File: match.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (664 lines) | stat: -rw-r--r-- 22,065 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
#|$ACL2s-Preamble$;
(include-book ;; Newline to fool ACL2/cert.pl dependency scanner
 "portcullis")
(begin-book t :ttags :all);$ACL2s-Preamble$|#

;; Author: Pete Manolios

(in-package "ACL2S")
(include-book "acl2s/ccg/ccg" :dir :system 
  :uncertified-okp nil :ttags ((:ccg))
  :load-compiled-file nil)
(set-termination-method :ccg)

(include-book "definec" :ttags :all)
(include-book "base-lists" :ttags :all)
(include-book "base-arithmetic" :ttags :all)
; (acl2s-defaults :set testing-enabled t)

(definec get-type-from-keyword (k :keyword) :symbol
  (case k
    (:atom 'atom)
    (otherwise (make-symbl `(,(symbol-name k) p) "ACL2S"))))

(local (in-theory (enable strip-cars strip-cdrs)))

(defthm acl2s-size-consp
  (=> (consp x)
      (< 0 (acl2s-size x)))
  :rule-classes ((:linear) (:type-prescription)))

(defthm acl2s-size-of-car
  (implies (equal (acl2s-size (car x))
                  (acl2s-size x))
           (atom x))
  :rule-classes (:forward-chaining))

(defthm acl2s-size-cdr
  (<= (acl2s-size (cdr x))
      (acl2s-size x))
  :rule-classes :linear)

(defthm acl2s-size-car
  (<= (acl2s-size (car x))
      (acl2s-size x))
  :rule-classes :linear)

(defthm acl2s-size-<=-strip-cdrs
  (<= (acl2s-size (strip-cdrs x))
      (acl2s-size x))
  :rule-classes :linear)

(defthm acl2s-size-<=-strip-cars
  (<= (acl2s-size (strip-cars x))
      (acl2s-size x))
  :rule-classes :linear)

(defthm acl2s-size-<-strip-cars
  (=> (consp (car x))
      (< (acl2s-size (strip-cars x))
         (acl2s-size x)))
  :rule-classes :linear)

(defthm acl2s-size-<-strip-cdrs
  (=> (consp (car x))
      (< (acl2s-size (strip-cdrs x))
         (acl2s-size x)))
  :rule-classes :linear)

(defthm strip-cars-cdrs-=
  (=> (alistp x)
      (= (+ (acl2s-size (strip-cars x))
            (acl2s-size (strip-cdrs x)))
         (acl2s-size x)))
  :rule-classes :linear)

(definec len1tl (x :all) :bool
  (and (consp x)
       (null (cdr x))))

(definec match-type (pat :all) :symbol
  (or (and (keywordp pat)
           (get-type-from-keyword pat))
      (and (consp pat)
           (consp (cdr pat))
           (null (cddr pat))
           (eq (car pat) :r)
           (symbolp (second pat))
           (second pat))))

(definec match-or (pat :all) :tl
  (and (consp pat)
       (consp (cdr pat))
       (eq (car pat) :or)
       (tlp pat)
       (cdr pat)))

(definec match-t (pat :all) :tl
  (and (consp pat)
       (consp (cdr pat))
       (null (cddr pat))
       (eq (car pat) :t)
       (list (second pat))))

(definec match-pats-codes (pats :tl codes :true-list-list) :bool
  (declare (xargs :consider-only-ccms ((acl2s-size codes))))
  (cond
   ((endp pats)
    (endp codes))
   ((endp codes)
    (endp pats))
   (t (b* ((pat (car pats))
           (code (car codes))
           (type? (match-type pat)))
        (cond
         ((! type?)
          (^ (len1tl code)
             (match-pats-codes (cdr pats) (cdr codes))))
         ((len1tl code)
          (match-pats-codes (cdr pats) (cdr codes)))
         (t (^ (alistp code)
               (b* ((npats (strip-cars code))
                    (ncodes (strip-cdrs code)))
                 (^ (true-list-listp ncodes)
                    (match-pats-codes npats ncodes)
                    (match-pats-codes (cdr pats) (cdr codes)))))))))))

