1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
(in-package "ACL2")
(local (include-book "rtl/rel11/lib/top" :dir :system))
(include-book "calendar")
;;-----------------------------------------------------------------------------------------------------------
;; Moments and moladot
;;-----------------------------------------------------------------------------------------------------------
;; A moment is determined by its three components:
(defun day (x) (ag 'day x))
(defun hour (x) (ag 'hour x))
(defun part (x) (ag 'part x))
;; The final conjunct ensures that a moment is uniquely determined by its fields:
(defund momentp (x)
(and (natp (day x))
(natp (hour x)) (< (hour x) 24)
(natp (part x)) (< (part x) 1080)
(= x (as 'day (day x) (as 'hour (hour x) (as 'part (part x) ()))))))
;; momentp is closed under timaplus and multime:
(defthm momentp+
(implies (and (momentp x) (momentp y))
(momentp (addtime x y)))
:hints (("Goal" :in-theory (enable rtl::fl momentp day hour part addtime))))
(defthm momentp*
(implies (and (natp n) (momentp x))
(momentp (multime n x)))
:hints (("Goal" :in-theory (enable rtl::fl momentp multime))))
;; Every molad or delayed-molad is a moment:
(defthm natp-priormonths
(implies (natp n)
(natp (molad-loop-0 y year n)))
:rule-classes (:type-prescription :rewrite)
:hints (("Goal" :in-theory (enable molad-loop-0))))
(defthm momentp-molad
(implies (posp y)
(momentp (molad y)))
:hints (("Goal" :in-theory (enable molad))))
(defthmd momentp-dmolad
(implies (posp y)
(momentp (dmolad y)))
:hints (("Goal" :in-theory (enable dmolad))))
(defthm momentp-beharad
(momentp (beharad))
:hints (("Goal" :in-theory (enable momentp beharad))))
(defthm momentp-lunation
(momentp (lunation))
:hints (("Goal" :in-theory (enable momentp lunation))))
;; Total number of parts in a moment:
(defund expand (x)
(+ (* 1080
(+ (* 24 (day x))
(hour x)))
(part x)))
(defthm expand=
(implies (and (momentp x) (momentp y) (= (expand x) (expand y)))
(= x y))
:rule-classes ()
:hints (("Goal" :in-theory (e/d (momentp expand) (ACL2::|(equal (mod (+ x y) z) x)|))
:use ((:instance mod-mult (m (part x)) (n 1080) (a (+ (hour x) (* 24 (day x)))))
(:instance mod-mult (m (part y)) (n 1080) (a (+ (hour y) (* 24 (day y)))))
(:instance mod-mult (m (hour x)) (n 24) (a (day x)))
(:instance mod-mult (m (hour y)) (n 24) (a (day y)))))))
(defthmd expand+
(implies (and (momentp x) (momentp y))
(equal (expand (addtime x y))
(+ (expand x) (expand y))))
:hints (("Goal" :in-theory (enable momentp addtime expand)
:use ((:instance rtl::mod-def (x (+ (part x) (part y))) (y 1080))
(:instance rtl::mod-def (x (+ (hour x) (hour y) (fl (/ (+ (part x) (part y)) 1080)))) (y 24))))))
(defthmd expand*
(implies (and (natp m) (momentp x))
(equal (expand (multime m x))
(* m (expand x))))
:hints (("Goal" :in-theory (enable momentp multime expand)
:use ((:instance rtl::mod-def (x (* m (part x))) (y 1080))
(:instance rtl::mod-def (x (+ (* m (hour x)) (fl (/ (* m (part x)) 1080)))) (y 24))))))
;; molad-loop-0 decomposition:
(defthmd molad-loop-decomp
(implies (and (natp prior)
