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Recap

Yesterday’s Talk: ACL2 is used routinely in the

microprocessor industry to prove theorems about

designs.

Today’s Talk: How ACL2 works and what it takes

to use it.
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Instead of debugging a program, one should prove

that it meets its specifications, and this proof

should be checked by a computer program.

— John McCarthy, “A Basis for a Mathematical

Theory of Computation,” 1961
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A Few Axioms

• t 6= nil

• x = nil → (if x y z) = z

• x 6= nil → (if x y z) = y

• (car (cons x y)) = x

• (cdr (cons x y)) = y

• (endp nil) = t

• (endp (cons x y)) = nil

ACL2 includes primitives for integers, rationals,

complex rationals, conses, symbols, characters, and

strings.
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(cons x y): 〈x, y〉

(car pair) : head(pair) or left component

(cdr pair) : tail(pair) or right component

The constant ’(1 2 3) abbreviates

(cons 1 (cons 2 (cons 3 nil)))

e.g., 〈1, 〈2, 〈3,nil〉〉〉.
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Theorems Proved: 1970s

• ap is associative:

(equal (ap (ap a b) c)

(ap a (ap b c)))

∀a∀b∀c : ap(ap(a,b),c) = ap(a,ap(b,c)).
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Definition

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

(ap ’(1 2 3) ’(4 5 6))

= (cons 1 (ap ’(2 3) ’(4 5 6)))

= (cons 1 (cons 2 (ap ’(3) ’(4 5 6))))

= (cons 1 (cons 2 (cons 3 (ap nil ’(4 5 6)))))

= ’(1 2 3 4 5 6)
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(equal (ap (ap a b) c)

(ap a (ap b c)))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap (ap a b) c)

(ap a (ap b c)))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

T
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

26



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))
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(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T
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(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Q.E.D.
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ACL2 Demo 1 – Basic
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ACL2 Demo 2 – User Guidance
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ACL2 Community Books

https://github.com/acl2/acl2/books/

contains 5,780 user-supplied books, with 62,242

definitions and 123,804 theorems (as of Feb 2016).
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1980s Academic Math

• undecidability of the halting problem

(18 lemmas)

• invertibility of RSA encryption

(172 lemmas)

• Gauss’ law of quadratic reciprocity [Russinoff]

(348 lemmas)

• Gödel’s First Incompleteness Theorem [Shankar]

(1741 lemmas)
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1980s Academic CS

• The CLI Verified Stack:

– microprocessor: gates to machine code [Hunt]

– assembler-linker-loader

(3326 lemmas)

– compilers [Young, Flatau]

– operating system [Bevier]

– applications [Wilding]

All the theorems “fit together:” a theorem proved

about an app holds when the binary image of the

app is run at the gate level.
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The gate level design was fabricated (in 1992).
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Demo 3 – Speeding Up
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Verified Tools and Efficiency

ACL2 is extensible: if you program a theorem prover

in ACL2 (applicative Common Lisp) and prove it

correct with ACL2, then ACL2 can use your prover

during its proofs.

This feature is used over 150 times in the

Community Books to do things like:
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• normalize arithmetic expressions denoting

machine addresses

• compute bounds on some expressions

• add verified decision procedures (e.g., BDD)

• transform some formulas into different domains

(e.g., bounded arithmetic problems into Boolean

problems for “bit-blasting”)

• checking proofs by other tools
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Demo 4 – Verified Tool

49



Checking SAT Proofs

Marijn Heule used SAT to prove the Boolean

Pythagorean Theorem: Every red/blue colouring of

the positive integers contains a monochromatic

solution of a2 + b2 = c2.

This can be finitised and solved with a propositional

satisfiability checker (Glucose).

The proof is big.
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Proof production (solving) time: 13,516 CPU hours

Proof Size: 192 terabytes

= 192,000 gigabytes

Proof Optimization: 22,605 CPU hours

Proof Size: 194 terabytes

Computing Platform: Lonestar5 cluster using 1200

CPUs. Total wall-clock time: 34 hours.

But SAT proofs have a history of being incorrect

and so the SAT community has agreed that they

should be checked by verified checkers.
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SAT proof checker:

(implies (and (formula-p formula)

(refutation-p proof formula))

(not (satisfiable formula))))

Refutation-p takes about 8 pages of ACL2 code

to write down.

Verified with ACL2 by Matt Kaufmann.
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Proof production (solving) time: 13,516 CPU hours

Proof Size: 192 terabytes (= 192,000

Proof Optimization: 22,605 CPU hours

Proof Size: 194 terabytes

Verified ACL2 Checker: 8,651 CPU hours

The verified ACL2 checker runs at about half the

speed of the fastest (unverified) checker.

But it runs about 10 times faster than the checker

verified with Coq.

It is used in SAT competitions to check the claims

of the winners.
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Trustworthy checking of huge proofs/computations

is feasible.
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Take Home Message

Mechanical theorem-proving is used in industry.

Humans are needed to formalize specifications and

steer the prover.

Precision and mathematical creativity are needed.

But the machine takes responsibility for the

correctness of proofs.

It is both challenging and liberating.
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