(defthm march-pats-codes-or
  (=> (and (match-pats-codes (cons (list* :or pats5 pats6) pats2) codes)
           (true-list-listp codes)
           (tlp pats2))
      (match-pats-codes (cons (cons :or pats6) pats2) codes)))

(defthm symbol-doublet-listp-assoc-equal
  (implies (and (symbol-doublet-listp bindings)
                (not (consp (cdr (assoc-equal pat bindings)))))
           (not (cdr (assoc-equal pat bindings)))))

(defun match-tests-and-bindings (x pat tests bindings)

; Modified from basis-a.lisp
; We return two results.  The first is a list of tests, in reverse
; order, that determine whether x matches the structure pat.  We
; describe the language of pat below.  The tests are accumulated onto
; tests, which should be nil initially.  The second result is an alist
; containing entries of the form (sym expr), suitable for use as the
; bindings in the let we generate if the tests are satisfied.  The
; bindings required by pat are accumulated onto bindings and thus are
; reverse order, although their order is actually irrelevant.

; For example, the pattern
;   ('equal ('car ('cons u v)) u)
; matches only first order instances of (EQUAL (CAR (CONS u v)) u).

; The pattern
;   ('equal (ev (simp x) a) (ev x a))
; matches only second order instances of (EQUAL (ev (simp x) a) (ev x a)),
; i.e., ev, simp, x, and a are all bound in the match.

; In general, the match requires that the cons structure of x be isomorphic
; to that of pat, down to the atoms in pat.  Symbols in the pat denote
; variables that match anything and get bound to the structure matched.
; Occurrences of a symbol after the first match only structures equal to
; the binding.  Non-symbolp atoms match themselves.

; There are some exceptions to the general scheme described above.  A cons
; structure starting with QUOTE matches only itself.  A cons structure of the
; form (QUOTE~ sym), where sym is a symbol, is like (QUOTE sym) except it
; matches any symbol with the same symbol-name as sym.  The symbols nil and t,
; and all symbols whose symbol-name starts with #\* match only structures equal
; to their values.  (These symbols cannot be legally bound in ACL2 anyway, so
; this exceptional treatment does not restrict us further.)  Any symbol
; starting with #\! matches only the value of the symbol whose name is obtained
; by dropping the #\!.  This is a way of referring to already bound variables
; in the pattern. Finally, the symbol & matches anything and causes no binding.

  (declare (xargs :guard (and (symbol-doublet-listp bindings)
                              (tlp tests)
                              (tlp bindings))
                  :verify-guards nil))
  (b* ((type? (match-type pat)))
    (cond
     (type?
      (mv (cons (list type? x) tests) bindings))
     ((symbolp pat)
      (cond
       ((or (eq pat t)
            (eq pat nil)
            (keywordp pat))
        (mv (cons (list 'eq x pat) tests) bindings))
       ((let ((len (length (symbol-name pat))))
          (and (> len 0)
               (eql #\* (char (symbol-name pat) 0))
               (eql #\* (char (symbol-name pat) (1- len)))))
        (mv (cons (list 'equal x pat) tests) bindings))
       ((and (> (length (symbol-name pat)) 0)
             (eql #\! (char (symbol-name pat) 0)))
        (mv (cons (list 'equal x
                        (intern-in-package-of-symbol
                         (subseq (symbol-name pat)
                                 1
                                 (length (symbol-name pat)))
                         pat))
                  tests)
            bindings))
       ((eq pat '&) (mv tests bindings))
       (t (let ((binding (assoc-eq pat bindings)))
            (cond ((null binding)
                   (mv tests (cons (list pat x) bindings)))
                  (t (mv (cons (list 'equal x (cadr binding)) tests)
                         bindings)))))))
     ((atom pat)
      (mv (cons (acl2::equal-x-constant x (list 'quote pat)) tests)
          bindings))
     ((and (eq (car pat) 'quote)
           (consp (cdr pat))
           (null (cddr pat)))
      (mv (cons (acl2::equal-x-constant x pat) tests)
          bindings))
     ((and (eq (car pat) 'quote~)
           (consp (cdr pat))
           (symbolp (cadr pat))
           (null (cddr pat)))
      (mv (cons (list 'symbol-name-equal x (symbol-name (cadr pat))) tests)
          bindings))
     (t (mv-let (tests1 bindings1)
          (match-tests-and-bindings (list 'car x) (car pat)
                                    (cons (list 'consp x) tests)
                                    bindings)
          (match-tests-and-bindings (list 'cdr x) (cdr pat)
                                    tests1 bindings1))))))

