1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
|
; Copyright (C) 2020, Rob Sumners
; Written by Rob Sumners
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;; cycle-check.lisp
(in-package "ACL2")
(include-book "std/top" :dir :system)
(include-book "centaur/fty/top" :dir :system)
(include-book "centaur/misc/fast-alist-pop" :dir :system)
; Matt K. mod: On 8/16/2020, there were three successive failed attempts to
; certify this book in ACL2(p) with waterfall-parallelism enabled. All
; failures seemed to be abrupt, and had no explanation. An attempt to LD this
; file then succeeded; nevertheless, it seems simplest to disable
; waterfall-parallelism at this time to avoid ACL2(p) regression failures.
; Perhaps someone will look into this if it's important.
(set-waterfall-parallelism nil)
(set-slow-alist-action :break)
(defmacro nats-o (&rest x)
(if (atom x) 0 `(make-ord ,(len x) ,(first x) (nats-o ,@(rest x)))))
(define assoc-hons-equal (e (x alistp))
(cond ((endp x) nil)
((hons-equal e (caar x)) (car x))
(t (assoc-hons-equal e (cdr x))))
///
(defthm assoc-hons-equal-is-assoc
(equal (assoc-hons-equal e x) (assoc e x))))
(define fast-alist-free-list (x)
(if (atom x) ()
(b* ((- (fast-alist-free (first x))))
(fast-alist-free-list (rest x)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH datatypes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; checking wheher or not a given ordering "ord" is
;; decreasing or not from node src to node dest, should
;; return:
;; :<< -- strictly decreasing
;; t -- possibly decreasing
;; nil -- possibly increasing
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define ord-tag-p (x)
(or (eq x t) (eq x nil) (eq x :<<)))
(define ord-tag-fix (x)
:enabled t
:inline t
(if (ord-tag-p x) x t))
(fty::deffixtype ord-tag
:pred ord-tag-p
:fix ord-tag-fix
:equiv ord-tag-equiv
:define t)
;;;;
(define ord-p (x)
;; we use an ord-p predicate to ensure "type checking"
;; in our code below, but orders could be anything..
;; but they can't be nil (we need an option type for clarity..)
:enabled t
(if x t nil))
(define ord-fix (x)
:enabled t
:inline t
(if x x t))
(fty::deffixtype ord
:pred ord-p
:fix ord-fix
:equiv ord-equiv
:define t)
(define ord= ((x ord-p) (y ord-p))
:inline t
(hons-equal x y))
;;;;
(define node-p (x)
;; we use a node-p predicate to ensure "type checking"
;; in our code below, but nodes could be anything..
(declare (ignore x))
t)
(define node-fix (x)
:enabled t
:inline t
x)
(local (defthm node-fix-open
(equal (node-fix x) x)
:hints (("Goal" :in-theory (enable node-fix)))))
(fty::deffixtype node
:pred node-p
:fix node-fix
:equiv node-equiv
:define t)
(define node= ((x node-p) (y node-p))
:inline t
(hons-equal x y))
;;;;
(fty::defprod arc-descr
((src node-p)
(dest node-p)
(ord ord-p)))
(fty::defoption maybe-arc-descr arc-descr)
;;;;
(define w-ord-p (x)
:enabled t
(or (natp x) (ord-p x)))
(define w-ord-fix ((x w-ord-p))
:enabled t
:inline t
(mbe :logic (if (w-ord-p x) x 0) :exec x))
(fty::deffixtype w-ord
:pred w-ord-p
:fix w-ord-fix
:equiv w-ord-equiv
:define t)
(fty::deflist arcs
:elt-type node-p
:true-listp t)
(fty::defalist graph
:key-type node-p
:val-type arcs-p
:short "a mapping of nodes to a list of arcs defining the graph.. usually fast-alist"
:true-listp t)
(fty::deflist graph-lst
:elt-type graph-p
:true-listp t)
(fty::defalist nmap
:key-type node-p
:val-type any-p
:short "a mapping from nodes in a graph to .. something.. usually fast-alist"
:true-listp t)
(fty::defalist gmap
:key-type node-p
:val-type graph-p
:short "a mapping from nodes in a graph to other graphs (usually subgraphs)"
:true-listp t)
(fty::deflist w-ord-lst
:elt-type w-ord-p
:true-listp t)
(fty::deflist ord-list
:elt-type ord-p
:true-listp t)
(fty::defoption maybe-ord ord-p)
(fty::defalist omap
:key-type node-p
:val-type w-ord-lst-p
:short "a mapping from nodes in a graph to a w-ord list defining a well-order"
:true-listp t)
(defmacro make-alist-thms (al-type val-type)
`(progn
(defthm ,(intern-in-package-of-symbol
(str::cat (symbol-name al-type) "-IS-ALISTP")
al-type)
(implies (,al-type x) (alistp x))
:hints (("Goal" :in-theory (enable ,al-type))))
,@(and val-type
`((defthm ,(intern-in-package-of-symbol
