use-foreign-library}


@c ===================================================================
@c LOAD-FOREIGN-LIBRARY-ERROR

@page
@node load-foreign-library-error, use-foreign-library, load-foreign-library, Libraries
@heading load-foreign-library-error

@subheading Syntax

@Condition{load-foreign-library-error}

@subheading Class precedence list

@code{load-foreign-library-error}, @code{error},
@code{serious-condition}, @code{condition}, @code{t}

@subheading Description

Signalled when a foreign library load completely fails.  The exact
meaning of this varies depending on the real conditions at work, but
almost universally, the implementation's error message is useless.
However, @cffi{} does provide the useful restarts @code{retry} and
@code{use-value}; invoke the @code{retry} restart to try loading the
foreign library again, or the @code{use-value} restart to try loading
a different foreign library designator.

@subheading See also

@seealso{load-foreign-library}


@c ===================================================================
@c USE-FOREIGN-LIBRARY

@page
@node use-foreign-library,  , load-foreign-library-error, Libraries
@heading use-foreign-library

@subheading Syntax

@Macro{use-foreign-library name}

@subheading Arguments and values

@table @var
@item name
A library designator; unevaluated.
@end table


@subheading Description

@xref{load-foreign-library}, for the meaning of ``library
designator''.  This is intended to be the top-level form used
idiomatically after a @code{define-foreign-library} form to go ahead
and load the library. @c ; it also sets the ``current foreign library''.
Finally, on implementations where the regular evaluation rule is
insufficient for foreign library loading, it loads it at the required
time.@footnote{Namely, @acronym{CMUCL}.  See
@code{use-foreign-library} in @file{libraries.lisp} for details.}

@c current foreign library is a concept created a few hours ago as of
@c this writing.  It is not actually used yet, but probably will be.

@subheading Examples

@xref{Tutorial-Loading,, Loading foreign libraries}.


@subheading See also

@seealso{load-foreign-library}


@c ===================================================================
@c CHAPTER: Callbacks

@node Callbacks, The Groveller, Libraries, Top
@chapter Callbacks

@menu
Dictionary

* callback::
* defcallback::
* get-callback::
@end menu


@c ===================================================================
@c CALLBACK

@page
@node callback, defcallback, Callbacks, Callbacks
@heading callback
@subheading Syntax
@Macro{callback symbol @res{} pointer}

@subheading Arguments and Values

@table @var
@item symbol
A symbol denoting a callback.

@item pointer
@itemx new-value
A pointer.
@end table

@subheading Description
The @code{callback} macro is analogous to the standard CL special
operator @code{function} and will return a pointer to the callback
denoted by the symbol @var{name}.

@subheading Examples

@lisp
CFFI> (defcallback sum :int ((a :int) (b :int))
        (+ a b))
@result{} SUM
CFFI> (callback sum)
@result{} #<A Mac Pointer #x102350>
@end lisp

@subheading See Also
@seealso{get-callback} @*
@seealso{defcallback}


@c ===================================================================
@c DEFCALLBACK

@page
@node defcallback, get-callback, callback, Callbacks
@heading defcallback
@subheading Syntax
@Macro{defcallback name-and-options return-type arguments &body body @res{} name}

name-and-options ::= name | (name &key convention) @*
arguments ::= (@{ (arg-name arg-type) @}*) @*

@subheading Arguments and Values

@table @var
@item name
A symbol naming the callback created.

@item return-type
The foreign type for the callback's return value.

@item arg-name
A symbol.

@item arg-type
A foreign type.

@item convention
One of @code{:cdecl} (default) or @code{:stdcall}.
@end table

@subheading Description
The @code{defcallback} macro defines a Lisp function that can be called
from C. The arguments passed to this function will be converted to the
appropriate Lisp representation and its return value will be converted
to its C representation.

This Lisp function can be accessed by the @code{callback} macro or the
@code{get-callback} function.

@strong{Portability note:} @code{defcallback} will not work correctly
on some Lisps if it's not a top-level form.