(defthm match-tests-and-bindings-guards1
  (implies (tlp y)
           (tlp (mv-nth 0 (match-tests-and-bindings x pat y z))))
  :rule-classes :type-prescription)

(defthm match-tests-and-bindings-guards3
  (implies (tlp z)
           (tlp (mv-nth 1 (match-tests-and-bindings x pat y z))))
  :rule-classes :type-prescription)

(defthm match-tests-and-bindings-guards2
  (implies (symbol-doublet-listp z)
           (symbol-doublet-listp (mv-nth 1 (match-tests-and-bindings x pat y z)))))

(verify-guards match-tests-and-bindings)

(defun match-clause (x pat forms)
  (declare (xargs :guard t))
  (mv-let (tests bindings)
    (match-tests-and-bindings x pat nil nil)
    (list (if (null tests)
              t
            (cons 'and (reverse tests)))
          (cons 'let (cons (reverse bindings) forms)))))

(definec gen-match-body1
  (exp :all pats :tl codes :true-list-list) :tl
  :pre (match-pats-codes pats codes)
  :skip-tests t
  :timeout 500
  (declare (xargs :consider-only-ccms ((acl2s-size codes) (acl2s-size pats))))
  (if (endp pats)
      nil
    (b* ((pat (car pats))
         (code (car codes))
         (or? (match-or pat))
         (pat (if (and or? (null (cdr or?))) (car or?) pat))
         (or? (if (and or? (null (cdr or?))) nil or?))
         (type? (match-type pat))
         (t? (match-t pat)))
      (cond
       (type?
        (if (atom (cdr code))
            (cons `((,type? ,exp) ,(car code))
                  (gen-match-body1 exp (cdr pats) (cdr codes)))
          (cons `((,type? ,exp)
                  ,(cons 'cond
                         (append
                          (gen-match-body1
                           exp
                           (strip-cars code)
                           (strip-cdrs code))
                          '((t (illegal 'match "match is not exhaustive" ()))))))
                (gen-match-body1 exp (cdr pats) (cdr codes)))))
       (or?
        (append (gen-match-body1 exp (list (car or?)) (list code))
                (gen-match-body1 exp `((:or ,@(cdr or?)) ,@(cdr pats)) codes)))
       (t? (cons `(,(car t?) ,(car code))
                 (gen-match-body1 exp (cdr pats) (cdr codes))))
       (t (if (eq pat '&)
              (list (match-clause exp '& code))
            (cons (match-clause exp pat code)
                  (gen-match-body1 exp (cdr pats) (cdr codes)))))))))

(definec gen-match-body
  (exp :all pats :tl codes :true-list-list) :tl
  :pre (match-pats-codes pats codes)
  :skip-tests t
  :timeout 500
  (declare (xargs :consider-only-ccms ((acl2s-size codes))))
  ;; To enforce exhaustiveness
  (append (gen-match-body1 exp pats codes)
          '((t (illegal 'match "match is not exhaustive" ())))))
  
