
An Industrially Useful Prover

J Strother Moore
Department of Computer Science
University of Texas at Austin

July, 2017

1



Recap

Yesterday’s Talk: ACL2 is used routinely in the

microprocessor industry to prove theorems about

designs.

Today’s Talk: How ACL2 works and what it takes

to use it.

2



Instead of debugging a program, one should prove

that it meets its specifications, and this proof

should be checked by a computer program.

— John McCarthy, “A Basis for a Mathematical

Theory of Computation,” 1961

3



Boyer-Moore Project

Kaufmann

McCarthy’s ‘‘Theory of Computation’’

ACL2

Edinburgh Pure Lisp Theorem Prover

A Computational Logic

NQTHM

1960 1970 1980 1990 2000 2010

Boyer
Moore

4



Theorems Proved

regularcommercial
applications

breakthrough

1960 1970 1980 1990 2000 2010

simple list processing

academic math and cs

commercial
applications

5



Theorems Proved

simple list processing

commercial
applications

breakthrough

1960 1970 1980 1990 2000 2010

academic math and cs

commercial
applications

regular

6



A Few Axioms

• t 6= nil

• x = nil → (if x y z) = z

• x 6= nil → (if x y z) = y

• (car (cons x y)) = x

• (cdr (cons x y)) = y

• (endp nil) = t

• (endp (cons x y)) = nil

ACL2 includes primitives for integers, rationals,

complex rationals, conses, symbols, characters, and

strings.

7



(cons x y): 〈x, y〉

(car pair) : head(pair) or left component

(cdr pair) : tail(pair) or right component

The constant ’(1 2 3) abbreviates

(cons 1 (cons 2 (cons 3 nil)))

e.g., 〈1, 〈2, 〈3,nil〉〉〉.

8



Theorems Proved: 1970s

• ap is associative:

(equal (ap (ap a b) c)

(ap a (ap b c)))

∀a∀b∀c : ap(ap(a,b),c) = ap(a,ap(b,c)).

9



Definition

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

(ap ’(1 2 3) ’(4 5 6))

= (cons 1 (ap ’(2 3) ’(4 5 6)))

= (cons 1 (cons 2 (ap ’(3) ’(4 5 6))))

= (cons 1 (cons 2 (cons 3 (ap nil ’(4 5 6)))))

= ’(1 2 3 4 5 6)

10



(equal (ap (ap a b) c)

(ap a (ap b c)))

11



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

12



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap (ap a b) c)

(ap a (ap b c)))

13



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

14



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

15



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))

16



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (ap b c)

(ap b c))

17



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Base Case: (endp a).

T

18



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

19



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

20



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

21



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

22



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

23



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

24



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

25



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

26



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

27



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

28



(equal (ap (ap (cdr a) b) c) ; Ind Hyp

(ap (cdr a) (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

29



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T

30



(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: by induction on a.

Q.E.D.

31



ACL2 Demo 1 – Basic

32



Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

33



Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

34



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

35



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

36



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

37



Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

38



ACL2 Demo 2 – User Guidance

39



ACL2 Community Books

https://github.com/acl2/acl2/books/

contains 5,780 user-supplied books, with 62,242

definitions and 123,804 theorems (as of Feb 2016).

40



Theorems Proved: 1980s

regularcommercial
applications

breakthrough

1960 1970 1980 1990 2000 2010

simple list processing

academic math and cs

commercial
applications

41



1980s Academic Math

• undecidability of the halting problem

(18 lemmas)

• invertibility of RSA encryption

(172 lemmas)

• Gauss’ law of quadratic reciprocity [Russinoff]

(348 lemmas)

• Gödel’s First Incompleteness Theorem [Shankar]

(1741 lemmas)

42



1980s Academic CS

• The CLI Verified Stack:

– microprocessor: gates to machine code [Hunt]

– assembler-linker-loader

(3326 lemmas)

– compilers [Young, Flatau]

– operating system [Bevier]

– applications [Wilding]

All the theorems “fit together:” a theorem proved

about an app holds when the binary image of the

app is run at the gate level.

43



The gate level design was fabricated (in 1992).

44



Theorems Proved: 1990s

breakthrough

1960 1970 1980 1990 2000 2010

simple list processing

academic math and cs

commercial
applications

regularcommercial
applications

45



Demo 3 – Speeding Up

46



Verified Tools and Efficiency

ACL2 is extensible: if you program a theorem prover

in ACL2 (applicative Common Lisp) and prove it

correct with ACL2, then ACL2 can use your prover

during its proofs.

This feature is used over 150 times in the

Community Books to do things like:

47



• normalize arithmetic expressions denoting

machine addresses

• compute bounds on some expressions

• add verified decision procedures (e.g., BDD)

• transform some formulas into different domains

(e.g., bounded arithmetic problems into Boolean

problems for “bit-blasting”)

• checking proofs by other tools

48



Demo 4 – Verified Tool

49



Checking SAT Proofs

Marijn Heule used SAT to prove the Boolean

Pythagorean Theorem: Every red/blue colouring of

the positive integers contains a monochromatic

solution of a2 + b2 = c2.

This can be finitised and solved with a propositional

satisfiability checker (Glucose).

The proof is big.

50



Proof production (solving) time: 13,516 CPU hours

Proof Size: 192 terabytes

= 192,000 gigabytes

Proof Optimization: 22,605 CPU hours

Proof Size: 194 terabytes

Computing Platform: Lonestar5 cluster using 1200

CPUs. Total wall-clock time: 34 hours.

But SAT proofs have a history of being incorrect

and so the SAT community has agreed that they

should be checked by verified checkers.

51



SAT proof checker:

(implies (and (formula-p formula)

(refutation-p proof formula))

(not (satisfiable formula))))

Refutation-p takes about 8 pages of ACL2 code

to write down.

Verified with ACL2 by Matt Kaufmann.

52



Proof production (solving) time: 13,516 CPU hours

Proof Size: 192 terabytes (= 192,000

Proof Optimization: 22,605 CPU hours

Proof Size: 194 terabytes

Verified ACL2 Checker: 8,651 CPU hours

The verified ACL2 checker runs at about half the

speed of the fastest (unverified) checker.

But it runs about 10 times faster than the checker

verified with Coq.

It is used in SAT competitions to check the claims

of the winners.

53



Trustworthy checking of huge proofs/computations

is feasible.

54



Take Home Message

Mechanical theorem-proving is used in industry.

Humans are needed to formalize specifications and

steer the prover.

Precision and mathematical creativity are needed.

But the machine takes responsibility for the

correctness of proofs.

It is both challenging and liberating.

55