(posp y)
(posp k)
(posp year)
(<= y k)
(<= k year))
(equal (molad-loop-0 y year prior)
(molad-loop-0 k year (molad-loop-0 y k prior))))
:hints (("Goal" :in-theory (enable molad-loop-0))))
;; Molad recurrence formula:
(defthmd molad-next
(implies (posp y)
(equal (molad (1+ y))
(addtime (molad y)
(multime (monthsinyear y) (lunation)))))
:hints (("Goal" :in-theory (enable molad-loop-0 common monthsinyear molad expand+ expand*)
:expand ((molad-loop-0 y (+ 1 y) (molad-loop-0 1 y 0)))
:use ((:instance molad-loop-decomp (prior 0) (y 1) (year (1+ y)) (k y))
(:instance expand= (x (molad (1+ y)))
(y (addtime (molad y) (multime (if1 (common y) 12 13) (lunation)))))))))
(defthmd dmolad-next
(implies (posp y)
(equal (dmolad (1+ y))
(addtime (dmolad y)
(multime (monthsinyear y) (lunation)))))
:hints (("Goal" :in-theory (enable dmolad expand+ expand*)
:use (molad-next
(:instance expand= (x (dmolad (1+ y)))
(y (addtime (dmolad y) (multime (monthsinyear y) (lunation)))))))))
(defthmd expand-dmolad-next
(implies (posp y)
(equal (expand (dmolad (1+ y)))
(+ (expand (dmolad y))
(* (monthsinyear y) (expand (lunation))))))
:hints (("Goal" :in-theory (enable lunation expand+ expand*)
:use (dmolad-next momentp-dmolad
(:instance momentp-dmolad (y (1+ y)))))))
;;-----------------------------------------------------------------------------------------------------------
;; Admissibility of year lengths: first proof
;;-----------------------------------------------------------------------------------------------------------
;; First we establish a set of conditions sufficent to ensure that 2 years have the same length.
;; The proof is based on the following function, which derives the delay of RH of a given year y
;; from mod(y, 19) together with the day of the week and the time of day of the delayed molad of y:
(defund rh-delay (dw h p leap leap-1)
(if1 (logior1 (logior1 (log= dw 1) (log= dw 4))
(log= dw 6))
1
(if1 (logand1 (logand1 (log= dw 3)
(lognot1 (logior1 (log< h 15) (logand1 (log= h 15) (log< p 204)))))
(lognot1 leap))
2
(if1 (logand1 (logand1 (log= dw 2)
(lognot1 (logior1 (log< h 21) (logand1 (log= h 21) (log< p 589)))))
leap-1)
1
0))))
(defthmd rh-rewrite
(let ((dm (dmolad y)))
(implies (posp y)
(equal (roshhashanah y)
(+ (day dm)
(rh-delay (mod (day dm) 7) (hour dm) (part dm) (leap y) (leap (- y 1)))))))
:hints (("Goal" :in-theory (enable dayofweek momentp roshhashanah earlier day hour part rh-delay)
:use (momentp-dmolad))))
;; We note that mod(y, 19) determones whether y, y - 1, or y + 1 is a leap year:
(defund leap-guts (m)
(logior1 (logior1 (logior1 (logior1 (logior1 (logior1 (log= m 0) (log= m 3))
(log= m 6))
(log= m 8))
(log= m 11))
(log= m 14))
(log= m 17)))
(defthmd leap-rewrite
(implies (natp y)
(equal (leap y)
(leap-guts (mod y 19))))
:hints (("Goal" :in-theory (enable leap leap-guts))))
(defthmd mod-y-1
(implies (posp y)
(equal (mod (1- y) 19)
(mod (1- (mod y 19)) 19)))
:hints (("Goal" :use ((:instance rtl::mod-sum (a -1) (b y) (n 19))))))
(defthmd mod-y+1
(implies (posp y)
(equal (mod (1+ y) 19)
(mod (1+ (mod y 19)) 19)))