(definec match-fun (exp :all args :alist) :tl
  :pre (true-list-listp (strip-cdrs args))
  :pre (tlp (strip-cars args))
  :pre (match-pats-codes (strip-cars args)
                         (strip-cdrs args))
  (b* ((pats  (strip-cars args))
       (codes (strip-cdrs args)))
    (cons 'cond
          (gen-match-body exp pats codes))))

(defmacro match (exp &rest args)
  (match-fun exp args))

;(in-theory (disable strip-cars strip-cdrs))

(include-book "xdoc/top" :dir :system)

(defxdoc match
  :parents (acl2::acl2-sedan acl2::defdata)
  :short "Pattern matching supporting predicates, including
  recognizers automatically generated by @(see defdata),
  disjunctive patterns and patterns containing arbitrary code.
  Can be thought of as ACL2s version of @(see? case-match)."
  :long
  "
<h3>Examples</h3>

@({

  ;; Predicate/recognizer patterns are defined using keywords.
  ;; The keyword pos corresponds to the recognizer posp. For all
  ;; keywords except atom, we generate the corresponding
  ;; predicate/recognizer by adding a p to the end of the symbol.
  
  ;; This function, given an integer as input, returns 1 if it is
  ;; positive, else 2 if it is even, else 3. Match forms are checked
  ;; to make sure that they are exhaustive. If not, that is an error,
  ;; e.g., if you remove one of the cases to match, you will get an
  ;; error. Note that :even gets turned into the predicate evenp,
  ;; which is not a recognizer (as its domain is not all).
  
  (definec int-class (x :int) :pos
    (match x
      (:pos 1)
      (:even 2)
      (:neg 3)))

  ;; Here is a more complex example, showing that predicate/recognizer
  ;; patterns can be nested. The match form matches any positive x,
  ;; and then checks if it even or odd. The nested match forms must
  ;; also be exhaustive, given that x is positive. If x is not
  ;; positive, then we check if it is negative and then we perform
  ;; another nested check. 

  ;; Finally, we check if x is 0. Constants such as 0 can be used as
  ;; patterns, as shown below.
  
  (definec int-class2 (x :int) :pos
    (match x
      (:pos 
       (:even 1)
       (:odd 2))
      (:neg
       (:even 3)
       (:odd 4))
      (0 5)))
    
  ;; The next definition is equivalent to the previous definition, but
  ;; makes maximal use of &.
  
  ;; & matches anything and is not bound. Repeated occurrences of &
  ;; may match different structures. 

  (definec int-class3 (x :int) :pos
    (match x
      (:pos 
       (:even 1)
       (& 2))
      (:neg
       (:even 3)
       (& 4))
      (& 5)))
  
  (definec fact (n :nat) :pos
    (match n
      (0 1)
      (& (* n (fact (1- n))))))

  ;; The following three definitions of fib are equivalent.

  ;; Disjunctive patterns are defined with the use of :or, as shown in
  ;; the first definition of fib. This match form can be thought of as
  ;; expanding into the match form of the second version of fib. A
  ;; disjunctive pattern can have any positive number of patterns.
  
  (definec fib (n :nat) :pos
    :skip-tests t
    (match n
      ((:or 0 1) 1)
      (& (+ (fib (1- n)) (fib (- n 2))))))
  
  (definec fib (n :nat) :pos
    :skip-tests t
    (match n
      (0 1)
      (1 1)
      (& (+ (fib (1- n)) (fib (- n 2))))))

  ;; Patterns with arbitrary code are defined with the use of :t, as
  ;; shown below, where the pattern checks if n is less than 2.
  
  (definec fib (n :nat) :pos
    :skip-tests t
    (match n
      ((:t (< n 2)) 1)
      (& (+ (fib (1- n)) (fib (- n 2))))))

  ;; The following definitions of pascal are equivalent.

  ;; !sym, where sym is a symbol that is already bound in the context
  ;; of the match form, matches only the current binding of
  ;; sym. Hence, in the first definition of pascal, the last pattern
  ;; in the :or form matches a list whose first element is anything,
  ;; but whose second element is i (the first argument to
  ;; pascal). Notice that the first argument is also i, which explains
  ;; the equivalence between the two versions of pascal.
  