@subheading Examples

@lisp
(defcfun "qsort" :void
  (base :pointer)
  (nmemb :int)
  (size :int)
  (fun-compar :pointer))

(defcallback < :int ((a :pointer) (b :pointer))
  (let ((x (mem-ref a :int))
        (y (mem-ref b :int)))
    (cond ((> x y) 1)
          ((< x y) -1)
          (t 0))))

CFFI> (with-foreign-object (array :int 10)
        ;; @lispcmt{Initialize array.}
        (loop for i from 0 and n in '(7 2 10 4 3 5 1 6 9 8)
              do (setf (mem-aref array :int i) n))
        ;; @lispcmt{Sort it.}
        (qsort array 10 (foreign-type-size :int) (callback <))
        ;; @lispcmt{Return it as a list.}
        (loop for i from 0 below 10
              collect (mem-aref array :int i)))
@result{} (1 2 3 4 5 6 7 8 9 10)
@end lisp

@subheading See Also
@seealso{callback} @*
@seealso{get-callback}


@c ===================================================================
@c GET-CALLBACK

@page
@node get-callback,  , defcallback, Callbacks
@heading get-callback
@subheading Syntax
@Accessor{get-callback symbol @res{} pointer}

@subheading Arguments and Values

@table @var
@item symbol
A symbol denoting a callback.

@item pointer
A pointer.
@end table

@subheading Description
This is the functional version of the @code{callback} macro. It
returns a pointer to the callback named by @var{symbol} suitable, for
example, to pass as arguments to foreign functions.

@subheading Examples

@lisp
CFFI> (defcallback sum :int ((a :int) (b :int))
        (+ a b))
@result{} SUM
CFFI> (get-callback 'sum)
@result{} #<A Mac Pointer #x102350>
@end lisp

@subheading See Also
@seealso{callback} @*
@seealso{defcallback}


@c ===================================================================
@c CHAPTER: The Groveller

@node The Groveller, Limitations, Callbacks, Top
@chapter The Groveller

@cffi{}-Grovel is a tool which makes it easier to write @cffi{}
declarations for libraries that are implemented in C.  That is, it
grovels through the system headers, getting information about types
and structures, so you don't have to.  This is especially important
for libraries which are implemented in different ways by different
vendors, such as the @sc{unix}/@sc{posix} functions.  The @cffi{}
declarations are usually quite different from platform to platform,
but the information you give to @cffi{}-Grovel is the same.  Hence,
much less work is required!

If you use @acronym{ASDF}, @cffi{}-Grovel is integrated, so that it
will run automatically when your system is building.  This feature was
inspired by SB-Grovel, a similar @acronym{SBCL}-specific project.
@cffi{}-Grovel can also be used without @acronym{ASDF}.

@section Building FFIs with CFFI-Grovel

@cffi{}-Grovel uses a specification file (*.lisp) describing the
features that need groveling.  The C compiler is used to retrieve this
data and write a Lisp file (*.cffi.lisp) which contains the necessary
@cffi{} definitions to access the variables, structures, constants, and
enums mentioned in the specification.

@c This is most similar to the SB-Grovel package, upon which it is
@c based.  Unlike SB-Grovel, we do not currently support defining
@c regular foreign functions in the specification file; those are best
@c defined in normal Lisp code.

@cffi{}-Grovel provides an @acronym{ASDF} component for handling the
necessary calls to the C compiler and resulting file management.

@c See the included CFFI-Unix package for an example of how to
@c integrate a specification file with ASDF-built packages.

@menu
* Groveller Syntax::            How grovel files should look like.
* Groveller ASDF Integration::  ASDF components for grovel files.
* Groveller Implementation Notes:: Implementation notes.
* Wrapper for Inline/Static Functions and Macros:: Wrapper
@end menu

@node Groveller Syntax, Groveller ASDF Integration, The Groveller, The Groveller
@section Specification File Syntax

The specification files are read by the normal Lisp reader, so they
have syntax very similar to normal Lisp code.  In particular,
semicolon-comments and reader-macros will work as expected.

