File: report.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (440 lines) | stat: -rw-r--r-- 11,914 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
;  Copyright (C) 2000 Panagiotis Manolios and J Strother Moore

;  This program is free software; you can redistribute it and/or modify
;  it under the terms of the GNU General Public License as published by
;  the Free Software Foundation; either version 2 of the License, or
;  (at your option) any later version.

;  This program is distributed in the hope that it will be useful,
;  but WITHOUT ANY WARRANTY; without even the implied warranty of
;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;  GNU General Public License for more details.

;  You should have received a copy of the GNU General Public License
;  along with this program; if not, write to the Free Software
;  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

;  Written by Panagiotis Manolios who can be reached as follows.

;  Email: pete@cs.utexas.edu, moore@cs.utexas.edu

;  Postal Mail:
;  Department of Computer Science
;  The University of Texas at Austin
;  Austin, TX 78701 USA

; (certify-book "report")

(in-package "ACL2")
(include-book "defpun")
(include-book "../../../../ihs/quotient-remainder-lemmas")
(include-book "../../../../arithmetic/top-with-meta")
(include-book "mod-1-property")

; Section: Example Results

(defpun offset (n)
  (declare (xargs :witness fix))
  (if (equal n 0)
      0
    (+ 1 (offset (- n 1)))))

(defun quotm (i j)
  (let ((temp (floor (/ i j) 1)))
    (if (< temp 0)
        0
      (+ 1 temp))))

(in-theory (disable floor))

; The next two events illustrate a little trick.  To prove that the
; domain in quot, below, is closed, i.e., to do the guard proof for
; quot, I need to know that the-quot ``always'' returns a rational.
; But we have implemented no means of providing hints to be inserted
; between the admission of the automatically generated the-quot and
; its guard verification.  So I define the-quot now and prove what I
; need.  Then I do the defpun which will REDUNDANTLY define it.  Cool.

(defun the-quot (i j)
  (declare (xargs :guard (and (rationalp i)
                              (rationalp j)
                              (< 0 j))

; Modified by Matt K. after Version 3.0.1: This measure was formerly
; (quotm i j), but it needed to change so that the introduction of
; the-quote in the defpun below would be redundant, after the fix for
; the soundness bug in the redundancy criterion for defun.

                  :measure (if (and (rationalp i)
                                    (rationalp j)
                                    (< 0 j))
                               (quotm i j)
                             0)
                  :verify-guards nil))
  (if (and (rationalp i)
           (rationalp j)
           (< 0 j))
      (if (<= i 0) 0 (+ 1 (the-quot (- i j) j)))
    'undef))

(defthm rationalp-the-quot
  (implies (and (rationalp i)
                (rationalp j)
                (< 0 j))
           (rationalp (the-quot i j)))
  :rule-classes :type-prescription)

(defpun quot (i j)
  (declare (xargs :gdomain (and (rationalp i)
                                (rationalp j)
                                (< 0 j))
                  :measure (quotm i j)))
  (if (<= i 0) 0 (+ 1 (quot (- i j) j))))

(defpun 3n+1 (n)
  (if (<= n 1)
      n
    (3n+1 (if (evenp n)
              (/ n 2)
            (+ (* 3 n) 1)))))


(defstub haltedp (s) t)
(defstub step1 (s) t)

(defpun stepw (s)
  (if (haltedp s)
      s
    (stepw (step1 s))))

; Section: Consistency

(defun natural-induction (n)
  (if (zp n)
      t
    (natural-induction (- n 1))))

(defmacro show-g-inconsistent nil
  '(ld '((defstub g (n) t)

         (defaxiom g-axiom
           (equal (g n)
                  (if (equal n 0)
                      nil
                    (cons nil (g (- n 1)))))
           :rule-classes :definition)

         (defthm g-induction
           t
           :rule-classes ((:induction
                           :pattern (g n)
                           :scheme (natural-induction n))))

         (defthm len-of-g
           (implies (natp n)
                    (equal (len (g n)) n)))

         (defun bad-lemma-hint (k n)
           (if (zp k)
               (list k n)
             (bad-lemma-hint (- k 1) (- n 1))))