:hints (("Goal" :use ((:instance rtl::mod-sum (a 1) (b y) (n 19))))))
;; Thus, years y and yt have the same length under the following conditions:
(defthmd yearlength-equal-lemma
(let ((dm (dmolad y))
(dmt (dmolad yt))
(dm+ (dmolad (1+ y)))
(dmt+ (dmolad (1+ yt))))
(implies (and (posp y)
(posp yt)
(= (mod y 19) (mod yt 19))
(= (mod (day dm) 7) (mod (day dmt) 7))
(= (hour dm) (hour dmt))
(= (part dm) (part dmt))
(= (mod (day dm+) 7) (mod (day dmt+) 7))
(= (hour dm+) (hour dmt+))
(= (part dm+) (part dmt+))
(= (- (day dm+) (day dm)) (- (day dmt+) (day dmt))))
(equal (yearlength y) (yearlength yt))))
:hints (("Goal" :in-theory (e/d (momentp yearlength rh-rewrite leap-rewrite) (acl2::mod-sums-cancel-1))
:use (mod-y-1 mod-y+1 momentp-dmolad
(:instance mod-y-1 (y yt))
(:instance mod-y+1 (y yt))
(:instance momentp-dmolad (y yt))
(:instance momentp-dmolad (y (1+ y)))
(:instance momentp-dmolad (y (1+ yt)))))))
;; Next we show that 2 years that differ by 689472 satisfy those conditions. This depends on the
;; observation that the number of months in any interval of 19 years is 235:
(defthmd monthsinyear-mod
(implies (and (natp y) (natp k))
(equal (monthsinyear (+ k (mod y 19)))
(monthsinyear (+ k y))))
:hints (("Goal" :in-theory (e/d (monthsinyear leap) (ACL2::MOD-SUMS-CANCEL-1))
:use ((:instance rtl::mod-sum (a k) (b y) (n 19))))))
(defthmd monthsinyear-sum-mod
(implies (and (natp y) (< y 19))
(equal (+ (monthsinyear y) (monthsinyear (+ y 1)) (monthsinyear (+ y 2))
(monthsinyear (+ y 3)) (monthsinyear (+ y 4)) (monthsinyear (+ y 5))
(monthsinyear (+ y 6)) (monthsinyear (+ y 7)) (monthsinyear (+ y 8))
(monthsinyear (+ y 9)) (monthsinyear (+ y 10)) (monthsinyear (+ y 11))
(monthsinyear (+ y 12)) (monthsinyear (+ y 13)) (monthsinyear (+ y 14))
(monthsinyear (+ y 15)) (monthsinyear (+ y 16)) (monthsinyear (+ y 17))
(monthsinyear (+ y 18)))
235))
:hints (("Goal" :in-theory (enable rtl::bvecp)
:use ((:instance rtl::bvecp-member (x y) (n 5))))))
(defthmd monthsinyear-sum
(implies (natp y)
(equal (+ (monthsinyear y) (monthsinyear (+ y 1)) (monthsinyear (+ y 2))
(monthsinyear (+ y 3)) (monthsinyear (+ y 4)) (monthsinyear (+ y 5))
(monthsinyear (+ y 6)) (monthsinyear (+ y 7)) (monthsinyear (+ y 8))
(monthsinyear (+ y 9)) (monthsinyear (+ y 10)) (monthsinyear (+ y 11))
(monthsinyear (+ y 12)) (monthsinyear (+ y 13)) (monthsinyear (+ y 14))
(monthsinyear (+ y 15)) (monthsinyear (+ y 16)) (monthsinyear (+ y 17))
(monthsinyear (+ y 18)))
235))
:hints (("Goal" :in-theory (enable monthsinyear-mod)
:use ((:instance monthsinyear-mod (k 0))
(:instance monthsinyear-sum-mod (y (mod y 19)))))))
;; Therefore, two delayed moladot separated by a Metonic cycle differ by 235 lunations:
(defthmd dmolad+19
(implies (posp y)
(equal (expand (dmolad (+ y 19)))
(+ (expand (dmolad y))
(* 235 (expand (lunation))))))
:hints (("Goal" :use (monthsinyear-sum expand-dmolad-next
(:instance expand-dmolad-next (y (+ y 1))) (:instance expand-dmolad-next (y (+ y 2)))
(:instance expand-dmolad-next (y (+ y 3))) (:instance expand-dmolad-next (y (+ y 4)))
