File: sloop.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (1098 lines) | stat: -rw-r--r-- 39,296 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
;;; -*- Mode:LISP; Package: (SLOOP LISP);  Syntax:COMMON-LISP; Base:10 -*- ;;;;;;;;
;;;                                                                    ;;;;;
;;;     Copyright (c) 1985,86 by William Schelter,                     ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


;;Report bugs to atp.schelter@r20.utexas.edu
;;It comes with ABSOLUTELY NO WARRANTY but we hope it is useful.


;;The following code is meant to run in COMMON LISP and to provide
;;extensive iteration facilities, with very high backwards compatibility
;;with the traditional loop macro. It is meant to be publicly available!
;;Anyone is hereby given permission to copy it provided he does not make
;;ANY changes to the file unless he is William Schelter.  He may change
;;the behavior after loading it by resetting the global variables such
;;as like *Use-locatives*, *automatic-declarations*,..  listed at the
;;beginning of this file.  The original of this file is on
;;r20.utexas.edu:<atp.schelter>sloop.lisp  I am happy to accept suggestions
;;for different defaults for various implementations, or for improvements.

;;If you want to redefine the common lisp loop you may include in your code:
;;(defmacro loop (&body body)
;;  (parse-loop body))

;;         Principal New Features

;;Sloop is extremely user extensible so that you may easily redefine most
;;behavior, or add additional collections, and paths.  There are a number
;;of such examples defined in this file, including such constructs as
;;"for V in-fringe X", "sum V", "averaging V", "for SYM in-package Y",
;;"collate V" (for collecting X into an ordered list), "for (ELT I) in-array AR",
;;"for (KEY ELT) in-table FOO" (if foo is a hash table).  And of course
;;you can combine any collection method with any path.
;;Also there is iteration over products so that you may write
;;(sloop for I below K
;;       sloop (for J below I
;;          	    collecting (foo I J)))
;;Declare is fully supported.  The syntax would be
;;(sloop for u in l with v = 0
;;       declare (fixnum u v)
;;       do ....)

;;This extensibility is gained by the ability to define a "loop-macro",
;;which plays a role analagous to an ordiary lisp macro.  See eg.
;;definitions near that of "averaging".  Essentially a "loop-macro"
;;takes some arguments (supplied from the body of the loop following its
;;occurrence, and returns a new form to be stuffed onto the front of the
;;loop form, in place of it and its arguments).

;;Compile notes:
;;For dec-20 clisp load the lisp file before compiling.


;;there seems to be no unanimity about what in-package etc. does on loading
;;and compiling a file.  The following is as close to the examples in
;;the Common Lisp manual, as we could make it.
;;The user should put (require "SLOOP") and then (use-package "SLOOP")
;;early in his init file.  Note use of the string to avoid interning 'sloop
;;in some other package.


(in-package "SLOOP"  :use '(LISP))
(eval-when (compile eval load)
(provide "SLOOP")
(export '(loop-return sloop def-loop-collect def-loop-map
		      def-loop-for def-loop-macro local-finish
		      loop-finish) (find-package "SLOOP"))
)

;;some variables that may be changed to suit different implementations:

(eval-when (compile load eval)

(defparameter *use-locatives* nil "See sloop.lisp")   ;#+lispm t #-lispm nil
;;If t should have locf, such that (setf b nil) (setq a (locf b)) then if
;;(setf (cdr a) (cons 3 nil)) b==>(3).  This is useful for building lists
;;starting with a variable pointing to nil, since otherwise we must check
;;each time if the list has really been started, before we do a
;;(setf (cdr b) ..)

(defparameter *Automatic-declarations*
	      #+lispm nil
  #-lispm
  '(:from fixnum
	  :in #+kcl object #-kcl t
	  :collect #+kcl object #-kcl t ) "See sloop.lisp")
;; some other reasonable ones would be :count fixnum :max fixnum
;;Automatic declarations for variables in the stepping and collecting,
;;so for i below n, gives i and n a :from declaration (here fixnum)
;;for item in lis, gives (declare (t item))

(defvar *type-check* t "If t adds a type check on bounds of from loop if there
is and automatic declare")

(defparameter *macroexpand-hook-for-no-copy* #-(or lmi ti) 'funcall #+(or lmi ti) t)
;;some lisps remember a macro so that (loop-return) will expand eq forms
;;always in the same manner, even if the form is in a macrolet! To defeat this feature
;;we copy all macro expansions unless *macro-expand-hook* = *macroexpand-hook-for-no-copy*
)

#+kcl (eval-when (compile) (proclaim '(optimize (safety 2) (space 2))))

;;to do
;;Fix (declare (joe (type (array fixnum)))) type for declarations.