         (defthm bad-lemma
           (implies (and (natpp k)
                         (integerp n)
                         (< n 0))
                    (< k (len (g n))))
           :hints (("Goal" :induct (bad-lemma-hint k n))
                   ("Subgoal *1/1" :use g-axiom)))

         (defthm bad-theorem
           nil
           :rule-classes nil
           :hints (("Goal" :use (:instance bad-lemma
                                           (k (len (g -1)))
                                           (n -1)))))
         (ubt! 'g))
       :ld-pre-eval-print t))

(defpun undef (x)
  (declare (xargs :witness car))
  (undef x)
  :rule-classes nil)

; Section:  Witnessing Equations

(defpun h (n)
  (declare (xargs :witness fix))
  (if (equal n 0) 0 (+ 1 (h (- n 1)))))

(defthm h-induction
  t
  :rule-classes ((:induction
                  :pattern (h n)
                  :scheme (natural-induction n))))

(defthm h-is-id-on-naturals
  (implies (natp n)
           (equal (h n) n)))

(defun h22/7 (n)
  (if (natp n)
      n
    (+ 22/7 n)))

(defthm h22/7-satisfies-h-def
  (equal (h22/7 n)
         (if (equal n 0) 0 (+ 1 (h22/7 (- n 1)))))
  :rule-classes nil)

(defthm h-prop-0
  (acl2-numberp (h n))
  :rule-classes :type-prescription
  :hints (("Goal" :use h-def)))

(encapsulate
 nil
 (local
  (defthm lemma1
    (implies (natp n)
             (equal (h n) n))
    :rule-classes nil
    :hints (("Goal" :induct (natural-induction n)))))

 (local
  (defthm lemma2
    (implies (and (integerp n)
                  (< 0 n))
             (equal (h (- n)) (+ (- (h -1) -1) (- n))))
    :rule-classes nil
    :hints (("Goal" :induct (natural-induction n)))))

 (defun hconst () (+ 1 (h -1) ))

 (defthm acl2-numberp-hconst
   (acl2-numberp (hconst)))

 (in-theory (disable (:executable-counterpart hconst)))

 (defthm h-prop-1
   (implies (integerp n)
            (equal (h n)
                   (if (<= 0 n)
                       n
                     (+ n (hconst)))))
   :rule-classes nil
   :hints (("Goal" :use ((:instance lemma1)
                         (:instance lemma2 (n (- n))))))))

(encapsulate
 nil
 (local
  (defthm lemma1
    (implies (and (acl2-numberp x)
                  (not (integerp x))
                  (natp n))
             (equal (h (+ n x))
                    (+ n (h x))))
    :rule-classes nil
    :hints (("Goal" :induct (natural-induction n)))))

 (local
  (defthm lemma2
    (implies (and (acl2-numberp x)
                  (not (integerp x))
                  (integerp n)
                  (< 0 n))
             (equal (h (+ (- n) x))
                    (+ (- n) (h x))))
    :rule-classes nil
    :hints (("Goal" :induct (natural-induction n)))))

 (local
  (defthm lemma3
    (implies (and (acl2-numberp x)
                  (not (integerp x))
                  (integerp n))
             (equal (h (+ n x))
                    (+ n (h x))))
    :rule-classes nil
    :hints (("Goal" :use ((:instance lemma1)
                          (:instance lemma2 (n (- n))))))))

; Consider any rational x.  It can be represented by an integer n plus some
; epsilon between 0 and 1.  H-prop-5 tells us that (h x) is n+(h epsilon).

 (defthm h-prop-2
   (implies (and (rationalp x)
                 (not (integerp x)))
            (equal (h x)
                   (+ (floor x 1) (h (mod x 1)))))
   :rule-classes nil
   :hints (("Goal" :use (:instance lemma3
                                   (x (mod x 1))
                                   (n (floor x 1))))))

 )

; Here is a witness for h that demonstrates that it is not just a linear
; offset.

(encapsulate ((arbitrary-constant (x) t))
             (local (defun arbitrary-constant (x) (fix x)))
             (defthm acl2-numberp-arbitrary-constant
               (acl2-numberp (arbitrary-constant x))
               :rule-classes :type-prescription))

(defun hv (x)
  (if (integerp x)
      x
    (if (rationalp x)
        (+ (floor x 1) (arbitrary-constant (mod x 1)))
      (fix x))))

(defthm hv-satisfies-h-def
  (equal (hv n)
         (if (equal n 0) 0 (+ 1 (hv (- n 1)))))
  :hints (("Goal" :in-theory (disable floor)))
  :rule-classes nil)

; We can make this general observation very concrete by letting the
; arbitrary-constant be a particular function.