(:instance expand-dmolad-next (y (+ y 5))) (:instance expand-dmolad-next (y (+ y 6)))
(:instance expand-dmolad-next (y (+ y 7))) (:instance expand-dmolad-next (y (+ y 8)))
(:instance expand-dmolad-next (y (+ y 9))) (:instance expand-dmolad-next (y (+ y 10)))
(:instance expand-dmolad-next (y (+ y 11))) (:instance expand-dmolad-next (y (+ y 12)))
(:instance expand-dmolad-next (y (+ y 13))) (:instance expand-dmolad-next (y (+ y 14)))
(:instance expand-dmolad-next (y (+ y 15))) (:instance expand-dmolad-next (y (+ y 16)))
(:instance expand-dmolad-next (y (+ y 17))) (:instance expand-dmolad-next (y (+ y 18)))
(:instance expand-dmolad-next (y (+ y 19)))))))
;; As consequence of dmolad+19 and yearlength-equal-lemma, y + 689472 and y have the same length:
(defun natp-induct (n)
(if (posp n)
(+ n (natp-induct (1- n)))
0))
(defthmd dmolad+19k
(implies (and (posp y) (natp k))
(equal (expand (dmolad (+ y (* 19 k))))
(+ (expand (dmolad y))
(* 235 k (expand (lunation))))))
:hints (("Goal" :induct (natp-induct k))
("Subgoal *1/1" :use ((:instance dmolad+19 (y (+ y (* 19 (1- k)))))))))
(defthmd expand-dmolad+25920k
(implies (and (momentp dm)
(momentp dmt)
(natp k)
(= (expand dmt) (+ (expand dm) (* 25920 k))))
(equal (as 'day (+ (day dm) k) (as 'hour (hour dm) (as 'part (part dm) ())))
dmt))
:hints (("Goal" :in-theory (enable expand momentp)
:use ((:instance expand= (x (as 'day (+ (day dm) k) (as 'hour (hour dm) (as 'part (part dm) ())))) (y dmt))))))
(defthmd dmolad-compare
(let ((dm (dmolad y))
(dmt (dmolad (+ y 689472))))
(implies (posp y)
(and (equal (day dmt) (+ (day dm) (* 7 35975351)))
(equal (mod (day dmt) 7) (mod (day dm) 7))
(equal (hour dmt) (hour dm))
(equal (part dmt) (part dm)))))
:hints (("Goal" :in-theory (enable momentp)
:use (momentp-dmolad
(:instance momentp-dmolad (y (+ y 689472)))
(:instance expand-dmolad+25920k (dmt (dmolad (+ y 689472))) (dm (dmolad y)) (k 251827457))
(:instance dmolad+19k (k (/ 689472 19)))
(:instance mod-mult (m (day (dmolad y))) (a 35975351) (n 7))))))
(defthmd yearlength-equal
(implies (posp y)
(equal (yearlength (+ y 689472))
(yearlength y)))
:hints (("Goal" :in-theory (enable momentp)
:use (dmolad-compare
(:instance dmolad-compare (y (1+ y)))
(:instance yearlength-equal-lemma (yt (+ y 689472)))))))
;; It follows that the length of every year is equal to that of some year in the interval [1, 689472]:
(defthmd yearlength-equal-mul
(implies (and (posp y) (natp k))
(equal (yearlength (+ y (* k 689472)))
(yearlength y)))
:hints (("Goal" :induct (natp-induct k))
("Subgoal *1/1" :use ((:instance yearlength-equal (y (+ y (* (1- k) 689472))))))))
(defthmd yearlength-equal-mod
(implies (posp y)
(equal (yearlength y)
(if (integerp (/ y 689472))
(yearlength 689472)
(yearlength (mod y 689472)))))
:hints (("Goal" :use ((:instance rtl::mod-def (x y) (y 689472))
(:instance yearlength-equal-mul (y (mod y 689472)) (k (fl (/ y 689472))))
(:instance yearlength-equal-mul (y 689472) (k (1- (/ y 689472))))))))
;; We prove by exhaustive computation that the length of each year in the interval [1, 689472] is admissible.
