1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#|$ACL2s-Preamble$;
(include-book ;; Newline to fool ACL2/cert.pl dependency scanner
"portcullis")
(begin-book t :ttags :all);$ACL2s-Preamble$|#
(in-package "ACL2S")
(include-book "defdata/top" :ttags :all)
(include-book "std/lists/top" :dir :system)
; Pete 9/27/2018: Include utilities book
(include-book "definec" :ttags :all)
(include-book "check-equal")
(include-book "acl2s/ccg/ccg" :dir :system
:uncertified-okp nil :ttags ((:ccg))
:load-compiled-file nil)
(set-termination-method :ccg)
(local (set-defunc-timeout 1000))
; Pete 9/14/2018: I am enabling some of the functions that
; std/lists/top disables, since this causes problems where simple
; theorems do not getting proved.
(in-theory (enable
true-listp
len
append
rev
revappend
no-duplicatesp-equal
make-character-list
nthcdr
subseq-list
resize-list
last
butlast
remove
member
subsetp
intersectp
union-equal
set-difference-equal
intersection-equal))
(add-macro-fn tlp true-listp)
(defmacro tl-fix (x)
`(acl2::true-list-fix ,x))
(add-macro-fn tl-fix acl2::true-list-fix)
(definec bin-app (x :tl y :tl) :tl
(if (endp x)
y
(cons (car x) (bin-app (cdr x) y))))
(make-n-ary-macro app bin-app nil t)
;(add-macro-fn app binary-append)
(add-macro-fn app bin-app)
(defthm app-assoc
(implies (and (tlp x) (tlp y) (tlp z))
(equal (app (app x y) z)
(app x (app y z)))))
(defthm app-nil
(implies (tlp x)
(equal (app x nil) x)))
(defthm app-of-cons
(implies (and (tlp x) (tlp y))
(equal (app (cons a x) y)
(cons a (app x y)))))
(defthm app-of-rcons
(implies (and (tlp x) (tlp y))
(equal (app (acl2::rcons a x) y)
(app x (cons a y))))
:hints (("goal" :in-theory (enable acl2::rcons))))
(defthm app-under-iff
(implies (and (tlp x) (tlp y))
(iff (app x y)
(or x y))))
(defthm app-of-repeat-to-cons-of-same
(implies (tlp x)
(equal (app (repeat n a) (cons a x))
(cons a (app (repeat n a) x))))
:hints (("goal" :in-theory (enable repeat))))
(defthm app-when-prefixp
(implies (and (tlp x) (tlp y) (acl2::prefixp x y))
(equal (app x (nthcdr (len x) y))
y))
:hints (("goal" :in-theory (enable acl2::prefixp))))
(defthm app-of-take-and-nthcdr
(implies (and (tlp x)
(<= (nfix n) (len x)))
(equal (app (take n x) (nthcdr n x))
x)))
; shorthand for equal
(defmacro == (x y)
`(equal ,x ,y))
; shorthand for not equal
(defmacro =/= (x y)
`(not (equal ,x ,y)))
; shorthand for not equal
(defmacro != (x y)
`(not (equal ,x ,y)))
; shorthand for implies
(defmacro => (x y)
`(implies ,x ,y))
; another shorthand for implies
(defmacro -> (x y)
`(implies ,x ,y))
; shorthand for implied
(defmacro <- (x y)
`(implies ,y ,x))
; shorthand for not
(defmacro ! (x)
`(not ,x))
; shorthand for and
(defmacro ^ (&rest args)
`(and ,@args))
; shorthand for or
(defmacro v (&rest args)
`(or ,@args))
#|
Useful for testing defunc/definec errors
:trans1
(definec in (a :all X :tl) :bool
(and (consp X)
(or (== a (car X))
(in a (cdr X)))))
:trans1
(DEFINEC-CORE IN NIL (A :ALL X :TL)
:BOOL (AND (CONSP X)
(OR (== A (CAR X)) (IN A (CDR X)))))
(redef+)
(redef-)
|#
(definec in (a :all X :tl) :bool
(and (consp X)
(or (== a (car X))
(in a (cdr X)))))
(definec nin (a :all X :tl) :bool
(not (in a X)))
(defdata non-empty-true-list (cons all true-list))
(defdata-alias ne-tl non-empty-true-list)
(add-macro-fn ne-tlp non-empty-true-listp)
; left and right are strict versions of car and cdr, i.e., they can
; only be applied to conses.