;;*****ONLY CONDITIONALIZATIONS BELOW HERE SHOULD BE FOR BUG FIXES******
;;eg. some  kcls don't return nil from a prog by default!

;;all macros here in here.
(eval-when (compile eval load)

(defparameter *sloop-translations* '((appending . append)
			 ((collecting collect) . collect)
			 ((maximizing maximize) . maximize)
			 ((minimizing minimize) . minimize)
			 (nconcing . nconc)
			 ((count counting) . count)
			 (summing . sum)
			 (if . when)
			 (as . for)
			 (in-fringe . in-fringe)
			 (collate . collate)
			 (in-table . in-table)
			 (in-carefully . in-carefully)
			 (averaging . averaging)
			 (repeat . repeat)
			 (first-use . first-use)
			 (in-array . in-array))
  "A list of cons's where the translation is the cdr, and the car
is a list of names or name to be translated.  Essentially allows 'globalizing'
a symbol for the purposes of being a keyword in a sloop")


(defparameter *additional-collections* nil)

(defmacro lcase (item &body body)
  (let (bod last-case tem)
    (do ((rest body (cdr rest)) (v))
	((or last-case (null rest)))
      (setq  v (car rest))
      (push
	(cond ((eql (car v) t) (setq last-case t) v)
	      ((eql (car v) :collect)
	       `((loop-collect-keyword-p .item.) ,@ (cdr v)))
	      ((eql (car v) :no-body)
	       `((parse-no-body  .item.) ,@ (cdr v)))
	      ((setq tem
		     (member (car v) '(:sloop-macro :sloop-for :sloop-map)))
	       `((and (symbolp .item.)(get .item. ,(car tem))) ,@ (cdr v)))
	      (t
	       `((l-equal .item. ',(car v)) ,@ (cdr v))))
	bod))
    (or last-case (push `(t (error "lcase fell off end ~a  " .item.)) bod))
    `(let ((.item. (translate-name ,item)))
       (cond ,@ (nreverse bod)))))

;;some cl implementations lack define-setf-method and others have already defined this.
;;so we will change the definition of desetq to not use setf.
;(define-setf-method cons (a b)
;  (let ((store (gensym "store")))
;    (values nil nil (list store)
;	    `(progn ,@ (and a  `((setf ,a (car ,store))))
;		    ,@ (and b  `((setf ,b (cdr ,store)))))
;	    `(error "You should not be setting this"))))

;(defmacro cons-for-setf (form)
;  (cond ((symbolp form) form)
;	((consp form)
;	 (cond ((cdr form)
;		`(cons (cons-for-setf ,(car form))  (cons-for-setf  ,(cdr form))))
;	       (t `(cons (cons-for-setf ,(car form)) nil))))))

;(defmacro desetq (form val)
;  "(desetq (a b) '(3 4)) would work.  This is destructured setq"
;  (cond ((symbolp form) `(setq ,form ,val))
;	(t
;	 `(setf (cons-for-setf ,form) ,val))))

(defun desetq1 (form val)
	    (cond ((symbolp form)
		   (and form `(setf ,form ,val)))
		  ((consp form)
		   `(progn ,(desetq1 (car form) `(car ,val))
			   ,@ (if (consp (cdr form)) (list(desetq1 (cdr form) `(cdr ,val)))
				  (and (cdr form) `((setf ,(cdr form) (cdr ,val)))))))
		  (t (error ""))))

(defmacro desetq (form val)
  (cond ((atom val) (desetq1 form val))
	(t (let ((value (gensym)))
	     `(let ((,value ,val)) , (desetq1 form value))))))

(defmacro loop-return (&rest vals)
  (cond ((<=  (length vals) 1)
	 `(return ,@ vals))
	(t`(return (values  ,@ vals)))))

