1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
#|$ACL2s-Preamble$;
;;Author - Harsh Raju Chamarthi (harshrc)
(include-book ;; Newline to fool ACL2/cert.pl dependency scanner
"../portcullis")
(begin-book t);$ACL2s-Preamble$|#
(in-package "CGEN")
;Useful Macros for concise/convenient code.
(include-book "basis")
(include-book "utilities")
(include-book "type")
(include-book "infer-enum-shape")
;;;======================================================================
;;;============ Build enumerator expression code =================e=======
;;;======================================================================
(defrec enum-info% (domain-size category expr expr2 min-rec-depth max-rec-depth) NIL)
(defun enum-info%-p (v)
(declare (xargs :guard T))
(case-match v
(('enum-info% domain-size category expr expr2 min-rec-depth max-rec-depth)
(and (fixnump domain-size)
(fixnump min-rec-depth)
(fixnump max-rec-depth)
(member-eq category
'(:singleton :function :defconst :numeric-range :empty))
(pseudo-termp expr)
(pseudo-termp expr2)))))
(defun abs/complex (c)
(declare (xargs :guard (complex/complex-rationalp c)))
(complex (abs (realpart c)) (abs (imagpart c))))
(defun abs/acl2-number (x)
(declare (xargs :guard (acl2-numberp x)))
(if (complex/complex-rationalp x)
(abs/complex x)
(abs x)))
(defun mod/complex (c m)
(declare (xargs :guard (and (rationalp m)
(> m 0)
(complex/complex-rationalp c))))
(complex (mod (realpart c) m) (imagpart c)))
(defun mod/acl2-number (x m)
(declare (xargs :guard (and (acl2-numberp x)
(rationalp m)
(> m 0)
)))
(if (complex/complex-rationalp x)
(mod/complex x m)
(mod x m)))
(defun make-numeric-range-enum-info (size exp exp2)
(acl2::make enum-info%
:domain-size size
:min-rec-depth 0
:max-rec-depth 30
:category :numeric-range
:expr exp
:expr2 exp2))
; NOTE: The following function returns code snippets and hence cannot be type
; checked until runtime. Such functionality is extremely difficult to find
; trivial mistakes that could have been easily caught had we compiled these
; snippets.
#|
(def make-range-enum-info% (type interval M)
(decl :sig ((symbolp non-empty-non-universal-interval-p symbol-alist) -> enum-info%-p)
:doc "given tau-interval interval construct an enum-info% rec with appropriate enum calls")
(b* ((lo (acl2::access acl2::tau-interval interval :lo))
(hi (acl2::access acl2::tau-interval interval :hi))
(lo-rel (acl2::access acl2::tau-interval interval :lo-rel))
(hi-rel (acl2::access acl2::tau-interval interval :hi-rel)))
(case type
(acl2s::integer (let ((lo (and lo (if lo-rel (1+ lo) lo))) ;make both inclusive bounds
(hi (and hi (if hi-rel (1- hi) hi))))
(cond ((and lo hi)
(make-numeric-range-enum-info `(acl2s::nth-integer-between r ,lo ,hi)
`(defdata::random-integer-between-seed ,lo ,hi seed.)))
(lo ;hi is positive infinity
(make-numeric-range-enum-info `(+ ,lo (acl2s::nth-nat-testing r))
`(mv-let (r seed.)
(defdata::random-small-natural-seed seed.)
(mv (+ ,lo r) seed.))))
((posp hi) ;lo is neg infinity and hi is >=1
(make-numeric-range-enum-info `(let ((i-ans (acl2s::nth-integer r)))
(if (> i-ans ,hi)
(mod i-ans (1+ ,hi))
i-ans));ans shud be less than or equal to hi
`(mv-let (i-ans seed.)
(defdata::random-integer-seed seed.)
(mv (if (> i-ans ,hi)
(mod i-ans (1+ ,hi))
i-ans)
seed.))))
(t ;lo is neg inf, and hi is <= 0
(make-numeric-range-enum-info `(- ,hi (acl2s::nth-nat-testing r)) ;ans shud be less than or equal to hi
`(mv-let (r seed.)
(defdata::random-small-natural-seed seed.)
(mv (- ,hi r) seed.)))))))