(definec left (x :cons) :all
(car x))
(definec right (x :cons) :all
(cdr x))
; head and tail are versions of car and cdr that are applied to only
; true-lists and they are also strict, so the true-lists have to be
; conses.
(definec head (x :ne-tl) :all
(car x))
(definec tail (x :ne-tl) :tl
(cdr x))
(definec lcons (x :all y :tl) :ne-tl
(cons x y))
; a strict version of nth requiring that the list have at least n+1
; elements (since we use 0 indexing)
(definec lnth (n :nat l :tl) :all
:pre (< n (len l))
(nth n l))
(check= (lnth 2 '(0 1 2 3)) 2)
; a strict version of nthcdr, requiring that we have at least n
; elements ((nthcdr 0 l) is the identity)
(definec lnthcdr (n :nat l :tl) :tl
:pre (<= n (len l))
(nthcdr n l))
(check= (lnthcdr 2 '(0 1 2 3)) '(2 3))
; The definitions below are used to define gen-car-cdr-macros.
(defdata str-all (list string all))
(defdata l-str-all (listof str-all))
(definec-no-test gen-car-cdr-aux-1
(car :var cdr :var carstr :string cdrstr :string res :l-str-all) :l-str-all
(if (endp res)
res
(b* ((e (first res))
(str (first e))
(exp (second e)))
(list* `(,(str::cat carstr str)
`(,',car ,,exp))
`(,(str::cat cdrstr str)
`(,',cdr ,,exp))
(gen-car-cdr-aux-1 car cdr carstr cdrstr (cdr res))))))
(check= (gen-car-cdr-aux-1 'head 'tail "h" "t" '(("" x)))
`(("h" `(head ,x))
("t" `(tail ,x))))
; The termination hint isn't need, but it saves 10 seconds and I
; certify this file enough that it is worth annotating.
(definec-no-test gen-car-cdr-aux
(car :var cdr :var carstr :string cdrstr :string depth :nat res :l-str-all) :l-str-all
(declare (xargs :consider-only-ccms (depth)))
(cond ((endp res) (gen-car-cdr-aux
car
cdr
carstr
cdrstr
depth
`(("" x))))
((== depth 0) res)
(t (app (if (consp (cdr res)) res nil)
(gen-car-cdr-aux
car
cdr
carstr
cdrstr
(1- depth)
(gen-car-cdr-aux-1 car cdr carstr cdrstr res))))))
(check= (gen-car-cdr-aux 'head 'tail "h" "t" 1 nil)
`(("h" `(head ,x))
("t" `(tail ,x))))
(check= (gen-car-cdr-aux 'head 'tail "h" "t" 2 nil)
`(("h" `(head ,x))
("t" `(tail ,x))
("hh" `(head (head ,x)))
("th" `(tail (head ,x)))
("ht" `(head (tail ,x)))
("tt" `(tail (tail ,x)))))
(definec gen-car-cdr-defs-fn
(l :l-str-all prefix :string suffix :string pkg :string) :all
:pre (!= pkg "")
(if (endp l)
l
(b* ((mname (defdata::s+ (str::cat prefix (caar l) suffix) :pkg pkg))
(x (fix-intern$ "X" pkg)))
(cons
`(defmacro ,mname (,x)
,(cadar l))
(gen-car-cdr-defs-fn (cdr l) prefix suffix pkg)))))
(definec gen-car-cdr-macros-fn
(car :var cdr :var carstr :string cdrstr :string prefix :string
suffix :string depth :nat pkg :string) :all
:pre (!= pkg "")
:skip-tests t
(let ((l (gen-car-cdr-aux car cdr carstr cdrstr depth nil)))
`(encapsulate
()
,@(gen-car-cdr-defs-fn l prefix suffix pkg))))
(check=
(gen-car-cdr-macros-fn 'head 'tail "A" "D" "LC" "R" 2 "ACL2S")
`(encapsulate
nil
(defmacro lcar (x) `(head ,x))
(defmacro lcdr (x) `(tail ,x))
(defmacro lcaar (x) `(head (head ,x)))
(defmacro lcdar (x) `(tail (head ,x)))
(defmacro lcadr (x) `(head (tail ,x)))
(defmacro lcddr (x) `(tail (tail ,x)))))