;; Using the function rh-delay, this is achieved by a single execution of the computation indicated by
;; dmolad-next for each y in the interval:
(defund check-rh (i dm)
(let ((dm+ (addtime dm (multime (monthsinyear i) (lunation)))))
(member (- (+ (day dm+) (rh-delay (mod (day dm+) 7) (hour dm+) (part dm+) (leap (1+ i)) (leap i)))
(+ (day dm) (rh-delay (mod (day dm) 7) (hour dm) (part dm) (leap i) (leap (- i 1)))))
(if1 (leap i)
'(383 384 385)
'(353 354 355)))))
(defthmd check-yearlength
(implies (posp y)
(iff (check-rh y (dmolad y))
(member (yearlength y)
(if1 (leap y)
'(383 384 385)
'(353 354 355)))))
:hints (("Goal" :in-theory (enable yearlength rh-rewrite check-rh)
:use (dmolad-next))))
(defun check-all (i y dm)
(declare (xargs :measure (nfix (- y i))))
(if (and (posp i) (posp y) (< i y))
(and (check-rh i dm)
(check-all (1+ i) y (addtime dm (multime (monthsinyear i) (lunation)))))
t))
(defthmd check-all-lemma
(implies (and (posp i) (posp k) (posp y) (<= i k) (< k y)
(check-all i y (dmolad i)))
(check-rh k (dmolad k)))
:hints (("Subgoal *1/4" :use ((:instance dmolad-next (y i))))))
;; We won't check the following explicitly. The computation is done in the course of the proof of
;; check-small-yearlength, which takes about 4 seconds:
;; (check-all 1 689473 (beharad))
;; Added by Matt K. to avoid stack overflow in Allegro CL (and perhaps other
;; Lisps that don't compile on-the-fly):
(comp t)
(defthmd check-small-yearlength
(implies (and (posp y) (<= y 689472))
(member (yearlength y)
(if1 (leap y)
'(383 384 385)
'(353 354 355))))
:hints (("Goal" :in-theory (enable check-yearlength)
:use ((:instance check-all-lemma (i 1) (k y) (y 689473))))))
;; The desired result follows:
(defthmd legal-year-lengths
(implies (posp y)
(member (yearlength y)
(if1 (leap y)
'(383 384 385)
'(353 354 355))))
:hints (("Goal" :in-theory (enable leap-rewrite)
:use (yearlength-equal-mod
(:instance check-small-yearlength (y 689472))
(:instance check-small-yearlength (y (mod y 689472)))
(:instance rtl::mod-of-mod (x y) (k 36288) (n 19))
(:instance rtl::mod-0-int (m y) (n 19))))))
;;-----------------------------------------------------------------------------------------------------------
;; Admissibility of year lengths: second proof
;;-----------------------------------------------------------------------------------------------------------
;; Complement of a time of day:
(defund comp-time (hour part)
(if (zp part)
(mv (- 24 hour) 0)
(mv (- 23 hour) (- 1080 part))))
;; Number of days between one delayed molad and the next:
(defthm next-molad
(implies (and (momentp molad)
(momentp delta))
(let ((next (addtime molad delta)))
(mv-let (comp-hour comp-part) (comp-time (hour delta) (part delta))
(if1 (earlier molad comp-hour comp-part)
(and (= (day next) (+ (day molad) (day delta)))
(= (earlier next (hour delta) (part delta)) 0))
(and (= (day next) (+ 1 (day molad) (day delta)))
(= (earlier next (hour delta) (part delta)) 1))))))
:hints (("Goal" :nonlinearp t
:in-theory (enable addtime momentp comp-time expand earlier)
:use ((:instance expand+ (x molad) (y delta))
(:instance momentp+ (x molad) (y delta))))))
(defthmd next-molad-common
(implies (and (posp y) (= (common y) 1))
