1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
; Copyright (C) 2013, Regents of the University of Texas
; Written by: J Strother Moore and Qiang Zhang
; Department of Computer Sciences
; Univesity of Texas at Austin
; October, 2004
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; (certify-book "script")
; A Proof of the Correctness of Dijkstra's Shortest Path Algorithm in
; ACL2
; See the paper ``Dijkstra's Shortest Path Algorithm Verified with ACL2''
; by the authors for a description of this script.
; Historical Notes: The first version of this proof was completed by
; Moore in September, 2003. See /u/moore/shortest-path/dsp6.lisp.
; That file contained 92 defthms, 35 :hints, about 75 clause
; identifiers like "Goal" and "Subgoal" (some occur in comments), and
; 40 :use hints. In order to learn ACL2, Zhang was given the task by
; Moore, first, to discover (independently) a proof (given the
; invariant), and, then, to clean it up.
; Zhang finished his first proof in December, 2003, using ACL2 Version
; 2.7. In October, 2004, he cleaned up the proof, eliminating some of
; his hints. This file is his second proof script. In February,
; 2005, the authors wrote the paper above and in doing so renamed some
; of Zhang's functions and theorems.
; The current file contains 39 defuns, 126 defthms, 51 hints, 23 of
; which are :use hints mentioning 31 lemma instances.
(in-package "ACL2")
;All definitions
(defun del (x y)
(if (endp y) nil
(if (equal x (car y))
(cdr y)
(cons (car y) (del x (cdr y))))))
(defun memp (e x)
(if (endp x) nil
(or (equal e (car x))
(memp e (cdr x)))))
(defun setp (s)
(cond ((endp s) t)
((memp (car s) (cdr s)) nil)
(t (setp (cdr s)))))
(defun my-union (s1 s2)
(cond ((endp s1) s2)
((memp (car s1) s2)
(my-union (cdr s1) s2))
(t (cons (car s1)
(my-union (cdr s1) s2)))))
(defun my-subsetp (s1 s2)
(cond ((endp s1) t)
(t (and (memp (car s1) s2)
(my-subsetp (cdr s1) s2)))))
(defun infinitep (x) (null x))
(defun lt (x y)
(cond ((infinitep x) nil)
((infinitep y) t)
(t (< x y))))
(defun plus (x y)
(cond ((or (infinitep x)
(infinitep y))
nil)
(t (+ x y))))
(defun edge-listp (lst)
(cond ((endp lst) (equal lst nil))
((and (consp (car lst))
(rationalp (cdar lst))
(<= 0 (cdar lst))
(not (assoc-equal (caar lst)
(cdr lst))))
(edge-listp (cdr lst)))
(t nil)))
(defun graphp (g)
(cond ((endp g) (equal g nil))
((and (consp (car g))
(edge-listp (cdar g)))
(graphp (cdr g)))
(t nil)))
(defun cons-set (e s)
(if (memp e s) s
(cons e s)))
(defun all-nodes (g)
(cond ((endp g) nil)
(t (cons-set (caar g)
(my-union (strip-cars (cdar g))
(all-nodes (cdr g)))))))
(defun nodep (n g) (memp n (all-nodes g)))
(defun neighbors (n g)
(strip-cars (cdr (assoc-equal n g))))
(defun pathp-aux (path g)
(cond ((endp path) nil)
((endp (cdr path))
(nodep (car path) g))
(t (and (memp (cadr path)
(neighbors (car path) g))
(pathp-aux (cdr path) g)))))
(defun pathp (path g)
(and (true-listp path)
(pathp-aux path g)))
(defun edge-len (a b g)
(cdr (assoc-equal b (cdr (assoc-equal a g)))))
(defun path-len (path g)
(cond ((endp path) nil)
((endp (cdr path))
(if (nodep (car path) g) 0 nil))
(t (plus (edge-len (car path) (cadr path) g)
(path-len (cdr path) g)))))
(defun path (n pt) (cdr (assoc-equal n pt)))
(defun d (n pt g)
(path-len (path n pt) g))
#|
(defun choose-next (ts pt g)
(cond ((endp ts) '(non-node))
((endp (cdr ts)) (car ts))
((lt (d (car ts) pt g)
(d (choose-next (cdr ts) pt g) pt g))
(car ts))
(t (choose-next (cdr ts) pt g))))
|#
(defun choose-next (ts pt g)
(cond ((endp ts) '(non-node))
((endp (cdr ts)) (car ts))