(defmacro gen-car-cdr-macros
(car cdr carstr cdrstr prefix suffix depth)
`(make-event
(gen-car-cdr-macros-fn
',car ',cdr ,carstr ,cdrstr ,prefix ,suffix ,depth
(current-package state))))
(gen-car-cdr-macros head tail "A" "D" "LC" "R" 4)
; Generates the following redundant events, where "s" means "strict":
(defmacro lcar (x) `(head ,x))
(defmacro lcdr (x) `(tail ,x))
(defmacro lcaar (x) `(head (head ,x)))
(defmacro lcadr (x) `(head (tail ,x)))
(defmacro lcdar (x) `(tail (head ,x)))
(defmacro lcddr (x) `(tail (tail ,x)))
(defmacro lcaaar (x) `(head (head (head ,x))))
(defmacro lcaadr (x) `(head (head (tail ,x))))
(defmacro lcadar (x) `(head (tail (head ,x))))
(defmacro lcaddr (x) `(head (tail (tail ,x))))
(defmacro lcdaar (x) `(tail (head (head ,x))))
(defmacro lcdadr (x) `(tail (head (tail ,x))))
(defmacro lcddar (x) `(tail (tail (head ,x))))
(defmacro lcdddr (x) `(tail (tail (tail ,x))))
(defmacro lcaaaar (x) `(head (head (head (head ,x)))))
(defmacro lcaaadr (x) `(head (head (head (tail ,x)))))
(defmacro lcaadar (x) `(head (head (tail (head ,x)))))
(defmacro lcaaddr (x) `(head (head (tail (tail ,x)))))
(defmacro lcadaar (x) `(head (tail (head (head ,x)))))
(defmacro lcadadr (x) `(head (tail (head (tail ,x)))))
(defmacro lcaddar (x) `(head (tail (tail (head ,x)))))
(defmacro lcadddr (x) `(head (tail (tail (tail ,x)))))
(defmacro lcdaaar (x) `(tail (head (head (head ,x)))))
(defmacro lcdaadr (x) `(tail (head (head (tail ,x)))))
(defmacro lcdadar (x) `(tail (head (tail (head ,x)))))
(defmacro lcdaddr (x) `(tail (head (tail (tail ,x)))))
(defmacro lcddaar (x) `(tail (tail (head (head ,x)))))
(defmacro lcddadr (x) `(tail (tail (head (tail ,x)))))
(defmacro lcdddar (x) `(tail (tail (tail (head ,x)))))
(defmacro lcddddr (x) `(tail (tail (tail (tail ,x)))))
(gen-car-cdr-macros head tail "A" "D" "LC" "R" 4)
#|
Generates the following macros, where "l" means true-list :
lcar: (head x)
lcdr: (tail x)
lcaar: (head (head x))
lcadr: (head (tail x))
...
lcddddr: (tail (tail (tail (tail x))))
|#
; strict versions of first, ..., tenth: we require that x is a tl
; with enough elements
(defmacro lfirst (x) `(lcar ,x))
(defmacro lsecond (x) `(lcadr ,x))
(defmacro lthird (x) `(lcaddr ,x))
(defmacro lfourth (x) `(lcadddr ,x))
(defmacro lfifth (x) `(lcar (lcddddr ,x)))
(defmacro lsixth (x) `(lcadr (lcddddr ,x)))
(defmacro lseventh (x) `(lcaddr (lcddddr ,x)))
(defmacro leighth (x) `(lcadddr (lcddddr ,x)))
(defmacro lninth (x) `(lcar (lcddddr (lcddddr ,x))))
(defmacro ltenth (x) `(lcadr (lcddddr (lcddddr ,x))))
; A forward-chaining rule to deal with the relationship
; between len and cdr.
(defthm expand-len-with-trigger-cdr
(implies (and (<= c (len x))
(posp c))
(<= (1- c) (len (cdr x))))
:rule-classes ((:forward-chaining
:trigger-terms ((< (len x) c) (cdr x)))))
(defthm len-non-nil-with-trigger-cdr
(implies (and (<= c (len x))
(posp c))
x)
:rule-classes ((:forward-chaining :trigger-terms ((< (len x) c)))))
#|
This may be useful. I started with this, but used the above rule
instead.