(defmacro loop-finish ()
  `(go finish-loop))

(defmacro local-finish ()
  `(go finish-loop))

(defmacro sloop (&body body)
  (parse-loop body))

(defmacro def-loop-map (name args &body body)
  (def-loop-internal name args body 'map))
(defmacro def-loop-for (name args &body body )
  (def-loop-internal name args body 'for nil 1))
(defmacro def-loop-macro (name args &body body)
  (def-loop-internal name args body 'macro))
(defmacro def-loop-collect (name arglist &body body )
       "Define function of 2 args arglist= (collect-var value-to-collect)"
  (def-loop-internal name arglist body 'collect '*additional-collections* 2 2))

(defmacro sloop-swap ()
 `(progn (rotatef a *loop-bindings*)
  (rotatef b  *loop-prologue*)
  (rotatef c *loop-epilogue*)
  (rotatef e *loop-end-test*)
  (rotatef f *loop-increment*)
  (setf *inner-sloop* (not *inner-sloop*))
  ))

)

(defun l-equal (a b)
  (and (symbolp a)
       (cond ((symbolp b)
	      (equal (symbol-name a) (symbol-name b)))
	     ((listp b)
	      (member  a b :test 'l-equal)))))

(defun loop-collect-keyword-p (command)
  (or (member command '(collect append nconc sum count) :test 'l-equal)
      (find command *additional-collections* :test 'l-equal)))

(defun translate-name (name)
  (cond ((and (symbolp name)
	      (cdar (member name *sloop-translations* :test 'l-equal :key 'car))))
	(t name)))

(defun loop-pop ()
  (declare (special *last-val* *loop-form*))
  (cond (*loop-form*
          (setq *last-val* (pop *loop-form*)))
	(t (setq *last-val* 'empty-form) nil)))

(defun loop-un-pop ()  (declare (special *last-val* *loop-form*))
  (case *last-val*
	(empty-form nil)
	(already-un-popped (error "you are un-popping without popping"))
	(t  (push *last-val* *loop-form*) (setf *last-val* 'alread-un-popped))))

(defun loop-peek () (declare (special *last-val* *loop-form*))
   (car *loop-form*))

(defun loop-let-bindings(binds)
  (do ((v (car binds) (cdr v)))
      ((null v) (nreverse (car binds)))
      (or (cdar v) (setf (car v) (caar v)))))

(defun parse-loop (form &aux inner-body)
  (let ((*loop-form* form)
	(*Automatic-declarations* *Automatic-declarations*)
	*last-val* *loop-map*
	*loop-body*
	*loop-name*
	*loop-prologue* *inner-sloop*
	*loop-epilogue* *loop-increment*
	*loop-collect-pointers*  *loop-map-declares*
	*loop-collect-var* 	*no-declare*
	*loop-end-test*
	*loop-bindings*
	*product-for* local-macros
	(finish-loop 'finish-loop)
	)
    (declare (special *loop-form* *last-val* *loop-map*
		      *loop-collect-pointers*
		      *loop-name* *inner-sloop*
		      *loop-body*
		      *loop-prologue*
		      *no-declare*
		      *loop-bindings*
		      *loop-collect-var*  *loop-map-declares*
		      *loop-epilogue* *loop-increment*
		      *loop-end-test* *product-for*
		      ))
    (unless (and (symbolp (car *loop-form*))  (car *loop-form*))
      (push 'do  *loop-form*)) ;compatible with common lisp loop..
    (parse-loop1)
    (when (or *loop-map* *product-for*)
      (or *loop-name* (setf *loop-name* (gensym "SLOOP")))
      (and (eql 'finish-loop finish-loop)
	   (setf finish-loop (gensym "FINISH"))))
    ;some one might use local-finish,local-return or loop-finish they might be bound at an outer level.
    ;we have to always include this since loop-return may be being bound outside.
    (and  ; *loop-name*
	      (push
	   `(loop-return (&rest vals) `(return-from ,',*loop-name* (values ,@ vals)))
	   local-macros))
    (when  t ;; (or (> *loop-level* 1) (not (eql finish-loop 'finish-loop)))
      (push 	 `(loop-finish () `(go ,',finish-loop)) local-macros)
      (push 	 `(local-finish () `(go ,',finish-loop)) local-macros))
    (and *loop-collect-var*
	 (push   `(return-from ,*loop-name* , *loop-collect-var*)
		 *loop-epilogue*))
    (setq inner-body (append  *loop-end-test*
			      (nreverse *loop-body*)
			      (nreverse	*loop-increment*)))
    (cond (*loop-map*
	   (setq inner-body (substitute-sloop-body inner-body)))
	  (t (setf inner-body (cons 'next-loop
				    (append inner-body '((go next-loop)))))))
    (let ((bod
	    `(macrolet ,local-macros
	       (block ,*loop-name*
		 (tagbody
		     ,@ (append
		          (nreverse *loop-prologue*)
			  inner-body
			  `(,finish-loop)
			  (nreverse *loop-epilogue*)
			  #+kcl '((loop-return  nil))))))

