File: inequalities.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (165 lines) | stat: -rw-r--r-- 4,467 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
; See the top-level arithmetic-2 LICENSE file for authorship,
; copyright, and license information.

;;
;; inequalities.lisp
;;

(in-package "ACL2")

(local (include-book "basic-arithmetic"))

; ??? I'm not convinced we should be apply FC to REAL/RATIONALP hypotheses,
; but for now I'll go ahead and do so at times.

(defmacro fc (x)
  x)

;; I need iff-equal for the next batch of theorems up till
;; <-*-right-cancel (which is in fact proved in
;; inequalities-helper.lisp).

(local
 (defthm iff-equal
   (equal (equal (< w x) (< y z))
	  (iff (< w x) (< y z)))))

(defthm /-preserves-positive
  (implies (real/rationalp x)
	   (equal (< 0 (/ x))
		  (< 0 x))))

(defthm /-preserves-negative
  (implies (real/rationalp x)
	   (equal (< (/ x) 0)
		  (< x 0))))

(defthm <-0-minus
  (equal (< 0 (- x))
         (< x 0)))

(defthm <-minus-zero
  (equal (< (- x) 0)
         (< 0 x)))

(defthm <-minus-minus
  (equal (< (- x) (- y))
	 (< y x)))

(defthm <-0-+-negative-1
  (equal (< 0 (+ (- y) x))
         (< y x)))

(defthm <-0-+-negative-2
  (equal (< 0 (+ x (- y)))
         (< y x)))

(defthm <-+-negative-0-1
  (equal (< (+ (- y) x) 0)
         (< x y)))

(defthm <-+-negative-0-2
  (equal (< (+ x (- y)) 0)
         (< x y)))

(defthm <-*-0
  (implies (and (real/rationalp x)
                (real/rationalp y))
           (equal (< (* x y) 0)
                (and (not (equal x 0))
                     (not (equal y 0))
                     (iff (< x 0)
                          (< 0 y))))))

(defthm 0-<-*
  (implies (and (real/rationalp x)
                (real/rationalp y))
           (equal (< 0 (* x y))
                (and (not (equal x 0))
                     (not (equal y 0))
                     (iff (< 0 x)
                          (< 0 y))))))

; The following two lemmas could be extended by adding two more such
; lemmas, i.e. for (< (* x z) (* z y)) and (< (* z x) (* y z)), but
; rather than incur that overhead here and in any other such cases
; (and besides, how about for example (< (* x z a) (* z a y))?), I'll
; wait for metalemmas to handle such things.

(defthm <-*-right-cancel
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y))
                (fc (real/rationalp z)))
           (equal (< (* x z) (* y z))
		  (cond ((< 0 z) (< x y))
			((< z 0) (< y x))
			((equal z 0) nil)
			(t nil))))
  :hints (("Goal" :use ((:instance
                         (:theorem
                          (implies (and (real/rationalp a)
                                        (< 0 a)
                                        (real/rationalp b)
                                        (< 0 b))
                                   (< 0 (* a b))))
                         (a (abs (- y x)))
                         (b (abs z))))
                  :in-theory (disable |0-<-*|))))

(defthm <-*-left-cancel
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y))
                (fc (real/rationalp z)))
           (equal (< (* z x) (* z y))
		  (cond ((< 0 z) (< x y))
			((< z 0) (< y x))
			((equal z 0) nil)
			(t nil)))))

(defthm <-*-x-y-y
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y)))
	   (equal (< (* x y) y)
		  (cond
                   ((< 0 y) (< x 1))
                   ((< y 0) (< 1 x))
                   ((equal y 0) nil)
		   (t nil))))
  :hints (("Goal" :use ((:instance <-*-right-cancel
                                   (x x)
                                   (y 1)
                                   (z y))))))

(defthm <-*-y-x-y
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y)))
	   (equal (< (* y x) y)
		  (cond
                   ((< 0 y) (< x 1))
                   ((< y 0) (< 1 x))
                   ((equal y 0) nil)
                   (t nil)))))

(defthm <-y-*-x-y
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y)))
	   (equal (< y (* x y))
		  (cond
                   ((< 0 y) (< 1 x))
                   ((< y 0) (< x 1))
                   ((equal y 0) nil)
                   (t nil))))
  :hints (("Goal" :use ((:instance <-*-right-cancel
                                   (x 1)
                                   (y x)
                                   (z y))))))

(defthm <-y-*-y-x
  (implies (and (fc (real/rationalp x))
		(fc (real/rationalp y)))
	   (equal (< y (* y x))
		  (cond
                   ((< 0 y) (< 1 x))
                   ((< y 0) (< x 1))
                   ((equal y 0) nil)
                   (t nil)))))