(otherwise (cond ((and lo hi) ;ASSUME inclusive even when you have exclusive bounds -- rational, complex-rational, acl2-number
(make-numeric-range-enum-info
`(acl2s::nth-number-between r ,lo ,hi :type ',type)
`(defdata::random-number-between-seed ,lo ,hi seed. :type ',type)))
(lo ;hi is positive infinity
(make-numeric-range-enum-info `(+ ,lo (abs/acl2-number (,(defdata::enumerator-name type M) r)))
`(mv-let (r seed.)
(defdata::random-small-natural-seed seed.)
(mv-let (num seed.) ;TODO perhaps we should prefer test/acc over enum/acc
(,(defdata::enum/acc-name type M) r seed.)
(mv (+ ,lo (abs/acl2-number num)) seed.)))))
((> hi 0) ;lo is neg infinity and hi is is >= 1
(make-numeric-range-enum-info `(let ((rat-ans (,(defdata::enumerator-name type M) r)))
(if (> rat-ans ,hi)
(mod/acl2-number rat-ans (1+ ,hi))
rat-ans));ans shud be less than or equal to hi
`(mv-let (r seed.)
(defdata::random-small-natural-seed seed.)
(mv-let (rat-ans seed.)
(,(defdata::enum/acc-name type M) r seed.)
(mv (if (> rat-ans ,hi)
(mod/acl2-number rat-ans (1+ ,hi))
rat-ans)
seed.)))))
(t;lo is neg infinity and hi is is <= 0
(make-numeric-range-enum-info `(- ,hi (abs/acl2-number (,(defdata::enumerator-name type M) r)))
`(mv-let (r seed.)
(defdata::random-small-natural-seed seed.)
(mv-let (ans seed.)
(,(defdata::enum/acc-name type M) r seed.)
(mv (- ,hi ans) seed.))))))))))
|#
(include-book "acl2s/defdata/builtin-combinators" :dir :system)
(def make-range-enum-info% (interval integer-p)
(decl :sig ((non-empty-non-universal-interval-p booleanp) -> enum-info%-p)
:doc "given tau-interval interval construct an enum-info% rec with appropriate enum calls")
(b* ((lo (acl2::access acl2::tau-interval interval :lo))
(hi (acl2::access acl2::tau-interval interval :hi))
(lo-rel (acl2::access acl2::tau-interval interval :lo-rel))
(hi-rel (acl2::access acl2::tau-interval interval :hi-rel))
(domain (if integer-p 'acl2s::integer 'acl2s::rational))
(dom-size (if (and lo hi integer-p)
(- (if hi-rel (1- hi) hi) (if lo-rel (1+ lo) lo))
't)))
(make-numeric-range-enum-info dom-size
(defdata::make-enum-body-for-range 'r domain lo hi lo-rel hi-rel)
(defdata::make-enum/acc-body-for-range 'r 'seed. domain lo hi lo-rel hi-rel))))
(def get-enum-info% (type range vl wrld)
(decl :sig ((possible-defdata-type-p tau-interval fixnum plist-world)
-> enum-info%-p)
;TODO: union types
:doc "to fill")
(declare (xargs :verify-guards nil))
; returns a well-formed enum-info defrec object
; r is the free variable in the enum-expression which
; is the place-holder for the random-seed or BE arg
(if (defdata::possible-constant-value-p type)
(acl2::make enum-info% :domain-size 1 :min-rec-depth 0 :max-rec-depth 1
:category :singleton :expr type :expr2 `(mv ',type seed.))