(str::cat (symbol-name al-type) "-ASSOC-EQUAL")
al-type)
(implies (and (,al-type x)
(assoc-equal a x))
(,val-type (cdr (assoc-equal a x))))
:hints (("Goal" :in-theory (enable ,al-type))))))))
(make-alist-thms nmap-p nil)
(make-alist-thms graph-p arcs-p)
(make-alist-thms gmap-p graph-p)
(make-alist-thms omap-p w-ord-lst-p)
(defthm graph-p-is-nmap-p
(implies (graph-p x) (nmap-p x))
:hints (("Goal" :in-theory (enable graph-p nmap-p))))
(defthm gmap-p-is-nmap-p
(implies (gmap-p x) (nmap-p x))
:hints (("Goal" :in-theory (enable gmap-p nmap-p))))
(defthm omap-p-is-nmap-p
(implies (omap-p x) (nmap-p x))
:hints (("Goal" :in-theory (enable omap-p nmap-p))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH access/update
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define in-arcs ((e node-p) (x arcs-p))
(and (not (endp x)) (or (node= e (first x)) (in-arcs e (rest x)))))
(define arcs-add ((e node-p) (x arcs-p))
:enabled t
:inline t
:returns (r arcs-p)
(arcs-fix (cons e x)))
(define graph-get ((e node-p) (x graph-p))
:enabled t
:inline t
(hons-get e x))
(define graph-set ((e node-p) (v arcs-p) (x graph-p))
:enabled t
:inline t
:returns (r graph-p)
(graph-fix (hons-acons e v x)))
(define nmap-get ((e node-p) (x nmap-p))
:enabled t
:inline t
(hons-get e x))
(define nmap-set ((e node-p) v (x nmap-p))
:enabled t
:inline t
:returns (r nmap-p :hyp :guard)
(hons-acons e v x))
(define nmap-push ((n node-p) (x nmap-p))
:enabled t
:inline t
:returns (r nmap-p :hyp :guard)
(hons-acons n t x))
(define nmap-pop ((x nmap-p))
:enabled t
:inline t
:guard (not (hons-assoc-equal (caar x) (cdr x)))
:returns (r nmap-p :hyp :guard)
(fast-alist-pop x))
(encapsulate
(((check-ord-arc * * *) => *
:formals (src dst ord)
:guard (and (node-p src) (node-p dst) (ord-p ord))))
(local
(define check-ord-arc ((src node-p) (dst node-p) (ord ord-p))
:enabled t
(declare (ignore src dst ord))
t))
(defthm check-ord-arc-returns-ord-tag-p
(ord-tag-p (check-ord-arc src dst ord)))
)
(define check-ord-arc-default ((src node-p) (dst node-p) (ord ord-p))
:enabled t
(declare (ignore src dst ord))
t)
(defattach check-ord-arc check-ord-arc-default)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH empty from a given nmap (or graph) domain
;; or range (for the nmap mapping to nodes)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define graph-empty-dom ((m nmap-p) &key ((r graph-p) '()))
:returns (r graph-p)
(if (endp m) (graph-fix (fast-alist-clean r))
(graph-empty-dom (rest m)
:r (hons-acons (caar m) () r))))
(define graph-empty-rng ((m nmap-p) &key ((r graph-p) '()))
:returns (r graph-p)
(if (endp m) (graph-fix (fast-alist-clean r))
(graph-empty-rng (rest m)
:r (hons-acons (cdar m) () r))))
(define graph-empty-dom-match ((m nmap-p) (n node-p) &key ((r graph-p) '()))
:returns (r graph-p)
(if (endp m) (graph-fix (fast-alist-clean r))
(graph-empty-dom-match (rest m) n
:r (if (node= (cdar m) n)
(hons-acons (caar m) () r)
r))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH inversion
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define add-invert-arc ((src node-p) (dst node-p) (g graph-p))
:returns (r graph-p :hyp :guard)
(graph-set dst (arcs-add src (cdr (graph-get dst g))) g))
(define add-invert-arcs ((a arcs-p) x (g graph-p))
:returns (r graph-p)
(if (endp a) (graph-fix g)
(add-invert-arcs (rest a) x
(add-invert-arc x (first a) g))))
(define graph-invert* ((g graph-p) (r graph-p))
:returns (r graph-p)
(if (endp g) (graph-fix (fast-alist-clean r))
(graph-invert* (cdr g)
(add-invert-arcs (cdar g) (caar g) r))))
(define graph-invert ((g graph-p))
:short "returns the inverted graph for input graph"
:returns (r graph-p)
(graph-invert* g (graph-empty-dom g)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH computing mapped graph
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define add-rep-map-arc (src dst (m nmap-p) (g graph-p))
:returns (r graph-p :hyp :guard)
(b* ((look (nmap-get src m))
((when (not look))
(raise "internal error: this should not happen: ~x0" src))
(src-r (cdr look))
(look (nmap-get dst m))
((when (not look))
(raise "internal error: this should not happen: ~x0" src))
(dst-r (cdr look))
((when (node= src-r dst-r))
;; BOZO -- the "abstract" graph does not include self-cycles..