(let ((molad (dmolad y))
(next (dmolad (1+ y))))
(if1 (earlier molad 15 204)
(and (= (day next) (+ (day molad) 354))
(= (earlier next 8 876) 0))
(and (= (day next) (+ (day molad) 355))
(= (earlier next 8 876) 1)))))
:hints (("Goal" :in-theory (enable common earlier monthsinyear momentp lunation)
:use (momentp-dmolad dmolad-next
(:instance next-molad (molad (dmolad y)) (delta (multime 12 (lunation))))))))
(defthm next-molad-leap
(implies (and (posp y) (= (leap y) 1))
(let ((molad (dmolad y))
(next (dmolad (1+ y))))
(if1 (earlier molad 2 491)
(and (= (day next) (+ (day molad) 383))
(= (earlier next 21 589) 0))
(and (= (day next) (+ (day molad) 384))
(= (earlier next 21 589) 1)))))
:hints (("Goal" :in-theory (enable common earlier monthsinyear momentp lunation)
:use (momentp-dmolad dmolad-next
(:instance next-molad (molad (dmolad y)) (delta (multime 13 (lunation))))))))
;; The day of the week that occurs k days after a given day of the week:
(defthmd dayofweek-plus
(implies (and (natp d) (natp k))
(equal (dayofweek (+ k d))
(dayofweek (+ k (dayofweek d)))))
:hints (("Goal" :in-theory (enable dayofweek))))
;; Enumeration of the days of the week (used to force a case split in the main result):
(defthmd days-of-week
(implies (natp d)
(member (dayofweek d)
'(0 1 2 3 4 5 6)))
:hints (("Goal" :in-theory (enable dayofweek))))
;; The following is proved by a case analysis based on next-molad-common and next-molad-leap:
(defthm legal-year-lengths-alt
(implies (posp y)
(member (yearlength y)
(if1 (leap y)
'(383 384 385)
'(353 354 355))))
:hints (("Goal" :in-theory (enable common momentp yearlength earlier)
:expand ((roshhashanah y) (roshhashanah (+ 1 y)))
:use (momentp-dmolad next-molad-common next-molad-leap
(:instance momentp-dmolad (y (1+ y)))
(:instance dayofweek-plus (d (day (dmolad y))) (k (if1 (leap y) 383 354)))
(:instance dayofweek-plus (d (day (dmolad y))) (k (if1 (leap y) 384 355)))
(:instance days-of-week (d (day (dmolad y))))))))
;;-----------------------------------------------------------------------------------------------------------
;; Only 20 keviyot (combinations of year length and day of the week of Rosh Hashanah) are possible.
;;-----------------------------------------------------------------------------------------------------------
(defthmd dayofweek-roshhashanah
(implies (posp y)
(member (dayofweek (roshhashanah y))
'(0 2 3 5)))
:hints (("Goal" :in-theory (enable dayofweek-plus momentp common roshhashanah)
:use (momentp-dmolad (:instance days-of-week (d (day (dmolad y))))))))
(defthmd keviyot
(implies (posp y)
(let ((dw (dayofweek (roshhashanah y)))
(len (yearlength y)))
(or (and (= dw 3)
(member len '(354 384)))
(and (member dw '(0 2))
(member len '(353 355 383 385)))
(and (= dw 5)
(member len '(354 355 383 385))))))
:hints (("Goal" :in-theory (enable momentp roshhashanah dayofweek-plus common yearlength)
:use (legal-year-lengths-alt dayofweek-roshhashanah momentp-dmolad next-molad-leap
(:instance dayofweek-roshhashanah (y (1+ y)))))))
;;-----------------------------------------------------------------------------------------------------------
;; Landau's theorem: The molad of every month occurs before the end of the 1st day of the month.