	    ))
      ;;temp-fix..should not be necessary but some lisps cache macro expansions.
      ;;and ignore the macrolet!!
      (unless  (eql *macroexpand-hook* *macroexpand-hook-for-no-copy*)
	(setf bod (copy-tree bod)))
      (dolist (v *loop-bindings*)
	(setf bod
	      `(let ,(loop-let-bindings v) ,@(and (cdr v) `(,(cons 'declare (cdr v))))
		    ,bod)))
      bod
      )))

(defun parse-loop1 ()
  (declare (special *loop-form*
		    *loop-body* *loop-increment*
		    *no-declare* *loop-end-test*
		    *loop-name* ))
  (lcase (loop-peek)
     (named (loop-pop) (setq *loop-name* (loop-pop)))
     (t nil))
  (do ((v (loop-pop) (loop-pop)))
      ((and (null v) (null *loop-form*)))
    (lcase v
      (:no-body)
      (for (parse-loop-for))
      (while (push
	       `(or ,(loop-pop) (local-finish))  *loop-body*))
      (until (push
	       `(and ,(loop-pop) (local-finish))  *loop-body*))
      (do (setq *loop-body* (append (parse-loop-do) *loop-body*)))
      ((when unless) (setq *loop-body* (append (parse-loop-when) *loop-body*)))
      (:collect      (setq *loop-body* (append (parse-loop-collect) *loop-body*)))
      )))


(defun parse-no-body (com &aux (found t) (first t))
  "Reads successive no-body-contribution type forms, like declare, initially, etc.
which can occur anywhere. Returns t if it finds some
otherwise nil"
  (declare (special *loop-form*
		    *loop-body*
		    *loop-increment*
		    *no-declare* *loop-end-test*
		    *loop-name* ))
  (do ((v com (loop-pop)))
      ((null (or first *loop-form*)))
      (lcase v
	((initially finally)(parse-loop-initially v))
	(nil nil)
	(with      (parse-loop-with))
	(declare   (parse-loop-declare (loop-pop) t))
	(nodeclare  (setq *no-declare* (loop-pop)))  ;take argument to be consistent.
	(increment (setq *loop-increment* (append (parse-loop-do) *loop-increment*)))
	(end-test  (setq *loop-end-test* (append (parse-loop-do) *loop-end-test*)))
	(with-unique (parse-loop-with nil t))
	(:sloop-macro (parse-loop-macro v :sloop-macro))
	(t
	 (cond (first
		   (setf found nil))
		  (t (loop-un-pop)))
	    (return 'done)))
      (setf first nil))
  found)

(defun parse-loop-with (&optional and-with only-if-not-there)
  (let ((var  (loop-pop)))
    (lcase (loop-peek)
      (= (loop-pop)
	 (or (symbolp var) (error "Not a variable ~a" var))
	 (loop-add-binding var (loop-pop) (not and-with) nil nil t only-if-not-there))
      (t (loop-add-temps var nil nil (not and-with) only-if-not-there)))
    (lcase (loop-peek)
      (and (loop-pop)
	   (lcase (loop-pop)
	     (with (parse-loop-with t ))
	     (with-unique (parse-loop-with t t))
	     (t (loop-un-pop) (parse-loop-with t))
	     ))
      (t nil))))