;ALSO HANDLE SINGLETON TYPES DIRECTLY
(let ((entry (assoc-eq type (table-alist 'defdata::type-metadata-table wrld))))
(if entry ;if we find enum-info from type-info-table then use it
(b* ((al (cdr entry))
(TI.test-enumerator (cdr (assoc-eq :enum/test al)))
(TI.test-enumerator/acc (cdr (assoc-eq :enum/test/acc al)))
(TI.enumerator (cdr (assoc-eq :enumerator al)))
(TI.enum-uniform (cdr (assoc-eq :enum/acc al)))
(TI.size (cdr (assoc-eq :domain-size al)))
(TI.pred (cdr (assoc-eq :predicate al)))
(TI.min (cdr (assoc-eq :min-rec-depth al)))
(TI.max (cdr (assoc-eq :max-rec-depth al)))
(TI.def (cdr (assoc-eq :def al)))
((when (equal 0 TI.size))
(prog2$
(cw? (verbose-stats-flag vl)
"~|Cgen/Error: size in type-info ~x0 is 0.~%" (cdr entry))
(acl2::make enum-info% :domain-size 0 :min-rec-depth 0 :max-rec-depth 1
:category :empty :expr nil :expr2 nil)))
((unless (or (eq 't TI.size)
(natp TI.size)))
(prog2$
(cw? (normal-output-flag vl)
"~|Cgen/Error: size in type-info ~x0 should be a natural number or T.~%" (cdr entry))
(acl2::make enum-info% :domain-size 0 :min-rec-depth 0 :max-rec-depth 1
:category :empty :expr nil :expr2 nil)))
((when (or (and (consp TI.def)
(eq 'ACL2S::RANGE (car TI.def))
(defdata::range-subtype-p range (defdata::get-tau-int (cadr TI.def) (third TI.def))))
(and (defdata::subtype-p TI.pred 'acl2-numberp wrld)
(non-empty-non-universal-interval-p range))))
(make-range-enum-info% range (defdata::subtype-p TI.pred 'integerp wrld))))
;first check for test-enum
(if TI.test-enumerator
(cond
((defdata::allows-arity TI.test-enumerator 1 wrld)
;TODO. I am not checking if test enumerator is to be used or not
(acl2::make enum-info% :domain-size 't :min-rec-depth 0 :max-rec-depth 30
:category :function
:expr (list TI.test-enumerator 'r)
:expr2 (list TI.test-enumerator/acc 'm 'seed.)))
(t (prog2$
(cw? (normal-output-flag vl)
"~|Cgen/Error: ~x0 should be an enum function of arity 1.~%" TI.test-enumerator)
(acl2::make enum-info% :domain-size 0 :min-rec-depth 0 :max-rec-depth 0
:category :empty :expr nil :expr2 nil))))
;common scenario: inf enumerator
(if (eq 't TI.size);inf or custom registered (assume)
(acl2::make enum-info% :domain-size TI.size :min-rec-depth TI.min :max-rec-depth TI.max
:category :function
:expr (list TI.enumerator 'r)
:expr2 (list TI.enum-uniform 'm 'seed.));inf or some enum fn
(let ((stored-defconst
(acl2-getprop TI.enumerator 'acl2::const wrld)))
(if stored-defconst ;some finite set of values
(b* ((values (second stored-defconst))
(len-v (len values))
((unless (posp len-v))
(prog2$
(cw? (normal-output-flag vl)
"~|Cgen/Error: stored-defconst ~x0 has 0 values~%" stored-defconst)
(acl2::make enum-info% :domain-size 0 :min-rec-depth 0 :max-rec-depth 0
:category :empty :expr nil :expr2 nil))))
(acl2::make enum-info%
:domain-size len-v
:min-rec-depth 0 :max-rec-depth 30
:category (if (= len-v 1)
:singleton
:defconst)
:expr (if (= len-v 1)
`',(car values)
`(nth (mod r ,len-v) ,TI.enumerator))
:expr2 (if (= len-v 1)
`(mv ',(car values) seed.) ;todo check random-natural
`(mv (nth (mod seed. ,len-v) ,TI.enumerator) seed.))))
;uncommon scenario, finite enumerator function
(if (defdata::allows-arity TI.enumerator 1 wrld)
(acl2::make enum-info% :domain-size TI.size
:min-rec-depth TI.min :max-rec-depth TI.max
:category :function
:expr (list TI.enumerator 'r)
:expr2 (list TI.enum-uniform 'm 'seed.));some enum fn
(prog2$
(cw? (normal-output-flag vl)
"~|Cgen/Error: ~x0 is neither one of constant, an enum function or a values defconst.~%" TI.enumerator)
(acl2::make enum-info% :domain-size 0 :category :empty :expr nil :expr2 nil))))))))
;;;o.w (possibly) custom
(let* ((vsym (modify-symbol "*" type "-VALUES*"))
(values (second (acl2-getprop vsym 'acl2::const wrld))))
(if values
(let ((len-v (len values)))
(acl2::make enum-info%
:domain-size len-v
:min-rec-depth 0 :max-rec-depth 30
:category (if (= len-v 1)
:singleton
:defconst)
:expr (if (= len-v 1)
`',(car values)
`(nth (mod r ,len-v) ,vsym))
:expr2 (if (= len-v 1)
`(mv ',(car values) seed.);see todo above
`(mv (nth (mod seed. ,len-v) ,vsym) seed.))))