(t (let ((u (choose-next (cdr ts) pt g)))
(if (lt (d (car ts) pt g) (d u pt g))
(car ts)
u)))))
(defun reassign (u v-lst pt g)
(cond ((endp v-lst) pt)
(t (let* ((v (car v-lst))
(w (edge-len u v g)))
(cond ((lt (plus (d u pt g) w)
(d v pt g))
(cons (cons v (append (path u pt) (list v)))
(reassign u (cdr v-lst) pt g)))
(t (reassign u (cdr v-lst) pt g)))))))
(defun dsp (ts pt g)
(cond ((endp ts) pt)
(t (let ((u (choose-next ts pt g)))
(dsp (del u ts)
(reassign u (neighbors u g) pt g)
g)))))
(defun dijkstra-shortest-path (a b g)
(let ((p (dsp (all-nodes g)
(list (cons a (list a))) g)))
(path b p)))
;===================================================================
(defun pathp-from-to (p a b g)
(and (pathp p g)
(equal (car p) a)
(equal (car (last p)) b)))
(defun pt-propertyp (a pt g)
(if (endp pt) t
(and (or (null (cdar pt))
(pathp-from-to (cdar pt) a (caar pt) g))
(pt-propertyp a (cdr pt) g))))
(defun lte (n1 n2)
(not (lt n2 n1)))
(defun shorterp (p1 p2 g)
(lte (path-len p1 g)
(path-len p2 g)))
(defun confinedp (p fs)
(if (endp p) t
(if (endp (cdr p)) t
(and (memp (car p) fs)
(confinedp (cdr p) fs)))))
#|
(defun-sk shortest-confined-pathp (a b p fs g)
(forall path (implies (and (pathp-from-to path a b g)
(confinedp path fs))
(shorterp p path g))))
|#
(ENCAPSULATE
NIL (LOGIC)
(SET-MATCH-FREE-DEFAULT :ALL)
(SET-INHIBIT-WARNINGS "Theory"
"Use" "Free" "Non-rec" "Infected")
(ENCAPSULATE
((SHORTEST-CONFINED-PATHP-WITNESS (A B P FS G) PATH)
(SHORTEST-CONFINED-PATHP (A B P FS G) T))
(LOCAL (IN-THEORY '(IMPLIES)))
(LOCAL (DEFCHOOSE SHORTEST-CONFINED-PATHP-WITNESS (PATH)
(A B P FS G)
(NOT (IMPLIES (AND (PATHP-FROM-TO PATH A B G)
(CONFINEDP PATH FS))
(SHORTERP P PATH G)))))
(LOCAL (DEFUN SHORTEST-CONFINED-PATHP (A B P FS G)
(LET ((PATH (SHORTEST-CONFINED-PATHP-WITNESS A B P FS G)))
(IMPLIES (AND (PATHP-FROM-TO PATH A B G)
(CONFINEDP PATH FS))
(SHORTERP P PATH G)))))
;(IN-THEORY (DISABLE (SHORTEST-CONFINED-PATHP)))
(DEFTHM SHORTEST-CONFINED-PATHP-DEF
(EQUAL (SHORTEST-CONFINED-PATHP A B P FS G)
(LET ((PATH (SHORTEST-CONFINED-PATHP-WITNESS A B P FS G)))
(IMPLIES (AND (PATHP-FROM-TO PATH A B G)
(CONFINEDP PATH FS))
(SHORTERP P PATH G)))))
(DEFTHM SHORTEST-CONFINED-PATHP-NECC
(IMPLIES (NOT (IMPLIES (AND (PATHP-FROM-TO PATH A B G)
(CONFINEDP PATH FS))
(SHORTERP P PATH G)))
(NOT (SHORTEST-CONFINED-PATHP A B P FS G)))
:HINTS (("Goal" :USE (SHORTEST-CONFINED-PATHP-WITNESS SHORTEST-CONFINED-PATHP)
:IN-THEORY (THEORY 'MINIMAL-THEORY))))))
(include-book "data-structures/utilities" :dir :system)
(include-book "tools/bstar" :dir :system)
(include-book "ordinals/e0-ordinal" :dir :system)
(encapsulate ()
;Auxiliary functions for fixers and for instantiating defun-sk
(defun count-non-members (x y)
(cond ((endp x) 0)
((member (car x) y) (count-non-members (cdr x) y))
(t (+ 1 (count-non-members (cdr x) y)))))
(defun measure (c stack g)
(cons (+ 1 (count-non-members (strip-cars g) stack))
(len c)))
(defun neighbors2 (node g)
(cond ((endp g) nil)
((equal node (car (car g))) (cdr (car g)))
(t (neighbors2 node (cdr g)))))
(set-well-founded-relation e0-ord-<)
(local (in-theory (enable strip-cars)))
(defun find-all-next-steps (c stack b g)
(declare (xargs :measure (measure c stack g)))
(cond
((endp c) nil)
((member (car c) stack)
(find-all-next-steps (cdr c) stack b g))
((equal (car c) b)
(cons (reverse (cons b stack))
(find-all-next-steps (cdr c) stack b g)))
(t (append (find-all-next-steps (neighbors2 (car c) g)
(cons (car c) stack)
b g)
(find-all-next-steps (cdr c) stack b g)))))
(defun change-rep (vs g)