(defun parse-loop-do (&aux result)
  (declare (special *loop-form*))
  (do ((v (loop-pop) (loop-pop)) )
      (())
    (cond
      ((listp v)
       (push v result)
       (or *loop-form* (return 'done)))
      (t (loop-un-pop) (return 'done))))
  (or result (error "empty clause"))
  result)

(defun parse-loop-initially (command )
  (declare (special *loop-prologue* *loop-epilogue* *loop-bindings*))
  (lcase command
    (initially (let ((form (parse-loop-do)))
		 (dolist (v (nreverse form))
		   (cond ((and (listp v)
			       (member (car v) '(setf setq))
			       (eql (length v) 3)
			       (symbolp   (second v))
			       (constantp (third v))
			       (loop-add-binding (second v) (third v) nil nil nil t t)
			       ))
			 (t (setf *loop-prologue* (cons v *loop-prologue*)))))))
    (finally
      (setf *loop-epilogue* (append (parse-loop-do) *loop-epilogue*)))))

(defun parse-one-when-clause ( &aux this-case  (want 'body) v)
  (declare (special *loop-form*))
  (prog nil
	next-loop
	   (and (null *loop-form*) (return 'done))
	   (setq v (loop-pop))
    (lcase v
      (:no-body)
      (:collect (or (eql 'body want) (go finish))
		(setq this-case (append  (parse-loop-collect) this-case))
		(setq want 'and))
      (when  (or (eql 'body want) (go finish))
	(setq this-case (append   (parse-loop-when) this-case))
		(setq want 'and))
      (do    (or (eql 'body want) (go finish))
	   (setq this-case (append   (parse-loop-do) this-case))
		(setq want 'and))
      (and    (or (eql 'and  want) (error "Premature AND"))
	   (setq want 'body))
      (t  (loop-un-pop)(return 'done)))
    (go next-loop)
    finish
    (loop-un-pop))
  (or this-case (error "Hanging conditional"))
  this-case)


(defun parse-loop-when (&aux initial else else-clause )
  (declare (special *last-val* ))
  (let ((test (cond ((l-equal *last-val* 'unless) `(not , (loop-pop)))
		    (t (loop-pop)))))
    (setq initial (parse-one-when-clause))
    (lcase (loop-peek)
      (else
	(loop-pop)
	(setq else t)
	(setq else-clause (parse-one-when-clause)))
      (t nil))
  `((cond (,test ,@ (nreverse initial))
	 ,@ (and else `((t ,@ (nreverse else-clause))))))))

(defun pointer-for-collect (collect-var)
  (declare (special *loop-collect-pointers*))
  (or (cdr (assoc collect-var *loop-collect-pointers*))
      (let ((sym(loop-add-binding (gensym "POIN") nil nil :collect )))
	(push (cons collect-var sym)
	      *loop-collect-pointers*)
	sym)))

(defun parse-loop-collect ( &aux collect-var pointer name-val)
  (declare (special *last-val* *loop-body* *loop-collect-var*
		    *loop-collect-pointers* *inner-sloop*
		    *loop-prologue* ))
  (and *inner-sloop* (throw 'collect nil))
  (let ((command   *last-val*)
	(val (loop-pop)))
    (lcase (loop-pop)
      (into (loop-add-binding (setq collect-var (loop-pop)) nil nil t nil t ))
      (t (loop-un-pop)
	 (cond (*loop-collect-var* (setf collect-var *loop-collect-var*))
	       (t  (setf collect-var
			 (setf *loop-collect-var*
			       (loop-add-binding (gensym "COLL") nil )))))))
    (lcase command
      ((append nconc collect)
       (setf pointer (pointer-for-collect collect-var))
       (cond (*use-locatives*
	      (pushnew `(setf ,pointer
			      (locf ,collect-var)) *loop-prologue* :test 'equal)))
       (lcase command
	 ( append
	  (unless (and (listp val) (eql (car val) 'list))
	    (setf val `(copy-list ,val))))
	 (t nil)))
      (t nil))
    (cond ((and  (listp val) (not *use-locatives*))
	   (setq name-val (loop-add-binding (gensym "VAL") nil nil)))
	  (t (setf name-val val)))
    (let
      ((result
	 (lcase command
	   ((nconc append)
	    (let ((set-pointer `(and (setf (cdr ,pointer) ,name-val)
				     (setf ,pointer (last (cdr ,pointer))))))
	      (cond (*use-locatives*
		     (list set-pointer))
		    (t
		     `((cond (,pointer ,set-pointer)
			     (t (setf ,pointer (last (setf ,collect-var ,name-val))))))))))
	   (collect
	     (cond (*use-locatives*
		    `((setf (cdr ,pointer) (setf ,pointer (cons ,name-val nil)))))
		   (t `((cond (,pointer (setf (cdr ,pointer)
					      (setf ,pointer (cons ,name-val nil))))
			      (t (setf ,collect-var
				       (setf ,pointer (cons ,name-val nil)))))))))
	   (t (setq command (translate-name command))
	     (cond ((find command *additional-collections* :test 'l-equal)
		     (loop-parse-additional-collections command collect-var name-val))
		    (t (error "loop fell off end ~a" command)))))))
      (cond ((eql name-val val)
	     result)
	    (t (nconc result `((setf ,name-val ,val) )))))))