  (definec pascal (i :nat j :nat) :pos
    :skip-tests t
    (match (list i j)
      ((:or (0 &) (& 0) (& !i)) 1)
      (& (+ (pascal (1- i) (1- j))
            (pascal (1- i) j)))))

  (definec pascal (i :nat j :nat) :pos
    :skip-tests t
    (match (list i j)
      ((0 &) 1)
      ((& 0) 1)
      ((!i !i) 1)
      (& (+ (pascal (1- i) (1- j))
            (pascal (1- i) j)))))

  ;; The following examples show how to use match with conses.  In mem,
  ;; we first check if x is nil. The symbols nil, t, *sym* and cannot
  ;; be bound and only match their global values, as was the case for
  ;; constants, as we have seen above. The pattern (f . r) matches any
  ;; cons, with f being the car and r being the cdr. Since mem is
  ;; checking whether e is a member of x, notice the use of !e to
  ;; match e with the first element of x.
  
  (definec mem (e :all x :tl) :bool
    (match x
      (nil nil)
      ((!e . &) t)
      ((& . r) (mem e r))))

  (definec subset (x :tl y :tl) :bool
    (match x
      (nil t)
      ((f . r) (and (mem f y) (subset r y)))))
  
  ;; If you want to match an object, say obj, you can use the pattern
  ;; 'obj.  This allows you to match keywords that may otherwise be
  ;; interpreted as types.
  
  ;; Here is the definition of the built-in function acl2-count.

  (defun acl2-count (x)
    (declare (xargs :guard t :mode :program))
    (if (consp x)
        (+ 1 (acl2-count (car x))
           (acl2-count (cdr x)))
      (if (rationalp x)
          (if (integerp x)
              (integer-abs x)
            (+ (integer-abs (numerator x))
               (denominator x)))
        (if (complex/complex-rationalp x)
            (+ 1 (acl2-count (realpart x))
               (acl2-count (imagpart x)))
          (if (stringp x)
              (length x)
            0)))))

  ;; Here is an equivalent definition using match. 

  (definec acl2-count2 (x :all) :nat
    (match x
      ((a . b) (+ 1 (acl2-count2 a) (acl2-count2 b)))
      (:rational
       (:integer (integer-abs x))
       (& (+ (integer-abs (numerator x))
             (denominator x))))
      ((:r complex/complex-rationalp)
       (+ 1 (acl2-count2 (realpart x))
          (acl2-count2 (imagpart x))))
      (:string (length x))
      (& 0)))

  
  ;; Note that the two definitions are equivalent, 
  ;; as the following is a theorem. 

  (thm (equal (acl2-count2 x) (acl2-count x)))

  ;; More complex patterns than (f . r) can be used to match with
  ;; conses and lists. For example, (x x y), ('x (':x x) . t), and
  ;; ('x (:x x)) are allowed patterns. The first pattern matches
  ;; (1 1 2), ((1 2) (1 2) (3)), etc. The second pattern only matches
  ;; lists whose first element is the symbol x, whose second element
  ;; is a list of length two whose first element is the keyword x, and
  ;; whose cddr is t. The third pattern only matches lists of length
  ;; two, whose first element is the symbol x and whose second element
  ;; is a list of length two whose first element is of type x (i.e.,
  ;; recognized by xp).

  ;; There are restrictions on the patterns that are used to match
  ;; conses and lists. At the top level, all of the patterns above are
  ;; allowed, but inside of such patterns, disjunctive patterns, and
  ;; code patterns (using :t) are not supported. Type patterns (such
  ;; as :int, :bool, (:r intp), etc) are supported.