(let ((esym (modify-symbol "NTH-" type "")))
;;check if enum is defined in wrld
(cond ((defdata::allows-arity esym 1 wrld)
(acl2::make enum-info%
:domain-size t
:min-rec-depth 0 :max-rec-depth 30
:category :function
:expr `(,esym r)
:expr2 `(mv-let (r seed.)
(defdata::random-natural-seed seed.)
(mv (,esym r) seed.))))
(t
(prog2$
(cw? (normal-output-flag vl)
"~|Cgen/Error: ~x0 doesnt appear to be a type.~%" type)
(acl2::make enum-info% :domain-size 0 :category :empty :expr nil :expr2 nil)))))))))))
;May 8 2011 OBSOLETE
;testing history data structure
;; Maps variables to vtest-history
;; vtest-history:
;; (record (n . current test-run-number)
;; (rec-size . last recursion size chosen for this variable)
;; (strategy . :random :bounded)
;; (enum-expr . enumerator expression with holes)
;; (enum-arg-alist . special alist to fill in the above holes)
;; (i . determines X_i to be incremented in BE testing))
;; enum-arg-alist:
;; ((defdata::X . (record (size . t | fin-size) (val . last val of X) ) ...)
#|
(c nil ;dep-info record
:hyps hyps-new
:concl concl-new
:hyp-vars hyp-vars
:concl-vars concl-vars
:vars vars
:var-type-expr-alist new-var-te-alist
:var-dependency-adj-list dgraph
:var->ccnum var-quotient-alst
:connected-vertices-ordered-list connected-vs-lst)
))
|#
(defun symbol-unsigned-60bits-alistp (v)
(declare (xargs :guard T))
(if (atom v)
(null v)
(and (consp (car v))
(symbolp (caar v))
(unsigned-60bits-p (cdar v))
(symbol-unsigned-60bits-alistp (cdr v)))))
(defthm symbol-unsigned-60bits-alistp-forwards-to-symbol-alistp
(implies (symbol-unsigned-60bits-alistp x)
(symbol-alistp x))
:rule-classes :forward-chaining)
; (random-natural-seed seed.) => (mv random-nat new-seed)
#||
function to compute next BE seed tuple
Precondition: BE. is a consp, i.e at least one free variable
Here is the simple scheme:
((x 0) (y 0) (z 0)) ->
((y 0) (z 0) (x 1)) ->
((z 0) (x 1) (z 1)) ->
((x 0) (y 0) (z 0)) ->
((x 0) (y 0) (z 0)) ->
((x 0) (y 0) (z 0)) ->
((x 0) (y 0) (z 0))
The above algo is O(n) in num of free vars. but simple to implement.
Arrays or a stobj can make this constant time operation.
Alternative algo: Traverse the enumeration tree in BFS order. Hvent
thought about how to implement it.
||#
;;; (symbol-unsigned-60bits-alistp) -> symbol-unsigned-60bits-alistp)
;; update 60th April '12
;; let cut the optimization to get guards to verify
(defun |next BE args| (BE.)
"naive bounded exhaustive enumeration."
(declare (xargs :guard (and (true-listp BE.)
(consp BE.)
(symbol-alistp BE.))))
(b* (((cons v ;; (the (unsigned-byte 60)
m) (car BE.))
(;; (the (unsigned-byte 60)
m~ (;; acl2::|1+F|
1+ (nfix m))))
(append (cdr BE.) (list (cons v m~)))))
(def make-guard-var-assoc-eq (vars alst)
(decl :sig ((symbol-alistp symbol) -> all)
:doc "helper function to make-next-sigma")
(if (endp vars)
nil
(cons `(assoc-eq ',(car vars) ,alst)
(make-guard-var-assoc-eq (cdr vars) alst))))
(def cs%-enumcalls-defdata (cs% vl wrld)
(decl :sig ((cs%-p fixnump plist-worldp)
-> (mv fixnum (cons pseudo-termp pseudo-termp)))
:doc "see cs%-enumcalls")
(declare (xargs :verify-guards nil))
;;; TODO: optimize/complete here using extra information in
;;; spilled-types and additional-constraints
(case-match cs%
;('cs% defdata-type spilled-types eq-constraint interval additional-constraints)
(('cs% defdata-type & & range & &)
; ACHTUNG: cs% defrec exposed
(b* ((enum-info% (get-enum-info% defdata-type range vl wrld )))
(mv (access enum-info% domain-size)
(access enum-info% min-rec-depth)
(access enum-info% max-rec-depth)
(list (access enum-info% expr)
(access enum-info% expr2)))))
(& (prog2$
(cw? (normal-output-flag vl) "~|Cgen/Error: BAD record cs% passed to cs%-enumcalls")
(mv 0 0 0 NIL)))))
(def cs%-enumcalls (cs% vl wrld bound-vars)
(decl :sig ((cs%-p fixnump plist-worldp symbol-listp)
-> (mv fixnum (cons pseudo-termp pseudo-termp)))
:doc "for each cs% record we translate it into the a (mv
size min-rec-depth max-rec-depth (list enumcall enumcall2)),
where the enumcall is an expression
that when evaluated gives a value (with random distribution) of
correct type/constraint and size is the size of the type i.e the set
of value satisfied by the constraint. enumcall2 is a similar
expression but with the random seed accumulated/threaded
uniformly. Return value of (mv 0 nil) stands for an error and is
recognized by the caller function as such.")