;; ..by intent.. probably should change name of this
;; function to something other than graph-abstract
g)
(curr (cdr (graph-get src-r g))))
(if (in-arcs dst-r curr) g
(graph-set src-r (arcs-add dst-r curr) g))))
(define add-rep-map-arcs ((a arcs-p) x (m nmap-p) (g graph-p))
:returns (r graph-p)
(if (endp a) (graph-fix g)
(add-rep-map-arcs (rest a) x m
(add-rep-map-arc x (first a) m g))))
(define graph-abstract* ((g graph-p) (m nmap-p) (r graph-p))
:returns (r graph-p)
(if (endp g) (graph-fix (fast-alist-clean r))
(graph-abstract* (cdr g) m
(add-rep-map-arcs (cdar g) (caar g) m r))))
(define graph-abstract ((g graph-p) (m nmap-p))
:returns (r graph-p)
(graph-abstract* g m (graph-empty-rng m)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH projections
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define add-project-arc ((src node-p) (dst node-p)
(m nmap-p) (n node-p) (g graph-p))
:returns (g graph-p :hyp :guard)
(b* ((look (nmap-get dst m))
((when (not look))
(raise "internal error: this should not happen: ~x0" dst))
((when (not (node= (cdr look) n)))
;; we only include arcs between nodes which map to n
g)
(curr (cdr (graph-get src g))))
(graph-set src (arcs-add dst curr) g)))
(define add-project-arcs ((a arcs-p) (src node-p) (m nmap-p) (n node-p)
(g graph-p))
:returns (r graph-p)
(if (endp a) (graph-fix g)
(add-project-arcs (rest a) src m n
(add-project-arc src (first a) m n g))))
(define graph-project* ((g graph-p) (m nmap-p) (n node-p)
(r graph-p))
:returns (r graph-p)
(if (endp g) (graph-fix (fast-alist-clean r))
(graph-project* (cdr g) m n
(b* ((src (caar g))
(look (nmap-get src m))
((when (not look))
(raise "internal error: this should not happen: ~x0" src))
((when (not (node= (cdr look) n)))
;; we only include arcs between nodes which map to n
r))
(add-project-arcs (cdar g) src m n r)))))
(define graph-project ((g graph-p) (m nmap-p) (n node-p))
:returns (r graph-p)
(graph-project* g m n (graph-empty-dom-match m n)))
(define graph-projects* ((g graph-p) (nodes nmap-p) (m nmap-p)
&key ((r graph-lst-p) '()))
:returns (r graph-lst-p)
(if (endp nodes) (graph-lst-fix r)
(graph-projects* g (cdr nodes) m
:r (cons (graph-project g m (caar nodes)) r))))
(define rep-nodes-in-map ((m nmap-p) &key ((r nmap-p) '()))
:returns (r nmap-p)
(if (endp m) (nmap-fix r)
(rep-nodes-in-map (cdr m)
:r (if (nmap-get (cdar m) r) r
(nmap-set (cdar m) t r)))))
(define graph-projects ((g graph-p) (m nmap-p))
:returns (r graph-lst-p)
(graph-projects* g (rep-nodes-in-map m) m))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH order searches and cuts
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define check-ord-arcs ((a arcs-p) (src node-p) (ord ord-p)
&key (seen<< 'nil))
(if (endp a) (if seen<< :<< t)
(b* ((x (check-ord-arc src (first a) ord)))
(if (not x) nil
(check-ord-arcs (rest a) src ord
:seen<< (or seen<< (eq x :<<)))))))
(define check-ord-pick ((g graph-p) (ord ord-p)
&key (seen<< 'nil))
(if (endp g) seen<<
(b* ((x (check-ord-arcs (cdar g) (caar g) ord)))
(if (not x) nil
(check-ord-pick (cdr g) ord
:seen<< (or seen<< (eq x :<<)))))))
(define graph-pick-ord ((g graph-p) (ords ord-list-p))
:returns (r maybe-ord-p :hyp (ord-list-p ords))
(if (endp ords) nil
(b* ((ord (first ords))
((when (not ord))
(raise "order measure descriptors should not be NIL!")))
(if (check-ord-pick g ord) ord
(graph-pick-ord g (rest ords))))))
(define check-fail-arcs ((a arcs-p) (src node-p) (ord ord-p))
:returns (r maybe-arc-descr-p)
(if (endp a) nil
(or (and (not (check-ord-arc src (first a) ord))
(make-arc-descr :src src :dest (first a) :ord ord))
(check-fail-arcs (rest a) src ord))))
(define check-ord-fail ((g graph-p) (ord ord-p))
:returns (r maybe-arc-descr-p)
(if (endp g) nil
(or (check-fail-arcs (cdar g) (caar g) ord)
(check-ord-fail (cdr g) ord))))
(define check-ords-fail ((g graph-p) (ords ord-list-p))
:returns (r maybe-arc-descr-p)
(if (endp ords) nil
(or (check-ord-fail g (first ords))
(check-ords-fail g (rest ords)))))
(define graph-failed-ord ((g graph-p) (ords ord-list-p))
:returns (r maybe-ord-p :hyp (ord-list-p ords))
(if (endp ords) nil
(b* ((ord (first ords))
((when (not ord))
(raise "order measure descriptors should not be NIL!")))