(defun concrete-arbitrary-constant (x)
  (case x
    (1/2 100)
    (1/3 -273)
    (1/4 57)
    (1/5 123)
    (otherwise (* x x))))

(defun concrete-hv (x)
  (if (integerp x)
      x
    (if (rationalp x)
        (+ (floor x 1) (concrete-arbitrary-constant (mod x 1)))
      (fix x))))

(defthm concrete-hv-satisfies-h-def
  (equal (concrete-hv n)
         (if (equal n 0) 0 (+ 1 (concrete-hv (- n 1)))))
  :hints (("Goal" :in-theory (disable floor concrete-arbitrary-constant)))
  :rule-classes nil)

(set-ignore-ok t)
(set-irrelevant-formals-ok t)

(defpun z (x)
  (declare (xargs :witness (lambda (x) 0)))
  (if (zip x)
      0
    (* (z (- x 1))
       (z (+ x 1)))))

(defun integer-induction (i)
  (if (integerp i)
      (if (equal i 0)
          t
        (if (< i 0)
            (integer-induction (+ i 1))
          (integer-induction (- i 1))))
    t))

(defthm z-induction
  t
  :rule-classes ((:induction
                  :pattern (z i)
                  :scheme (integer-induction i))))

(defthm z-is-0
  (equal (z x) 0))

(defpun three (x)
  (declare (xargs :witness (lambda (x) 1)))
  (if (equal x nil)
      (let ((i (three x)))
        (if (and (integerp i) (<= 1 i) (<= i 3))
            i
          1))
    1)
  :rule-classes nil)

(defun three1 (x) (if (equal x nil) 1 1))
(defun three2 (x) (if (equal x nil) 2 1))
(defun three3 (x) (if (equal x nil) 3 1))

(defthm three-and-only-three
  (and (equal (three1 x)
              (if (equal x nil)
                  (let ((i (three1 x)))
                    (if (and (<= 1 i) (<= i 3))
                        i
                      1))
                1))
       (equal (three2 x)
              (if (equal x nil)
                  (let ((i (three2 x)))
                    (if (and (<= 1 i) (<= i 3))
                        i
                      1))
                1))
       (equal (three3 x)
              (if (equal x nil)
                  (let ((i (three3 x)))
                    (if (and (<= 1 i) (<= i 3))
                        i
                      1))
                1))
       (or (equal (three x) (three1 x))
           (equal (three x) (three2 x))
           (equal (three x) (three3 x))))
  :hints (("Goal" :use three-def))
  :rule-classes nil)

; Section:  Domains

(defpun gnat (n)
  (declare (xargs :domain (natp n) :measure n))
  (if (equal n 0)
      nil
    (cons nil (gnat (- n 1)))))


(defpun gsev (n)
  (declare (xargs :domain (and (integerp n) (<= -7 n)) :measure (+ 8 n)))
  (if (equal n 0)
      nil
    (cons nil (gsev (- n 1)))))

; Tail Recursion

(defpun trfact (n a)
  (if (equal n 0)
      a
     (trfact (- n 1) (* n a))))

(defun fact (n) (if (zp n) 1 (* n (fact (- n 1)))))

(defun fact1 (n a) (if (zp n) a (fact1 (- n 1) (* n a))))
(defthm trfact-induction
  t
  :rule-classes ((:induction
                  :pattern (trfact n a)
                  :scheme (fact1 n a))))

(defthm trfact-is-fact-on-nats
  (implies (and (natp n)
                (acl2-numberp a))
           (equal (trfact n a) (* a (fact n)))))


; It would be nice if we could switch packages now from "ACL2" to "TJVM"
; and prove some theorems about the tjvm using its partial function semantics.
; But it is not permitted by Common Lisp to switch packages in the middle of a
; file.  So we proved the results we wanted in tjvm-examples.lisp.

(include-book "tjvm-examples")

; We recommend that you visit that file to see the tjvm results cited
; in the paper.