(declare (xargs :verify-guards nil))
;;; TODO: optimize/complete here using extra information in
;;; spilled-types and additional-constraints
(case-match cs%
;('cs% defdata-type spilled-types eq-constraint interval additional-constraints)
(('cs% defdata-type & 'defdata::empty-eq-constraint range 'defdata::empty-mem-constraint &)
; ACHTUNG: cs% defrec exposed
(b* ((enum-info% (get-enum-info% defdata-type range vl wrld )))
(mv (access enum-info% domain-size)
(access enum-info% min-rec-depth)
(access enum-info% max-rec-depth)
(list (access enum-info% expr)
(access enum-info% expr2)))))
; if we see a equality constraint, we give preference to it over a
; defdata type, but only if the variables in the eq-constraint are
; already computed i.e already have an enumcall in the final answer
(('cs% defdata-type & eq-constraint range 'defdata::empty-mem-constraint &)
(b* ((?eq-vs (all-vars eq-constraint))
(?remaining (set-difference-eq eq-vs bound-vars))
)
(if remaining
(b* ((enum-info% (get-enum-info% defdata-type range vl wrld)))
(mv (access enum-info% domain-size)
(access enum-info% min-rec-depth)
(access enum-info% max-rec-depth)
(list (access enum-info% expr)
(access enum-info% expr2))))
(mv 1 0 1 (list eq-constraint (list 'mv eq-constraint 'seed.))))))
(('cs% defdata-type & 'defdata::empty-eq-constraint range mem-constraint &)
(b* ((mem-vs (all-vars mem-constraint))
(remaining (set-difference-eq mem-vs bound-vars))
(enum-info% (get-enum-info% defdata-type range vl wrld)))
(if remaining
(mv (access enum-info% domain-size)
(access enum-info% min-rec-depth)
(access enum-info% max-rec-depth)
(list (access enum-info% expr)
(access enum-info% expr2)))
(mv :mem 0 30 (list `(let ((len-v (len ,mem-constraint)))
(if (zp len-v)
,(access enum-info% expr)
(nth (mod r len-v) ,mem-constraint)))
`(let ((len-v (len ,mem-constraint)))
(if (zp len-v)
,(access enum-info% expr2)
(mv (nth (mod seed. len-v) ,mem-constraint) seed.))))))))
(& (prog2$
(cw? (normal-output-flag vl) "~|Cgen/Error: BAD record cs% passed to cs%-enumcalls")
(mv 0 0 0 NIL)))))
(def make-next-sigma_mv-let (v-cs%-alst seen-vars N i use-fixers-p vl wrld body)
(decl :sig ((symbol-alistp symbol-listp fixnum fixnum booleanp fixnum plist-worldp pseudo-termp)
-> pseudo-termp)
:doc "helper function to make-next-sigma")
(declare (ignorable N i))
(f* ((_mv-value (v min max exp exp2)
`(case sampling-method
(:uniform-random
(b* (((mv ?m seed.) (defdata::choose-size ,min ,max seed.))
((mv val seed.) ,exp2))
(mv seed. BE. val)))
(:random
(b* (((mv ?r seed.) (defdata::random-natural-seed seed.)))
(mv seed. BE. ,exp)))
;; bugfix - It is possible that r is not in exp
;; this is the case when exp is a eq-constraint
(:be (b* ((?r (cdr (assoc-eq ',v BE.))))