(if (check-ord-fail g ord) ord
(graph-failed-ord g (rest ords))))))
(define arcs-cut-ord<< ((a arcs-p) (src node-p) (ord ord-p)
&key ((r arcs-p) '()))
:returns (a arcs-p)
(if (endp a) (arcs-fix r)
(arcs-cut-ord<< (rest a) src ord
:r (if (eq (check-ord-arc src (first a) ord) :<<)
r
(cons (first a) r)))))
(define graph-cut-ord* ((g graph-p) (ord ord-p) (r graph-p))
:returns (r graph-p)
(if (endp g) (graph-fix (fast-alist-clean r))
(graph-cut-ord* (cdr g) ord
(b* ((src (caar g)))
(hons-acons src (arcs-cut-ord<< (cdar g) src ord) r)))))
(define graph-cut-ord ((g graph-p) (ord ord-p))
:returns (r graph-p)
(graph-cut-ord* g ord (graph-empty-dom g)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH depth-first-search
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define subset-nmap ((x nmap-p) (y nmap-p))
:enabled t
(or (endp x)
(and (nmap-get (caar x) y)
(subset-nmap (cdr x) y)))
///
(defthm subset-nmap-transitive
(implies (and (subset-nmap x y)
(subset-nmap y z))
(subset-nmap x z)))
(defthm subset-nmap-reflexive-generalize
(implies (and (nmap-p x) (nmap-p y)
(subset-nmap x y))
(subset-nmap x (cons (cons a b) y))))
(defthm subset-nmap-reflexive
(implies (nmap-p x)
(subset-nmap x x))))
(define num-not-in ((g graph-p) (v nmap-p))
:returns (r natp)
(cond ((endp g) 0)
((nmap-get (caar g) v) (num-not-in (cdr g) v))
(t (1+ (num-not-in (cdr g) v))))
///
(defthm num-not-in-subset-nmap
(implies (subset-nmap x y)
(<= (num-not-in g y) (num-not-in g x)))
:rule-classes (:linear :rewrite))
(defthm num-not-in-cons-open
(implies (and (hons-assoc-equal n g)
(not (hons-assoc-equal n v)))
(< (num-not-in g (cons (cons n a) v))
(num-not-in g v)))
:rule-classes (:linear :rewrite)))
;; IMPORTANT NOTE --
;; we define a fairly generic DFS function below and use it for three different instances:
;;
;; 1) (ord-list-p dfs-type)
;; in this case, we are detecting a cycle starting from top and trying to reach back to
;; top.. in this case, the nmap r is irrelevant and will start and stay nil, and the acc
;; will be nil if it did not find a cycle or otherwise will be a list of nodes forming
;; a path to make the cycle.
;;
;; 2) (eq dfs-type :anchor)
;; returns an updated nmap in r where the cdr is the "anchor" which reached this node
;; and has the property that at every point in the generated nmap, all nodes x reachable
;; from (caar r) satisfy (assoc x (cdr r)). accumulator is not used in this case and
;; will be :top in all calls..
;;
;; 3) (eq dfs-type :enumerate)
;; we are generating an enumeration of the nodes and the nmap r that we are returning
;; that will map each node to a natural number such that if node n can reach node m
;; but not vice versa, then r(n) > r(m) -- not as useful if there are cycles..
;;
;; we instantiate the graph-dfs-top function below based on these predicates on acc and handle
;; updating the acc and nmap r accordingly as well as generating a new "acc" for recursive
;; calls.. and an early termination in the case where we have found a cycle..
(define upd-acc (dfs-type (a+ natp) (acc natp))
:returns (r natp :hyp :guard)
(cond ((eq dfs-type :enumerate) (max a+ acc))
(t 0)))
(define upd-rmap (dfs-type (n node-p) (a+ natp) (top node-p) (r nmap-p))
:returns (r nmap-p :hyp (and (node-p n) (nmap-p r)))
(cond ((eq dfs-type :enumerate)
(nmap-set n a+ r)) ;; map it to a+ (1 more than subnodes)..
(t (nmap-set n top r)))) ;; mapping to top to return anchor of dfs..
(defmacro new-acc () 0) ;; just set the acc to 0 for next-level calls..
(define rev-arcs ((x arcs-p) &key ((r arcs-p) '()))
:returns (r arcs-p)
(if (endp x) (arcs-fix r)
(rev-arcs (rest x) :r (cons (first x) r))))
(define member-ord ((o ord-p) (x ord-list-p))
(and (not (endp x))
(or (ord= o (first x))
(member-ord o (rest x)))))
(define add-ord ((o ord-p) (x ord-list-p))
:returns (r ord-list-p :hyp :guard)
(if (member-ord o x) x (cons o x)))
(define subset-ords ((x ord-list-p) (y ord-list-p))
(or (endp x)
(and (member-ord (first x) y)
(subset-ords (rest x) y))))
(define add-chk-ords ((ords ord-list-p) (src node-p) (dest node-p)
(dec ord-list-p) (inc ord-list-p))
:returns (mv (dec ord-list-p) (inc ord-list-p))
(if (endp ords)
(mv (ord-list-fix dec) (ord-list-fix inc))
(b* ((ord (first ords))
(chk (check-ord-arc src dest ord))
(dec (if (eq chk :<<) (add-ord ord dec) dec))
(inc (if (not chk) (add-ord ord inc) inc)))
(add-chk-ords (rest ords) src dest dec inc))))
(define is-valid-bad-cyc ((path nmap-p) (ords ord-list-p)
&key
((dec ord-list-p) '())
((inc ord-list-p) '())
((r arcs-p) '()))
:returns (r arcs-p)
(cond ((endp path)
(raise "internal error: should have hit a cycle!"))