There are several forms recognized by @cffi{}-Grovel:

@deffn {Grovel Form} progn &rest forms

Processes a list of forms. Useful for conditionalizing several
forms. For example:
@end deffn

@lisp
#+freebsd
(progn
  (constant (ev-enable "EV_ENABLE"))
  (constant (ev-disable "EV_DISABLE")))
@end lisp

@deffn {Grovel Form} include &rest files

Include the specified files (specified as strings) in the generated C
source code.
@end deffn

@deffn {Grovel Form} in-package symbol

Set the package to be used for the final Lisp output.
@end deffn

@deffn {Grovel Form} ctype lisp-name size-designator

Define a @cffi{} foreign type for the string in @var{size-designator},
e.g. @code{(ctype :pid "pid_t")}.
@end deffn

@deffn {Grovel Form} constant (lisp-name &rest c-names) &key type documentation optional

Search for the constant named by the first @var{c-name} string found
to be known to the C preprocessor and define it as @var{lisp-name}.

The @var{type} keyword argument specifies how to grovel the constant:
either @code{integer} (the default) or @code{double-float}. If
@var{optional} is true, no error will be raised if all the
@var{c-names} are unknown. If @var{lisp-name} is a keyword, the actual
constant will be a symbol of the same name interned in the current
package.
@end deffn

@deffn {Grovel Form} feature lisp-feature-name c-name &key feature-list

Adds @var{lisp-feature-name} to the list @var{feature-list} if the @var{c-name}
string is known to the C preprocessor. @var{feature-list} defaults
to @code{cl:*features*}.
@end deffn

@deffn {Grovel Form} define name &optional value

Defines an additional C preprocessor symbol, which is useful for
altering the behavior of included system headers.
@end deffn

@deffn {Grovel Form} cc-flags &rest flags

Adds @var{cc-flags} to the command line arguments used for the C compiler
invocation.
@end deffn

@deffn {Grovel Form} pkg-config-cflags pkg &key optional

Adds @var{pkg} to the command line arguments for the external program
@code{pkg-config} and runs it to retrieve the relevant include flags
used for the C compiler invocation. This syntax can be used instead of
hard-coding paths using @code{cc-flags}, and ensures that include
flags are added correctly on the build system. Assumes
@code{pkg-config} is installed and working.  @var{pkg} is a string
that identifies an installed @code{pkg-config} package. See the
pkg-config manual for more information. If @var{optional} is true,
failure to execute @code{pkg-config} does @emph{not} abort
compilation.
@end deffn

@deffn {Grovel Form} cstruct lisp-name c-name slots

Define a @cffi{} foreign struct with the slot data specfied.  Slots
are of the form @code{(lisp-name c-name &key type count (signed t))}.
@end deffn

@deffn {Grovel Form} cunion lisp-name c-name slots

Identical to @code{cstruct}, but defines a @cffi{} foreign union.
@end deffn

@deffn {Grovel Form} cstruct-and-class c-name slots

Defines a @cffi{} foreign struct, as with @code{cstruct} and defines a
@acronym{CLOS} class to be used with it.  This is useful for mapping
foreign structures to application-layer code that shouldn't need to
worry about memory allocation issues.
@end deffn

@deffn {Grovel Form} cvar namespec type &key read-only

Defines a foreign variable of the specified type, even if that
variable is potentially a C preprocessor pseudo-variable.  e.g.
@code{(cvar ("errno" errno) errno-values)}, assuming that errno-values
is an enum or equivalent to type @code{:int}.

The @var{namespec} is similar to the one used in @ref{defcvar}.
@end deffn

@deffn {Grovel Form} cenum name-and-opts &rest elements

Defines a true C enum, with elements specified as @code{((lisp-name
&rest c-names) &key optional documentation)}.
@var{name-and-opts} can be either a symbol as name, or a list
@code{(name &key base-type define-constants)}. If @var{define-constants}
is non-null, a Lisp constant will be defined for each enum member.
@end deffn

@deffn {Grovel Form} constantenum name-and-opts &rest elements

Defines an enumeration of pre-processor constants, with elements
specified as @code{((lisp-name &rest c-names) &key optional
documentation)}.
@var{name-and-opts} can be either a symbol as name, or a list
@code{(name &key base-type define-constants)}. If @var{define-constants}
is non-null, a Lisp constant will be defined for each enum member.