;remove weights and also add empty entries for non-neighbour vertices
(if (endp vs)
g
(b* ((entry (assoc-equal (car vs) g))
((when (null entry)) (change-rep (cdr vs) (put-assoc-equal (car vs) nil g)))
(edges-with-weights (cdr entry))
(edges (strip-cars edges-with-weights)))
(change-rep (cdr vs) (put-assoc-equal (car vs) edges g)))))
(defun find-all-simple-paths (a b g)
(if (and (equal a b) (nodep a g)) ; added for type-safety and less-restrictive fixer rules
(list (list a))
(b* ((g1 (change-rep (all-nodes g) g)))
(find-all-next-steps (neighbors2 a g1) ;(neighbours a g1) bug
(list a) b g1))))
)
(u::defloop shortest-confined-pathp/exec1 (paths a b p fs g)
(for ((path in paths)) (always (implies (and (pathp-from-to path a b g)
(confinedp path fs))
(shorterp p path g)))))
(defun shortest-confined-pathp/exec (a b p fs g)
(shortest-confined-pathp/exec1 (find-all-simple-paths a b g) a b p fs g))
(defttag t)
;(defattach (shortest-confined-pathp shortest-confined-pathp/exec)) guards not verified
(defattach (shortest-confined-pathp shortest-confined-pathp/exec) :skip-checks t)
(defttag nil)
#|
(defun-sk shortest-pathp (a b p g)
(forall path (implies (pathp-from-to path a b g)
(shorterp p path g))))
|#
(ENCAPSULATE NIL (LOGIC)
(SET-MATCH-FREE-DEFAULT :ALL)
(SET-INHIBIT-WARNINGS "Theory"
"Use" "Free" "Non-rec" "Infected")
(ENCAPSULATE ((SHORTEST-PATHP-WITNESS (A B P G) PATH)
(SHORTEST-PATHP (A B P G) T))
(LOCAL (IN-THEORY '(IMPLIES)))
(LOCAL (DEFCHOOSE SHORTEST-PATHP-WITNESS (PATH)
(A B P G)
(NOT (IMPLIES (PATHP-FROM-TO PATH A B G)
(SHORTERP P PATH G)))))
(LOCAL (DEFUN SHORTEST-PATHP (A B P G)
(LET ((PATH (SHORTEST-PATHP-WITNESS A B P G)))
(IMPLIES (PATHP-FROM-TO PATH A B G)
(SHORTERP P PATH G)))))
;(IN-THEORY (DISABLE (SHORTEST-PATHP)))
(DEFTHM SHORTEST-PATHP-DEF
(EQUAL (SHORTEST-PATHP A B P G)
(LET ((PATH (SHORTEST-PATHP-WITNESS A B P G)))
(IMPLIES (PATHP-FROM-TO PATH A B G)
(SHORTERP P PATH G)))))
(DEFTHM SHORTEST-PATHP-NECC
(IMPLIES (NOT (IMPLIES (PATHP-FROM-TO PATH A B G)
(SHORTERP P PATH G)))
(NOT (SHORTEST-PATHP A B P G)))
:HINTS (("Goal" :USE (SHORTEST-PATHP-WITNESS SHORTEST-PATHP)
:IN-THEORY (THEORY 'MINIMAL-THEORY))))))
(u::defloop shortest-pathp/exec1 (paths a b p g)
(for ((path in paths)) (always (implies (pathp-from-to path a b g)
(shorterp p path g)))))
(defun shortest-pathp/exec (a b p g)
(shortest-pathp/exec1 (find-all-simple-paths a b g) a b p g))
(defttag t)
(defattach (shortest-pathp shortest-pathp/exec) :skip-checks t)
(defttag nil)
(defun ts-propertyp (a ts fs pt g)
(if (endp ts) t
(and (shortest-confined-pathp a (car ts) (path (car ts) pt) fs g)
(confinedp (path (car ts) pt) fs)
(ts-propertyp a (cdr ts) fs pt g))))
(defun fs-propertyp (a fs fs0 pt g)
(if (endp fs) t
(and (shortest-pathp a (car fs) (path (car fs) pt) g)
(confinedp (path (car fs) pt) fs0)
(fs-propertyp a (cdr fs) fs0 pt g))))
(defun comp-set (ts s)
(if (endp s) nil
(if (memp (car s) ts)
(comp-set ts (cdr s))
(cons (car s) (comp-set ts (cdr s))))))
(defun invp (ts pt g a)
(let ((fs (comp-set ts (all-nodes g))))
(and (ts-propertyp a ts fs pt g)
(fs-propertyp a fs fs pt g)
(pt-propertyp a pt g))))
(defun find-partial-path (p s)
(if (endp p) nil
(if (memp (car p) s)
(cons (car p) (find-partial-path (cdr p) s))
(list (car p)))))
(defun find-last-next-path (p)
(if (or (endp p) (endp (cdr p))) nil
(cons (car p) (find-last-next-path (cdr p)))))
(defun last-node (p)
(car (last (find-last-next-path p))))
(defun find-partial-path-to-u (p u)
(cond ((not (memp u p)) nil)
((equal (car p) u) (list u))
(t (cons (car p)
(find-partial-path-to-u (cdr p) u)))))
|