((in-arcs (caar path) r)
(and (subset-ords dec inc) (rev-arcs r)))
((endp (cdr path))
(raise "internal error: still should have hit a cycle!"))
(t
(b* (((mv dec inc)
(add-chk-ords ords (caar path) (caadr path) inc dec)))
(is-valid-bad-cyc (cdr path) ords :dec dec :inc inc
:r (cons (caar path) r))))))
(define graph-dfs-top ((arcs arcs-p) (top node-p) (g graph-p)
(acc natp) (r nmap-p) (v nmap-p)
(stk nmap-p) dfs-type)
:guard (or (eq dfs-type :enumerate)
(eq dfs-type :anchor)
(ord-list-p dfs-type))
:measure (nats-o (+ (num-not-in g v) 2) (1+ (len arcs)))
:hints (("Goal" :in-theory (enable num-not-in)))
:returns (mv rslt
(r nmap-p :hyp (nmap-p r))
(v nmap-p :hyp (nmap-p v)))
:verify-guards nil
(b* ((cyc-chk (listp dfs-type)))
(if (endp arcs)
(mv (if cyc-chk nil acc) r v)
(b* ((n (first arcs))
((when (and cyc-chk (nmap-get n stk)))
;; potential valid cycle in cycle detection..
(b* ((path (cons (cons n t) stk))
(cyc (is-valid-bad-cyc path dfs-type)))
(if cyc
(fast-alist-free-on-exit stk (mv cyc r v))
(graph-dfs-top (rest arcs) top g acc r v stk dfs-type))))
;; BOZO -- should probably work into guard for graphs that they are
;; well-formed with all nodes on arcs in the graphs..
(n-g (graph-get n g))
(n-r (nmap-get n r)))
(if (or (not n-g) n-r (nmap-get n v))
(b* ((acc (if (and n-g n-r)
(upd-acc dfs-type (nfix (cdr n-r)) acc)
acc)))
(graph-dfs-top (rest arcs) top g acc r v stk dfs-type))
(b* ((v (nmap-set n t v))
(stk (if cyc-chk (nmap-push n stk) stk))
((mv a+ r v+)
(graph-dfs-top (cdr n-g) top g (new-acc) r v stk dfs-type))
;; NOTE -- given the reflexive nature of the termination measure
;; relative to a result (v+) from a recursive call, namely
;; that the num-not-in decreases, we need to do a little
;; logic check here that we will bypass at runtime..
((unless (mbe :logic (subset-nmap v v+) :exec t))
(mv acc r v))
((when (and cyc-chk a+)) ;; found cycle, return immediately..
(mv a+ r v+))
;; BOZO -- would be nice to include return type
;; specifier to avoid nfix here :(
(a++ (1+ (nfix a+)))
(stk (if cyc-chk (nmap-pop stk) stk))
(r (upd-rmap dfs-type n a++ top r))
(acc (upd-acc dfs-type a++ acc)))
(graph-dfs-top (rest arcs) top g acc r v+ stk dfs-type))))))
///
(defthm subset-nmap-graph-dfs-top
(implies (nmap-p v)
(subset-nmap v (mv-nth 2 (graph-dfs-top a x g
acc r v
stk dfs-type))))))
(verify-guards graph-dfs-top)
(define find-next-anchor ((nodes nmap-p) (r nmap-p))
:returns (r nmap-p)
(cond ((endp nodes) ())
((not (nmap-get (caar nodes) r)) (nmap-fix nodes))
(t (find-next-anchor (cdr nodes) r)))
///
(defthm find-next-anchor-smaller
(<= (len (find-next-anchor x r))
(len x))
:rule-classes (:rewrite :linear)
:hints (("Goal" :in-theory (enable nmap-fix)))))
(define arcs->nmap ((x arcs-p) &key ((r nmap-p) '()))
:returns (r nmap-p :hyp :guard)
(if (endp x) (nmap-fix r) (arcs->nmap (rest x) :r (cons (cons (first x) t) r))))
(define nmap->arcs ((x nmap-p) &key ((r arcs-p) '()))
:returns (r arcs-p :hyp :guard)
(if (endp x) (arcs-fix r) (nmap->arcs (cdr x) :r (cons (caar x) r))))
(define graph-dfs-each ((nodes nmap-p) (g graph-p) dfs-type
&key ((r nmap-p) '()))
:guard (or (eq dfs-type :enumerate)
(eq dfs-type :anchor)
(ord-list-p dfs-type))
:returns (r nmap-p)
:measure (len nodes)
(if (endp nodes)
(if (listp dfs-type)
nil ;; for cyc-check, when we get here, return nil!