This example defines @code{:af-inet} to represent the value held by
@code{AF_INET} or @code{PF_INET}, whichever the pre-processor finds
first.  Similarly for @code{:af-packet}, but no error will be
signalled if the platform supports neither @code{AF_PACKET} nor
@code{PF_PACKET}.
@end deffn

@lisp
(constantenum address-family
  ((:af-inet "AF_INET" "PF_INET")
   :documentation "IPv4 Protocol family")
  ((:af-local "AF_UNIX" "AF_LOCAL" "PF_UNIX" "PF_LOCAL")
   :documentation "File domain sockets")
  ((:af-inet6 "AF_INET6" "PF_INET6")
   :documentation "IPv6 Protocol family")
  ((:af-packet "AF_PACKET" "PF_PACKET")
   :documentation "Raw packet access"
   :optional t))
@end lisp

@deffn {Grovel Form} bitfield name-and-opts &rest elements

Defines a bitfield, with elements specified as @code{((lisp-name &rest
c-names) &key optional documentation)}.  @var{name-and-opts} can be either a
symbol as name, or a list @code{(name &key base-type)}.  For example:
@end deffn

@lisp
(bitfield flags-ctype
  ((:flag-a "FLAG_A")
    :documentation "DOCU_A")
  ((:flag-b "FLAG_B" "FLAG_B_ALT")
    :documentation "DOCU_B")
  ((:flag-c "FLAG_C")
    :documentation "DOCU_C"
    :optional t))
@end lisp


@c ===================================================================
@c SECTION: Groveller ASDF Integration

@node Groveller ASDF Integration, Groveller Implementation Notes, Groveller Syntax, The Groveller
@section ASDF Integration

An example software project might contain four files; an
@acronym{ASDF} file, a package definition file, an implementation
file, and a @cffi{}-Grovel specification file.

The @acronym{ASDF} file defines the system and its dependencies.
Notice the use of @code{eval-when} to ensure @cffi{}-Grovel is present
and the use of @code{(cffi-grovel:grovel-file name &key cc-flags)}
instead of @code{(:file name)}.

The @file{example-software.asd} file would look like that:

@lisp
;;; @lispcmt{CFFI-Grovel is needed for processing grovel-file components}
(defsystem "example-software"
  :defsystem-depends-on ("cffi-grovel")
  :depends-on ("cffi")
  :serial t
  :components
  ((:file "package")
   (:cffi-grovel-file "example-grovelling")
   (:cffi-wrapper-file "example-wrappers")
   (:file "example")))
@end lisp

The @file{package.lisp} file would contain one or several
@code{defpackage} forms, to remove circular dependencies and make
building the project easier.  Note that you may or may not want to
@code{:use} your internal package.

@impnote{Note that it's a not a good idea to @code{:use} when names may
clash with, say, CL symbols.
Or you could use @code{uiop:define-package} and its @code{:mix} option.}

@lisp
(defpackage #:example-internal
  (:use)
  (:nicknames #:exampleint))

(defpackage #:example-software
  (:export ...)
  (:use #:cl #:cffi #:exampleint))
@end lisp

The internal package is created by Lisp code output from the C program
written by @cffi{}-Grovel; if your specification file is
@file{exampleint.lisp}, the @file{exampleint.cffi.lisp} file will contain the
@cffi{} definitions needed by the rest of your project.
@xref{Groveller Syntax}.

@node Groveller Implementation Notes,  Wrapper for Inline/Static Functions and Macros, Groveller ASDF Integration, The Groveller
@section Implementation Notes

@cffi{}-Grovel will generate many files that not only architecture-specific,
but also implementation-specific, and should not be distributed.
ASDF will generate these files in its output cache;
if you build with multiple architectures (e.g. with NFS/AFS home
directories) or implementations, it is critical for avoiding clashes
to keep this cache in an implementation-dependent directory (as is the
default).