})

<h3>Purpose</h3>

<p> The macro @(see match) provides pattern matching.  It includes the
functionality similar to that provided by @(see? case-match) and more.
It supports predicate/recognizer patterns in a style similar to how
@(see?  definec) allows you to specify @(see? defdata) types. These
patterns can be nested. The @(see match) macro also provides
disjunctive patterns and patters containing arbitrary code.  Patterns
are required to be exhaustive.  </p>

<p> There are two ways to specify predicates/recognizers. One is to
use a keyword, such as :rational; see the examples above. Such
keywords are turned into predicates/recognizers by creating a regular
symbol with a \"p\" at the end, e.g., :rational gets turned into
rationalp (the only special case is that :atom gets turned into
atom). The generated symbols are in the ACL2s package. The more
general mechanism is to specify a predicate/recognizer using the
(:r predicate/recognizer) form; an example is
(:r complex/complex-rationalp) in the acl2-count2 definition above. In
this way, you can also specify the package of the
predicate/recognizer.  </p>

<p>If you want to match a keyword, you can do that by quoting it.
So <tt>':rational</tt> matches the keyword, not the type.</p>

<p> If you are matching a predicate/recognizer, you can either have a
single form after that, in which case, that form is an ACL2 expression
that gets associated with the predicate/recognizer, or you can have a
list of forms, in which case they are treated as nested matching
forms.  An example of such nesting is shown in the :rational case of
the match in the definition of acl2-count2, above.  </p>

<p>
Disjunctive patterns and patterns containing arbitrary code are also
supported. See the examples above.
</p>

<p>
If you are not matching any of the above patterns
(predicate/recognizer, disjunctive, code), then match behaves like
@(see? case-match).  </p>

<p> One important difference with @(see? case-match) is that match
requires that the cases are exhaustive (or complete). It does this by,
essentially, adding the following as a final case.  </p>

@({

 (& (illegal 'match \"match is not exhaustive\" ()))

})

<p> During contract checking (or guard verification), if the above
case is reachable, that will lead to an error.  The reason for this is
to not have any hidden control flow, which can make debugging hard.
Finally, we note that nested patterns are also required to be
exhaustive. 
</p>

"
  )

#|

Examples and proof mentioned in documentation.

(definec acl2s-size- (x :all) :nat
  (match x
    ((a . b) (+ 1 (acl2s-size- a) (acl2s-size- b)))
    (:rational (integer-abs (numerator x)))
    ((:r stringp) (length x))
    (& 0)))

(definec acl2-count2 (x :all) :nat
  (match x
    ((a . b) (+ 1 (acl2-count2 a) (acl2-count2 b)))
    (:rational
     (:integer (integer-abs x))
     (& (+ (integer-abs (numerator x))
           (denominator x))))
    ((:r complex/complex-rationalp)
     (+ 1 (acl2-count2 (realpart x))
        (acl2-count2 (imagpart x))))
    (:string (length x))
    (& 0)))

(thm (equal (acl2-count2 x) (acl2-count x)))
|#

#|

Testing.

(include-book "xdoc/debug" :dir :system)
:doc match

|#


#|

Maybe be useful at some point

(defdata alist2 (or nil (cons (list* all all all) alist2)))

(definec strip-cadrs (x :alist2) :tl
  (if (endp x)
      nil
    (cons (cadr (car x))
          (strip-cadrs (cdr x)))))

(defdata
  (sterm (or atom quote (cons fsterm lsterm)))
  (fsterm (or symbol (list 'lambda symbol-list sterm)))
  (lsterm (listof sterm)))

(defun nth-simple-term-builtin (n)
  (declare (xargs :guard (natp n) :mode :program))
  (nth-sterm-builtin n))

(defun nth-simple-term-list-builtin (n)
  (declare (xargs :guard (natp n) :mode :program))
  (nth-lsterm-builtin n))

(register-type
  simple-term :predicate simple-termp
  :enumerator nth-simple-term-builtin)

(register-type
  simple-term-list :predicate simple-term-listp
  :enumerator nth-simple-term-list-builtin)

|#