(nmap-fix r)) ;; BOZO -- ordering matters here! .. no
;; fast-alist-clean, no reversal of the alist..
(b* ((x (caar nodes))
((mv rslt r v)
(graph-dfs-top (list x) x g
(new-acc) r nil
nil dfs-type))
((when (and rslt (listp dfs-type)))
(if (arcs-p rslt) (arcs->nmap rslt)
(raise "Internal Error: expected proper nmap result: ~x0"
(list rslt dfs-type))))
(- (fast-alist-free v))
(nodes (find-next-anchor (cdr nodes) r)))
(graph-dfs-each nodes g dfs-type :r r))))
(define graph-dfs ((g graph-p) &key ((map nmap-p) '()))
:short "performs dfs and returns map in depth-order pointing to anchors"
:returns (r nmap-p)
(graph-dfs-each (or map g) g :anchor))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH computing SCCs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define graph-sccs ((g graph-p))
:short "compute SCCs by doing forward dfs and feeding map to inverse dfs (effectively Kosaraju's algorithm)"
;; We use Kosaraju's algorithm for computing SCCs over Tarjan's or Djikstra's
;; simply because it is more elegant and functional in nature and easier to
;; extend and modify as needed.. the implementation is still O(V+E) with more
;; overhead, but the cost of SCC computation is not the major limit to the
;; algorithm.. if the cost of the second pass here is relevant, then Tarjan's
;; algorithm could be substituted as needed..
:returns (r nmap-p)
(graph-dfs (graph-invert g) :map (graph-dfs g)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH computing enumeration
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define graph-enumerate ((g graph-p))
:short "performs dfs and returns enumeration of graph from depth-first-search"
:returns (r nmap-p)
(graph-dfs-each g g :enumerate))
(define graph-indexing ((g graph-p))
:returns (r nmap-p)
(graph-enumerate (graph-abstract g (graph-sccs g))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH finding cycles
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define find-min-cycle ((g graph-p) (ords ord-list-p))
:returns (r arcs-p)
(nmap->arcs (graph-dfs-each g g ords)))
(define graph-valid-cycle ((g graph-p) (ords ord-list-p))
:short "Search for a valid simple cycle (one where no ord is decreasing) -- may not find one"
(find-min-cycle g ords))
(define force-arc-first ((arc arc-descr-p) (g graph-p))
:returns (r graph-p)
(b* (((arc-descr a) arc)
(curr-arcs (cdr (graph-get a.src g)))
(new-arcs (arcs-add a.dest curr-arcs)))
(graph-set a.src new-arcs g)))
(define graph-any-cycle ((g graph-p) (ords ord-list-p))
:short "Search for any simple cycle where ord is not decreasing -- should find one"
;; NOTE -- there are two cases to consider.. we try to find an arc with a possibly
;; increasing order.. if we find that arc, then we adjust the graph to put
;; that node and arc at the head of the graph.. otherwise, there are no
;; possibly increasing or strictly decreasing arcs and as such, any cycle
;; in the graph will do (and would be a stronger example failure)..
:returns (mv cyc (r graph-p))
(b* ((fail (check-ords-fail g ords))
(g+ (graph-fix (if fail (force-arc-first fail g) g)))
(cyc (find-min-cycle g+ nil))
((unless cyc)
(fast-alist-free-on-exit g+
(mv (raise "internal error: we should have found a cycle!") ()))))
(mv cyc g+)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; GRAPH examples and tests..
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define arcs-make (x)
:returns (r arcs-p)
:verify-guards nil
(cond ((null x) ())
((atom x)
(raise "ill-formed arcs specifier input:~x0" x))
(t (arcs-add (car x)
(arcs-make (cdr x))))))
(verify-guards arcs-make)
(define graph-make (x)
:returns (r graph-p)
:verify-guards nil
(cond ((null x) ())
((or (atom x) (atom (car x)))
(raise "ill-formed graph specifier input:~x0" x))
(t (graph-set (caar x)
(arcs-make (cdar x))
(graph-make (cdr x))))))
(verify-guards graph-make)
(define make-asserts-fn (tsts)
(cond ((atom tsts) ())
((or (atom (cdr tsts))
(atom (cddr tsts))
(not (equal (second tsts) '=)))
(raise "oops.. bad form!"))