For @code{foo-internal.lisp}, the resulting @code{foo-internal.c},
@code{foo-internal}, and @code{foo-internal.cffi.lisp} are all
platform-specific, either because of possible reader-macros in
foo-internal.lisp, or because of varying C environments on the host
system.  For this reason, it is not helpful to distribute any of those
files; end users building @cffi{}-Grovel based software will need
@code{cffi}-Grovel anyway.

@impnote{For now, after some experimentation with @sc{clisp} having no
long-long, it seems appropriate to assert that the generated @code{.c}
files are architecture and operating-system dependent, but
lisp-implementation independent.  This way the same @code{.c} file
(and so the same @code{.grovel-tmp.lisp} file) will be shareable
between the implementations running on a given system.}

@c TODO: document the new wrapper stuff.

@node Wrapper for Inline/Static Functions and Macros,  , Groveller Implementation Notes, The Groveller
@section Wrapper for Inline/Static Functions and Macros

In a shared library, information in static/inlined functions and
macros are already removed during the compilation.  Wrapper file
enables to write an uninlined function wrapping the call to them.

A wrapper file compilation/loading proceeds as follows: 
Unlike groveller which generates C code that emits lisp files
containing cffi definitions, it generates C code, compiles it as a
shared library, loads the library, generate the cffi definitions (as
lisp code) and then loads the lisp code.

It has asdf integration similar to groveller. 

@lisp
(defsystem "example-software"
  :defsystem-depends-on ("cffi-grovel")
  :depends-on ("cffi")
  :serial t
  :components
  ((:file "package")
   (:cffi-grovel-file "example-grovelling")
   (:cffi-wrapper-file "example-wrappers")  ;; <<--- this part
   (:file "example")))
@end lisp

@deffn {Wrapper Form} defwrapper name-and-options return-type &rest args
@end deffn

@example
static inline int foo(int i) @{
  return 1+i;
@};
#define bar(i) (1+(i))
@end example

@lisp
(in-package :mypackage)
(defwrapper ("foo" foo) :int
  (i :int))
(defwrapper ("bar" bar) :int
  (i :int))
@end lisp

Other forms are similar to grovel files.

@deffn {Wrapper Form} progn &rest forms

Processes a list of forms. Useful for conditionalizing several
forms. For example:
@end deffn

@lisp
#+freebsd
(progn
  (constant (ev-enable "EV_ENABLE"))
  (constant (ev-disable "EV_DISABLE")))
@end lisp

@deffn {Wrapper Form} include &rest files

Include the specified files (specified as strings) in the generated C
source code.
@end deffn

@deffn {Wrapper Form} in-package symbol

Set the package to be used for the final Lisp output.
@end deffn

@deffn {Wrapper Form} flags &rest flags

Adds @var{cc-flags} to the command line arguments used for the C compiler
invocation.
@end deffn

@deffn {Wrapper Form} proclaim &rest proclaimations
@end deffn
@deffn {Wrapper Form} declaim &rest declaimations
@end deffn



@c ===================================================================
@c CHAPTER: Static Linking

@node Static Linking, Limitations, The Groveller, Top
@chapter Static Linking

On recent enough versions of supported implementations (currently, GNU
CLISP 2.49 or later, CMUCL 2015-11 or later, and SBCL 1.2.17 or later,
except SBCL 2.0.4), and with a recent enough ASDF (3.1.2 or later),
you can create a statically linked Lisp executable image (or a
standalone application executable) that includes all the C extensions
defined via @ref{The Groveller}'s @code{:cffi-wrapper-file} ASDF
components (and any other such objects output by
@code{asdf:compile-op}), as well as those defined by @code{:c-file} or
@code{:o-file} ASDF components, and your Lisp code.  This makes it
easier to deliver your code as a single file.

Note that the resulting binary will typically still depend on any
shared libraries loaded via @xref{load-foreign-library} or
@xref{use-foreign-library} as well as core libraries such as
@code{libc}.