(defthm exp-len1
(implies (and (syntaxp (quotep c))
(syntaxp (< (second c) 100))
(posp c)
(<= c (len x)))
(<= (1- c) (len (cdr x))))
:rule-classes ((:forward-chaining :trigger-terms ((< (len x) c)))))
(defthm exp-len2
(implies (and (syntaxp (quotep c))
(syntaxp (< (second c) 100))
(posp c)
(<= c (len x)))
x)
:rule-classes ((:forward-chaining :trigger-terms ((< (len x) c)))))
|#
#|
A collection of forward-chaining rules that help with reasoning about
conses with car, cdr, head, tail, left, right.
|#
(defthm cddr-implies-cdr-trigger-cddr
(implies (cddr x)
(cdr x))
:rule-classes ((:forward-chaining :trigger-terms ((cddr x)))))
(defthm tlp-implies-tlpcdr-trigger-cdr
(implies (true-listp x)
(true-listp (cdr x)))
:rule-classes ((:forward-chaining :trigger-terms ((cdr x)))))
(defthm tlp-consp-cdr-implies-tail-trigger-tail
(implies (and (true-listp x)
(consp (cdr x)))
(tail x))
:rule-classes ((:forward-chaining :trigger-terms ((tail x)))))
(defthm tlp-consp-implies-tlp-tail-trigger-tail
(implies (and (true-listp x) x)
(true-listp (tail x)))
:rule-classes ((:forward-chaining :trigger-terms ((tail x)))))
(defthm consp-cdr-implies-right-trigger-right
(implies (consp (cdr x))
(right x))
:rule-classes ((:forward-chaining :trigger-terms ((right x)))))
(defthm tlp-consp-implies-tlp-right-trigger-right
(implies (and (true-listp x) x)
(true-listp (right x)))
:rule-classes ((:forward-chaining :trigger-terms ((right x)))))
; Basic left-right theorems
(defthm left-cons
(equal (left (cons x y))
x))
(defthm right-cons
(equal (right (cons x y))
y))
(defthm left-consp
(implies (force (consp x))
(equal (left x) (car x))))
(defthm right-consp
(implies (force (consp x))
(equal (right x) (cdr x))))
; Basic head-tail theorems
(defthm head-cons
(implies (force (tlp y))
(equal (head (cons x y))
x)))
(defthm tail-cons
(implies (force (tlp y))
(equal (tail (cons x y))
y)))
(defthm head-consp
(implies (and (force (tlp x)) (force x))
(equal (head x) (car x))))
(defthm tail-consp
(implies (and (force (tlp x)) (force x))
(equal (tail x) (cdr x))))
; Disable tail, head, left, right so that it is easier to debug
; proofs
(in-theory (disable tail tail-definition-rule
head head-definition-rule
left left-definition-rule
right right-definition-rule))
#||
Suppose I want to define a datatype corresponding to a non-empty list of
integers that ends with a natural number. Here's one way to do that.
(defdata loin (oneof (list nat)
(cons integer loin)))
By defining the snoc constructor, we can instead
(defdata loi (listof int))
(defdata loins (snoc loi nat))
(defdata-equal-strict loin loins)
||#
(definec snoc (l :tl e :all) :ne-tl
(append l (list e)))
(defmacro lsnoc (l e)
`(snoc ,l ,e))
(definec snocl (l :ne-tl) :tl
(butlast l 1))
(definec snocr (l :ne-tl) :all
(car (last l)))
(register-data-constructor
(ne-tlp snoc)
((tlp snocl) (allp snocr))
:rule-classes nil
:proper nil)
(definec lendp (x :tl) :bool
(atom x))
(definec llen (x :tl) :nat
(len x))
(definec lrev (x :tl) :tl
(rev x))
(defthm app-of-snoc
(implies (and (tlp x) (tlp y))
(equal (app (snoc x a) y)
(app x (cons a y)))))
(defthm len-of-app
(implies (and (tlp x) (tlp y))
(equal (len (app x y))
(+ (len x) (len y)))))
|