(t (cons `(assert-event (equal ,(first tsts) (quote ,(third tsts))))
(make-asserts-fn (cdddr tsts))))))
(defmacro make-asserts (&rest tsts)
(cons 'progn (make-asserts-fn tsts)))
(encapsulate ()
;; a quick little testing encapsulate
(local
(progn
(defconst *g1*
(graph-make '((0 1 2)
(1 0 3)
(2 0 3)
(3 0 1 2))))
(defconst *g2*
(graph-make '((0 1 2)
(1 0 3)
(2 )
(3 0 1 2))))
(defconst *g3*
(graph-make '((0 1 2)
(1 3)
(2 3)
(3 1 2))))
(defconst *g4*
(graph-make '((0 1 2)
(1 0)
(2 0)
(3 0))))))
(make-asserts
(graph-sccs *g1*) = ((0 . 0) (3 . 0) (1 . 0) (2 . 0))
(graph-sccs *g2*) = ((2 . 2) (0 . 0) (3 . 0) (1 . 0))
(graph-sccs *g3*) = ((1 . 1) (3 . 1) (2 . 1) (0 . 0))
(graph-sccs *g4*) = ((0 . 0) (1 . 0) (2 . 0) (3 . 3))
;;
(graph-indexing *g1*) = ((0 . 1))
(graph-indexing *g2*) = ((0 . 2) (2 . 1))
(graph-indexing *g3*) = ((0 . 2) (1 . 1))
(graph-indexing *g4*) = ((3 . 2) (0 . 1))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ..... Main Algorithm ......
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define prepend-ord ((m omap-p) (ord ord-p)
&key ((r omap-p) '()))
:returns (r omap-p)
(if (endp m) (omap-fix r)
(prepend-ord (rest m) ord
:r (acons (caar m) (cons ord (cdar m)) r))))
(define prepend-enum ((m omap-p) (sccs nmap-p) (enum nmap-p)
&key ((r omap-p) '()))
:returns (r omap-p)
(if (endp m) (omap-fix r)
(prepend-enum (rest m) sccs enum
:r (b* ((look (hons-get (caar m) sccs))
((when (not look))
(raise "internal error encountered in sccs lookup!"))
(look (hons-get (cdr look) enum))
((when (not look))
(raise "internal error encountered in enum lookup!"))
(v (cdr look))
((when (not (natp v)))
(raise "internal error encountered in enum value!")))
(acons (caar m) (cons v (cdar m)) r)))))
(define remove-ord ((ord ord-p) (ords ord-list-p))
:guard (consp ords)
:returns (r ord-list-p :hyp (ord-list-p ords))
:measure (len ords)
:verify-guards nil
(b* ((fst (first ords)))
(if (ord= ord fst) (rest ords)
(b* ((rst (rest ords)))
(if (endp rst)
(raise "internal error: did not find ord in list!:~x0"
(list ord fst))
(cons fst (remove-ord ord rst)))))))
(verify-guards remove-ord)
(local (defthm remove-ord-len-rdx
(implies (consp ords)
(< (len (remove-ord ord ords))
(len ords)))
:hints (("Goal" :in-theory (enable remove-ord)))
:rule-classes (:linear :rewrite)))
; We now proceed to define the main abstract rank construction
; algorithm which takes a graph with nodes representing the
; concrete values in the abstract mapping and get the tagging
; with ordering marks (either strictly-less-than, less-than-equal,
; or unknown) from check-ord-arc ... and find a decomposition of
; the graph which demonstrates a rank exists on the original
; structure.. or we have an SCC which has no strictly decreasing
; orders and we try to find a minimal cycle with no order
; reduction to present as a result...
(define chk-well-order (g (ords ord-list-p)
&key (lst? 'nil) (scc? 'nil))
:guard (if lst? (graph-lst-p g) (graph-p g))
:measure (nats-o (+ (len ords) 3)
(if scc? 2 3)
(+ (if lst? (acl2-count g) 0) 2))
:verify-guards nil
:returns (mv err (r omap-p))
(cond
((and lst? (endp g))
(mv nil ()))
(lst?
(b* (((mv err fst) (chk-well-order (first g) ords
:lst? nil :scc? scc?))
((when err) (mv err ()))
((mv err rst) (chk-well-order (rest g) ords
:lst? t :scc? scc?))
((when err) (mv err ())))
(mv nil (append fst rst))))
((endp g)
(fast-alist-free-on-exit g
(mv (raise "internal error: should not have empty graph here!")
nil)))
((and (endp (cdr g)) (endp (cdar g)))
;; singleton graph with no self-cycle, so we simply return a default ordering..
(fast-alist-free-on-exit g
(mv nil (acons (caar g) (list 0) nil))))
((not scc?)
(fast-alist-free-on-exit g
;; don't know if g is an scc, so compute SCCs and split it and then prepend
;; the enumeration of the abstract graph onto the resulting ord-maps from
;; the recursive call:
(b* ((sccs (graph-sccs g))
(projs (graph-projects g sccs))
((mv err r) (chk-well-order projs ords
:lst? t :scc? t))
((when err) (mv err ()))
(abs (graph-abstract g sccs))
(enum (graph-enumerate abs))
(r (prepend-enum r sccs enum))
(- (fast-alist-free abs))
(- (fast-alist-free enum)))
(mv nil r))))
((endp ords)
(fast-alist-free-on-exit g
(mv (list :valid nil (graph-valid-cycle g nil)) ())))
(t ;; we have an SCC and we need to find an ordering which decreases to pick
;; for cutting arcs from the graph:
(b* ((ord (graph-pick-ord g ords))
;; if we have an SCC without a valid ord to pick then we have an error
;; and we are transitioning into trying to find the best minimal
;; counterexample as a simple cycle with certain characteristics...
