1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
(in-package "ACL2")
(include-book "std/lists/top" :dir :system)
(include-book "std/alists/top" :dir :system)
(include-book "std/strings/top" :dir :system)
(include-book "acl2s/defdata/records" :dir :system)
(defun cons-size (x)
(declare (xargs :guard t))
(if (consp x)
(+ 1 (cons-size (car x)) (cons-size (cdr x)))
0))
(defmacro tree-size (x)
`(cons-size ,x))
(defthm cons-size-type
(natp (cons-size x))
:rule-classes
((:type-prescription)
(:forward-chaining :trigger-terms ((cons-size x)))))
(defthm acons-cons-size-lemma
(= (cons-size (acons x1 x2 x3))
(+ 2 (cons-size x1)
(cons-size x2)
(cons-size x3)))
:rule-classes ((:linear) (:rewrite)))
(defthm split-list-1-cons-size
(implies (consp x)
(< (cons-size (mv-nth 1 (str::split-list-1 x str::del)))
(cons-size x)))
:hints (("Goal" :in-theory (enable str::split-list-1)))
:rule-classes :linear)
(defthm head-cons-size
(implies (not (set::emptyp x))
(< (cons-size (set::head x))
(cons-size x)))
:hints (("Goal" :in-theory (enable set::emptyp set::head)))
:rule-classes :linear)
(defthm tail-cons-size
(implies (not (set::emptyp x))
(< (cons-size (set::tail x))
(cons-size x)))
:hints (("Goal" :in-theory (enable set::emptyp set::tail)))
:rule-classes :linear)
(defthm cons-size-append
(= (cons-size (append x y))
(+ (cons-size x) (cons-size y)))
:rule-classes ((:linear) (:rewrite)))
(defthm rev-cons-size-lemma
(= (cons-size (rev x))
(cons-size x))
:hints (("Goal" :in-theory (enable rev)))
:rule-classes ((:linear) (:rewrite)))
(defthm cons-size-evens-strong
(implies (and (consp x)
(consp (cdr x)))
(< (cons-size (evens x))
(cons-size x)))
:rule-classes :linear)
(defthm cons-size-evens-weak
(<= (cons-size (evens x))
(cons-size x))
:hints (("Goal" :induct (evens x)))
:rule-classes :linear)
(defthm cons-size-of-remove-assoc-equal-upper-bound
(<= (cons-size (remove-assoc-equal a x))
(cons-size x))
:hints (("Goal" :in-theory (enable remove-assoc-equal)))
:rule-classes :linear)
(defthm cons-size-when-member
(implies (member-equal a x)
(< (cons-size a)
(cons-size x)))
:hints (("Goal" :in-theory (enable member-equal)))
:rule-classes :linear)
(defthm cons-size-of-remove-duplicates
(<= (cons-size (remove-duplicates-equal x))
(cons-size x))
:rule-classes :linear)
(defthm cons-size-of-hons-remove-duplicates
(<= (cons-size (acl2::hons-remove-duplicates x))
(cons-size x))
:hints (("Goal" :in-theory (enable acl2::hons-remove-duplicates)))
:rule-classes :linear)
(defthm cons-size-of-nthcdr-linear
(implies (and (not (zp n)) (consp x))
(< (cons-size (nthcdr n x))
(cons-size x)))
:hints (("Goal" :in-theory (enable nthcdr)))
:rule-classes :linear)
(defthm cons-size-of-nthcdr-linear-weak
(<= (cons-size (nthcdr n x))
(cons-size x))
:hints (("Goal" :in-theory (enable nthcdr)))
:rule-classes :linear)
(defthm cons-size-of-nth-linear-weak
(<= (cons-size (nth i x))
(cons-size x))
:rule-classes :linear)
(defthm cons-size-of-nth-linear
(implies (consp x)
(< (cons-size (nth i x))
(cons-size x)))
:rule-classes :linear)
(defthm cons-size-of-prod-cons1
(<= (cons-size std::y)
(cons-size (std::prod-cons std::x std::y)))
:rule-classes :linear)
(defthm cons-size-of-prod-cons2
(<= (cons-size std::x)
(cons-size (std::prod-cons std::x std::y)))
:rule-classes :linear)
(defthm records-cons-size-linear-arith-<=
(<= (cons-size (mget k r))
(cons-size r))
:hints (("goal" :in-theory
(enable mget recordp no-nil-val-alistp ordered-unique-key-alistp)))
:rule-classes :linear)
(defthm records-cons-size-linear-arith-<
(implies (mget k r)
(< (cons-size (mget k r))
(cons-size r)))
:hints (("goal" :in-theory
(enable mget recordp no-nil-val-alistp ordered-unique-key-alistp)))
:rule-classes :linear)
(defthm records-cons-size
(implies (consp r)
(< (cons-size (mget k r))
(cons-size r)))
:hints (("goal" :in-theory
(enable mget recordp no-nil-val-alistp ordered-unique-key-alistp)))
:rule-classes :linear)
(defthm len-<=-cons-size
(<= (len x) (cons-size x))
:rule-classes :linear)
(defthm cons-size-<=-acl2-count
(<= (cons-size x)
(acl2-count x))
:rule-classes :linear)
; This shows that cons-size can be used to prove termination of
; acl2-count (which is what acl2-size is).
(defun acl2-size (x)
(declare (xargs :guard t
:measure (if (and (not (rationalp x))
(complex/complex-rationalp x))
1
(* 2 (cons-size x)))))
(if (consp x)
(+ 1 (acl2-size (car x))
(acl2-size (cdr x)))
(if (rationalp x)
(if (integerp x)
(integer-abs x)
(+ (integer-abs (numerator x))
(denominator x)))
(if (complex/complex-rationalp x)
(+ 1 (acl2-size (realpart x))
(acl2-size (imagpart x)))
(if (stringp x)
(length x)
0)))))
|