| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 
 | ; See the top-level arithmetic-3 LICENSE file for authorship,
; copyright, and license information.
;;
;; prefer-times.lisp
;;
;
;  This is a small theory of rules that eliminate / from equalites and
;  inequalities in favor of *, e.g., x < y/z is rewritten to x*y < z for
;  positive z.  This theory is compatible with the other theories, i.e.,
;  it should not cause looping.
;
;  These rules are not included by default bacause it is not clear
;  that we should prefer x*y < z to x < y/z, or x*y = z to x = y/z';
;  in fact, the whole point of the proofs using these libraries may
;  have to do with a representation involving /.
;
;  So, unless someone provides a convincing reason to the contrary,
;  these rules will remain separate from the rest of the theory.
;
;  Note, however, that in certain cases this theory is just the thing that
;  needs to be ENABLEd to make the proofs work.  Keep it in mind.
;
(in-package "ACL2")
(local (include-book "basic-arithmetic"))
(local (include-book "inequalities"))
(set-default-hints
 '((nonlinearp-default-hint-pass1 stable-under-simplificationp
                                  hist pspv)))
(local
 (defthm iff-equal
   (equal (equal (< w x) (< y z))
	  (iff (< w x) (< y z)))))
(defthm equal-*-/-1
  (equal (equal (* (/ x) y) z)
	 (if (equal (fix x) 0)
	     (equal z 0)
	     (and (acl2-numberp z)
		  (equal (fix y) (* x z))))))
(defthm equal-*-/-2
  (equal (equal (* y (/ x)) z)
	 (if (equal (fix x) 0)
	     (equal z 0)
	     (and (acl2-numberp z)
		  (equal (fix y) (* z x))))))
(local
 (defthm times-one
   (implies (acl2-numberp x)
	    (equal (* 1 x)
		   x))))
(local
 (defthm times-minus-one
   (implies (acl2-numberp x)
	    (equal (* -1 x)
		   (- x)))))
(local
 (in-arithmetic-theory '((:rewrite COMMUTATIVITY-OF-*)
			(:REWRITE COMMUTATIVITY-2-OF-*)
			(:REWRITE INVERSE-OF-*)
			(:REWRITE TIMES-ONE)
			(:REWRITE TIMES-MINUS-ONE))))
(defthm normalize-<-/-to-*-1
  (implies (and (rationalp x)
		(rationalp y))
	   (equal (< x (/ y))
		  (cond ((< y 0) (< 1 (* x y)))
			((< 0 y) (< (* x y) 1))
			(t (< x 0))))))
(defthm normalize-<-/-to-*-2
  (implies (and (rationalp x)
		(rationalp y))
		(equal (< (/ y) x)
		       (cond ((< y 0) (< (* x y) 1))
			     ((< 0 y) (< 1 (* x y)))
			     (t (< 0 x))))))
(defthm normalize-<-/-to-*-3-1
  (implies (and (rationalp x)
		(rationalp y)
		(rationalp z))
	   (equal (< x (* y (/ z)))
		  (cond ((< z 0) (< y (* x z)))
			((< 0 z) (< (* x z) y))
			(t (< x 0))))))
(defthm normalize-<-/-to-*-3-2
  (implies (and (rationalp x)
		(rationalp y)
		(rationalp z))
	   (equal (< x (* (/ z) y))
		  (cond ((< z 0) (< y (* x z)))
			((< 0 z) (< (* x z) y))
			(t (< x 0))))))
(defthm normalize-<-/-to-*-3-3
  (implies (and (rationalp x)
		(rationalp y)
		(rationalp z))
	   (equal (< (* y (/ z)) x)
		  (cond ((< z 0) (< (* x z) y))
			((< 0 z) (< y (* x z)))
			(t (< 0 x))))))
(defthm normalize-<-/-to-*-3-4
  (implies (and (rationalp x)
		(rationalp y)
		(rationalp z))
	   (equal (< (* (/ z) y) x)
		  (cond ((< z 0) (< (* x z) y))
			((< 0 z) (< y (* x z)))
			(t (< 0 x))))))
(deftheory prefer-*-to-/
  '(equal-*-/-1 equal-*-/-2
    normalize-<-/-to-*-1 normalize-<-/-to-*-2
    normalize-<-/-to-*-3-1 normalize-<-/-to-*-3-2
    normalize-<-/-to-*-3-3 normalize-<-/-to-*-3-4))
(in-theory (disable prefer-*-to-/))
 |