To dump a statically linked executable image, use:

@lisp
(asdf:load-system :cffi-grovel)
(asdf:operate :static-image-op :example-software)
@end lisp

To dump a statically linked executable standalone application, use:

@lisp
(asdf:load-system :cffi-grovel)
(asdf:operate :static-program-op :example-software)
@end lisp

See @uref{https://common-lisp.net/project/asdf/,,the ASDF
manual} for documentation about @code{image-op} and @code{program-op}
which are the parent operation classes that behave similarly except
they don't statically link C code.

@impnote{There is also an operation @code{:static-runtime-op} to create the
statically linked runtime alone, but it's admittedly not very useful
except as an intermediate step dependency towards building
@code{:static-image-op} or @code{:static-program-op}.}



@c ===================================================================
@c CHAPTER: Limitations

@node Limitations, Platform-specific features, The Groveller, Top
@chapter Limitations

These are @cffi{}'s limitations across all platforms; for information
on the warts on particular Lisp implementations, see
@ref{Implementation Support}.

@itemize @bullet
@item
The tutorial includes a treatment of the primary, intractable
limitation of @cffi{}, or any @acronym{FFI}: that the abstractions
commonly used by C are insufficiently expressive.
@xref{Tutorial-Abstraction,, Breaking the abstraction}, for more
details.

@end itemize


@node Platform-specific features, Glossary, Limitations, Top
@appendix Platform-specific features

Whenever a backend doesn't support one of @cffi{}'s features, a
specific symbol is pushed onto @code{common-lisp:*features*}.  The
meanings of these symbols follow.

@table @var
@item cffi-sys::flat-namespace
This Lisp has a flat namespace for foreign symbols meaning that you
won't be able to load two different libraries with homograph functions
and successfully differentiate them through the @code{:library}
option to @code{defcfun}, @code{defcvar}, etc@dots{}

@item cffi-sys::no-foreign-funcall
The macro @code{foreign-funcall} is @strong{not} available.  On such
platforms, the only way to call a foreign function is through
@code{defcfun}.  @xref{foreign-funcall}, and @ref{defcfun}.

@item cffi-sys::no-long-long
The C @code{long long} type is @strong{not} available as a foreign
type.

However, on such platforms @cffi{} provides its own implementation of
the @code{long long} type for all of operations in chapters
@ref{Foreign Types}, @ref{Pointers} and @ref{Variables}. The
functionality described in @ref{Functions} and @ref{Callbacks} will
not be available.

32-bit Lispworks 5.0+ is an exception. In addition to the @cffi{}
implementation described above, Lispworks itself implements the
@code{long long} type for @ref{Functions}. @ref{Callbacks} are still
missing @code{long long} support, though.

@item cffi-sys::no-stdcall
This Lisp doesn't support the @code{stdcall} calling convention.  Note
that it only makes sense to support @code{stdcall} on (32-bit) x86
platforms.

@end table


@node Glossary, Comprehensive Index, Platform-specific features, Top
@appendix Glossary

@table @dfn
@item aggregate type
A @cffi{} type for C data defined as an organization of data of simple
type; in structures and unions, which are themselves aggregate types,
they are represented by value.

@item foreign value
This has two meanings; in any context, only one makes sense.

When using type translators, the foreign value is the lower-level Lisp
value derived from the object passed to @code{translate-to-foreign}
(@pxref{translate-to-foreign}).  This value should be a Lisp number or
a pointer (satisfies @code{pointerp}), and it can be treated like any
general Lisp object; it only completes the transformation to a true
foreign value when passed through low-level code in the Lisp
implementation, such as the foreign function caller or indirect memory
addressing combined with a data move.

In other contexts, this refers to a value accessible by C, but which
may only be accessed through @cffi{} functions.  The closest you can
get to such a foreign value is through a pointer Lisp object, which
itself counts as a foreign value in only the previous sense.

@item simple type
A @cffi{} type that is ultimately represented as a builtin type;
@cffi{} only provides extra semantics for Lisp that are invisible to C
code or data.
@end table

@node Comprehensive Index,  , Glossary, Top
@unnumbered Index
@printindex cp

@bye