;;-----------------------------------------------------------------------------------------------------------
(defthm natp-roshhashanah
(implies (natp y) (natp (roshhashanah y)))
:hints (("Goal" :in-theory (enable momentp roshhashanah)
:use (momentp-dmolad)))
:rule-classes (:rewrite :type-prescription))
;; This bound is sufficient for year lengths 355, 384, and 385:
(defthmd molad-roshhashanah
(implies (natp y)
(< (expand (molad y))
(* 1080 (+ 18 (* 24 (roshhashanah y))))))
:hints (("Goal" :in-theory (enable earlier addtime momentp expand roshhashanah dmolad)
:nonlinearp t
:cases ((= (earlier (molad y) 18 0) 0))
:use (momentp-molad
(:instance rtl::fl-unique (x (/ (part (molad y)) 1080)) (n 0))
(:instance rtl::fl-unique (x (/ (+ (hour (molad y)) 6) 24)) (n 1))
(:instance rtl::fl-unique (x (/ (+ (hour (molad y)) 6) 24)) (n 0))))))
;; This bound is required for year lengths 353, 354, and 383:
(defthmd molad-roshhashanah-next
(implies (posp y)
(< (expand (molad y))
(- (* 1080 (+ 18 (* 24 (+ (roshhashanah y) (yearlength y)))))
(* (if1 (leap y) 13 12) (expand (lunation))))))
:hints (("Goal" :in-theory (enable monthsinyear common momentp expand yearlength)
:use (momentp-molad molad-next
(:instance expand+ (x (molad y)) (y (multime (if1 (common y) 12 13) (lunation))))
(:instance molad-roshhashanah (y (1+ y)))))))
;; First day of month:
(defun firstofmonth (month y) (as 'day 1 (as 'month month (as 'year y ()))))
;; This splits into the 6 cases of year length and applies one of the above 2 bounds in each case:
(defthmd expand-monthlymolad
(implies (and (posp y)
(posp month)
(<= month (if1 (leap y) 13 12)))
(< (expand (monthlymolad month y))
(* 1080 24 (1+ (h2a (firstofmonth month y))))))
:hints (("Goal" :in-theory (enable monthlymolad monthlength h2a expand+ expand*)
:use (legal-year-lengths-alt molad-roshhashanah molad-roshhashanah-next)
:expand ((:free (x y z) (h2a-loop-0 x y z))))))
(defthmd expand-day
(implies (and (momentp x)
(natp d)
(< (expand x) (* 1080 24 (1+ d))))
(<= (day x) d))
:hints (("Goal" :in-theory (enable momentp expand))))
(defthmd natp-h2a
(implies (and (posp (ag 'year date))
(posp (ag 'day date))
(posp (ag 'month date))
(<= (ag 'month date) 13))
(natp (h2a date)))
:hints (("Goal" :in-theory (enable monthlength h2a h2a-loop-0)
:expand ((:free (x y z) (h2a-loop-0 x y z))))))
(defthm landau-thm
(implies (and (posp y)
(posp month)
(<= month (monthsinyear y)))
(<= (day (monthlymolad month y))
(h2a (firstofmonth month y))))
:hints (("Goal" :in-theory (enable monthsinyear monthlymolad)
:use (expand-monthlymolad
(:instance natp-h2a (date (firstofmonth month y)))
(:instance expand-day (x (monthlymolad month y))
(d (h2a (firstofmonth month y))))))))
|