(mv seed. (|next BE args| BE.) ,exp)))
(otherwise (mv seed. BE. '0)))))
(if (endp v-cs%-alst)
body
(b* (((cons var cs%) (car v-cs%-alst))
((mv & min-rec-depth max-rec-depth (list exp exp2))
(if use-fixers-p
(cs%-enumcalls-defdata cs% vl wrld)
(cs%-enumcalls cs% vl wrld seen-vars))))
; in
`(mv-let
(seed. BE. ,var)
,(_mv-value var min-rec-depth max-rec-depth exp exp2)
(declare (ignorable ,var))
,(make-next-sigma_mv-let (cdr v-cs%-alst) (cons var seen-vars)
N i use-fixers-p vl wrld body))))))
;; dead code
;; (def make-enumerator-calls-alist (v-cs%-alst vl wrld ans.)
;; (decl :sig ((symbol-cs%-alist fixnum plist-world symbol-alist)
;; -> (mv erp symbol-alist))
;; :doc
;; "given an alist mapping variables to cs% records (in dependency order),
;; we walk down the alist, translating each type constraint to the corresponding
;; enumerator call expression")
;; (declare (xargs :verify-guards nil))
;; (if (endp v-cs%-alst)
;; (mv nil (reverse ans.)) ;dont change the original dependency order
;; (b* (((cons x cs%) (car v-cs%-alst))
;; ((mv domain-size ?min-rec-depth ?max-rec-depth calls)
;; (cs%-enumcalls cs% vl wrld (strip-cars ans.)))
;; ; simple bug July 9 2013: below comparison, replaced int= with equal,
;; ; this could have been caught by type-checking/guard-verif
;; ((when (equal domain-size 0)) (mv t '())))
;; ; in
;; (make-enumerator-calls-alist (cdr v-cs%-alst) vl wrld
;; ;; add in reverse order
;; (cons (cons x calls) ans.)))))
(defun displayed-range (interval)
(b* ((lo (acl2::access acl2::tau-interval interval :lo))
(hi (acl2::access acl2::tau-interval interval :hi))
(lo-rel (acl2::access acl2::tau-interval interval :lo-rel))
(hi-rel (acl2::access acl2::tau-interval interval :hi-rel)))
(cond ((and lo hi)
`(,lo ,(if lo-rel '< '<=) 'acl2::_ ,(if hi-rel '< '<=) ,hi))
(lo
`(,(if lo-rel '> '>=) ,lo))
(t `(,(if hi-rel '< '<=) ,hi)))))
; DUPLICATION
(def displayed-defdata-type/eq-constraint (cs% computed-vars)
(decl :sig ((cs%-p symbol-listp)
-> (mv fixnum pseudo-termp))
:doc "for each cs% record we translate it to defdata-type or
equality constraint that will be used for enumeration. it shadows cs%-enumcall")
(case-match cs%
;('cs% defdata-type spilled-types eq-constraint range additional-constraints)
(('cs% defdata-type & 'defdata::empty-eq-constraint range 'defdata::empty-mem-constraint &)
; ACHTUNG: cs% defrec exposed
(if (non-empty-non-universal-interval-p range)
(list :type defdata-type :range (displayed-range range))
defdata-type))
(('cs% defdata-type & eq-constraint range 'defdata::empty-mem-constraint &)
(b* ((eq-vs (all-vars eq-constraint))
(remaining (set-difference-eq eq-vs computed-vars)))
(if remaining
(if (non-empty-non-universal-interval-p range)
(list :type defdata-type :range (displayed-range range))
defdata-type)
eq-constraint)))
(('cs% defdata-type & 'defdata::empty-eq-constraint range mem-constraint &)
(b* ((mem-vs (all-vars mem-constraint))
(remaining (set-difference-eq mem-vs computed-vars)))
(if remaining
(if (non-empty-non-universal-interval-p range)
(list :type defdata-type :range (displayed-range range))
defdata-type)
(list :enum mem-constraint))))
(& 'bad-type)))
(def displayed-enum-alist (v-cs%-alst ans.)
(decl :sig ((symbol-cs%-alist symbol-alist)
-> symbol-alist)
:doc
"given an alist mapping variables to cs% records (in dependency order),
we walk down the alist, translating each type constraint to the corresponding
enumerator type/expr to be displayed in verbose mode")
(if (endp v-cs%-alst)
(reverse ans.) ;dont change the original dependency order
(b* (((cons x cs%) (car v-cs%-alst))
(type (displayed-defdata-type/eq-constraint cs% (strip-cars ans.))))
(displayed-enum-alist (cdr v-cs%-alst)
;; add in reverse order
(cons (cons x type) ans.)))))
|