1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
; See the top-level arithmetic-2 LICENSE file for authorship,
; copyright, and license information.
;;
;; prefer-times.lisp
;;
;
; This is a small theory of rules that eliminate / from equalites and
; inequalities in favor of *, e.g., x < y/z is rewritten to x*y < z for
; positive z. This theory is compatible with the other theories, i.e.,
; it should not cause looping.
;
; These rules are not included by default bacause it is not clear
; that we should prefer x*y < z to x < y/z, or x*y = z to x = y/z';
; in fact, the whole point of the proofs using these libraries may
; have to do with a representation involving /.
;
; So, unless someone provides a convincing reason to the contrary,
; these rules will remain separate from the rest of the theory.
;
; Note, however, that in certain cases this theory is just the thing that
; needs to be ENABLEd to make the proofs work. Keep it in mind.
;
(in-package "ACL2")
(local (include-book "basic-arithmetic"))
(local (include-book "inequalities"))
(local
(defthm iff-equal
(equal (equal (< w x) (< y z))
(iff (< w x) (< y z)))))
(defthm equal-*-/-1
(equal (equal (* (/ x) y) z)
(if (equal (fix x) 0)
(equal z 0)
(and (acl2-numberp z)
(equal (fix y) (* x z))))))
(defthm equal-*-/-2
(equal (equal (* y (/ x)) z)
(if (equal (fix x) 0)
(equal z 0)
(and (acl2-numberp z)
(equal (fix y) (* z x))))))
(local
(defthm times-one
(implies (acl2-numberp x)
(equal (* 1 x)
x))))
(local
(defthm times-minus-one
(implies (acl2-numberp x)
(equal (* -1 x)
(- x)))))
(defthm normalize-<-/-to-*-1
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (< x (/ y))
(cond ((< y 0) (< 1 (* x y)))
((< 0 y) (< (* x y) 1))
(t (< x 0)))))
:hints (("Goal" :use ((:instance <-*-right-cancel
(x x)
(y (/ y))
(z y))
(:instance right-cancellation-for-*
(x x)
(y (/ y))
(z y)))
:in-theory (disable equal-/))))
(defthm normalize-<-/-to-*-2
(implies (and (real/rationalp x)
(real/rationalp y))
(equal (< (/ y) x)
(cond ((< y 0) (< (* x y) 1))
((< 0 y) (< 1 (* x y)))
(t (< 0 x)))))
:hints (("Goal" :use ((:instance <-*-right-cancel
(x (/ y))
(y x)
(z y))
(:instance right-cancellation-for-*
(x (/ y))
(y x)
(z y)))
:in-theory (disable equal-/ normalize-<-/-to-*-1))))
(defthm normalize-<-/-to-*-3-1
(implies (and (real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(equal (< x (* y (/ z)))
(cond ((< z 0) (< y (* x z)))
((< 0 z) (< (* x z) y))
(t (< x 0)))))
:hints (("Goal" :use ((:instance <-*-right-cancel
(x x)
(y (* y (/ z)))
(z z))))))
(defthm normalize-<-/-to-*-3-2
(implies (and (real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(equal (< x (* (/ z) y))
(cond ((< z 0) (< y (* x z)))
((< 0 z) (< (* x z) y))
(t (< x 0))))))
(defthm normalize-<-/-to-*-3-3
(implies (and (real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(equal (< (* y (/ z)) x)
(cond ((< z 0) (< (* x z) y))
((< 0 z) (< y (* x z)))
(t (< 0 x)))))
:hints (("Goal" :use ((:instance <-*-right-cancel
(x (* y (/ z)))
(y x)
(z z)))
:in-theory (disable NORMALIZE-<-/-TO-*-3-1))))
(defthm normalize-<-/-to-*-3-4
(implies (and (real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(equal (< (* (/ z) y) x)
(cond ((< z 0) (< (* x z) y))
((< 0 z) (< y (* x z)))
(t (< 0 x))))))
(deftheory prefer-*-to-/
'(equal-*-/-1 equal-*-/-2
normalize-<-/-to-*-1 normalize-<-/-to-*-2
normalize-<-/-to-*-3-1 normalize-<-/-to-*-3-2
normalize-<-/-to-*-3-3 normalize-<-/-to-*-3-4))
(in-theory (disable prefer-*-to-/))
|