(no-ord (not ord))
(ord (if no-ord (graph-failed-ord g ords) ord))
(cyc (if no-ord (graph-valid-cycle g ords) nil))
((when cyc) (fast-alist-free-on-exit g
(mv (list :valid ord cyc) ())))
((unless ord) (fast-alist-free-on-exit g
(mv (raise "internal error: should not get no order chosen here!")
nil)))
(sub (graph-cut-ord g ord))
((mv err r) (chk-well-order sub (remove-ord ord ords)
:lst? nil :scc? nil))
((when err) (mv err ()))
;; Ok, we have failed to find a pure cycle which demonstrates failure,
;; so, we will resort to reporting a weaker cycle
((when no-ord) (b* (((mv cyc g) (graph-any-cycle g ords)))
(fast-alist-free-on-exit g
(mv (list :weak? ord cyc) nil))))
(r (prepend-ord r ord))
(- (fast-alist-free g)))
(mv nil r)))))
(local (defthm omap-p-is-true-list
(implies (omap-p x) (true-listp x))
:hints (("Goal" :in-theory (enable omap-p)))))
(verify-guards chk-well-order-fn)
(fty::defprod w-ord-rslt
(passed error-rslt (order-rslt omap-p)))
(define mk-well-order ((g graph-p) (ords ord-list-p))
:short "Takes a graph and orderings and returns a well-order or failing cycle"
(b* (((mv err rslt)
(chk-well-order (make-fast-alist g) ords)))
(make-w-ord-rslt
:passed (not err)
:error-rslt err
:order-rslt rslt)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; MORE GRAPH examples and tests..
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(local (defthm ord-tag-p-of-<
(ord-tag-p (< x y))
:hints (("Goal" :in-theory (enable ord-tag-p)))))
(encapsulate ()
;; another quick little testing encapsulate
(local
(progn
(defconst *g1*
(graph-make '((0 1 2)
(1 0 3)
(2 0 3)
(3 0 1 2))))
(defconst *g2*
(graph-make '((0 1 2)
(1 0 3)
(2 )
(3 0 1 2))))
(defconst *g3*
(graph-make '((0 1 2)
(1 3)
(2 3)
(3 1 2))))
(defconst *g4*
(graph-make '((0 1 2)
(1 0)
(2 0)
(3 0))))))
(local
(define chk-arc-tst ((src node-p) (dst node-p) (ord ord-p))
:returns (r ord-tag-p)
(b* ((src (nfix src))
(dst (nfix dst))
(a (if (ord= ord :up) src dst))
(b (if (ord= ord :up) dst src)))
(cond ((< a b) :<<)
((>= (+ a b) 5) nil)
(t t)))))
(local (defattach check-ord-arc chk-arc-tst))
(make-asserts
(mk-well-order *g1* '(:up)) = ((PASSED)
(ERROR-RSLT :VALID :UP (2 3))
(ORDER-RSLT))
(mk-well-order *g1* '(:dn)) = ((PASSED)
(ERROR-RSLT :VALID :DN (3 1))
(ORDER-RSLT))
(mk-well-order *g1* '(:up :dn)) = ((PASSED)
(ERROR-RSLT :VALID
:UP (0 1 3 2))
(ORDER-RSLT))
(mk-well-order *g2* '(:up)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (3 2 :UP 3 0)
(1 2 :UP 2 0)
(0 2 :UP 1 0)
(2 1 0)))
(mk-well-order *g2* '(:dn)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (0 2 :DN 3 0)
(1 2 :DN 2 0)
(3 2 :DN 1 0)
(2 1 0)))
(mk-well-order *g2* '(:up :dn)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (3 2 :UP 3 0)
(1 2 :UP 2 0)
(0 2 :UP 1 0)
(2 1 0)))
(mk-well-order *g3* '(:up)) = ((PASSED)
(ERROR-RSLT :VALID :UP (1 3))
(ORDER-RSLT))
(mk-well-order *g3* '(:dn)) = ((PASSED)
(ERROR-RSLT :VALID :DN (3 2))
(ORDER-RSLT))
(mk-well-order *g3* '(:up :dn)) = ((PASSED)
(ERROR-RSLT :WEAK? :UP (3 2))
(ORDER-RSLT))
(mk-well-order *g4* '(:up)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (3 2 0)
(2 1 :UP 2 0)
(1 1 :UP 2 0)
(0 1 :UP 1 0)))
(mk-well-order *g4* '(:dn)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (3 2 0)
(0 1 :DN 2 0)
(2 1 :DN 1 0)
(1 1 :DN 1 0)))
(mk-well-order *g4* '(:up :dn)) = ((PASSED . T)
(ERROR-RSLT)
(ORDER-RSLT (3 2 0)
(2 1 :UP 2 0)
(1 1 :UP 2 0)
(0 1 :UP 1 0)))
(mk-well-order *g4* ()) = ((PASSED)
(ERROR-RSLT :VALID NIL (0 2))
(ORDER-RSLT))))
|