(defun loop-parse-additional-collections (command collect-var name-val &aux eachtime)
  (declare (special *loop-prologue* *last-val* *loop-collect-var* *loop-epilogue* ))
  (let* ((com  (find command *additional-collections* :test 'l-equal))
	 (helper (get com :sloop-collect)))
    (let ((form (funcall helper collect-var name-val)))
      (let ((*loop-form* form) *last-val*)
	(declare (special  *loop-form* *last-val*))
	(do ((v (loop-pop) (loop-pop)))
	    ((null *loop-form*))
	  (lcase v
	    (:no-body)
	    (do (setq eachtime (parse-loop-do)))))
	eachtime))))

(defun the-type (symbol type)
  (declare (special *no-declare*))
  (and *no-declare* (setf type nil))
  (and type (setf type (or (getf *Automatic-declarations* type)
			   (and  (not (keywordp type)) type))))
  (and (consp type) (eq (car type) 'type) (setf type (second  type)))
  (cond (type (list 'the type symbol ))
	(t symbol)))

;;

(defun type-error ()
  (error "While checking a bound of a sloop, I found the wrong type
for something in *automatic-declarations*.  Perhaps your limit is wrong?
If not either use nodeclare t or set *automatic-declarations* to nil.
recompile."))


;;this puts down code to check that automatic declarations induced by
;; :from are indeed valid!  It checks both ends of the interval, and
;;so need not check the numbers in between.

(defun make-value (value type-key &aux type )
  (declare (special *no-declare*))
  (cond ((and
	  (not *no-declare*)
	  *type-check*
	  (eq type-key :from)
	  (setq type (getf  *Automatic-declarations* type-key)))
	 (setq type
	       (cond ((and (consp type)
			   (eq (car type) 'type))
		      (second type))
		     (t type)))
	 (cond ((constantp value)
		(or (typep value type)
		    (error
		     "Sloop found the type of ~a was not type ~a,~
                      Maybe you want to insert SLOOP NODECLARE T ..."
		     value
		     type))
		(list value))
	 (t  (let (chk)

	       `((let ,(cond ((atom value)
			      nil)
			     (t `((,(setq chk(gensym)) ,value))))
		   (or (typep ,(or chk value) ',type) (type-error))
		   ,(or chk value)))))))
	(t (list value))))


;;keep track of the bindings in a list *loop-bindings*
;;each element of the list will give rise to a different let.
;;the car will be the variable bindings,
;;the cdr the declarations.


(defun loop-add-binding
       (variable value &optional (new-level t) type force-type (force-new-value t)
			 only-if-not-there &aux tem)
  "Add a variable binding to the current or new level.
 If FORCE-TYPE, ignore a *no-declare*.
 If ONLY-IF-NOT-THERE, check all levels."
  (declare (special *loop-bindings*))
  (when  (or new-level (null *loop-bindings*)) (push (cons nil nil) *loop-bindings*))
  (cond ((setq tem (assoc variable (caar  *loop-bindings*) ))
	 (and force-new-value
	      (setf (cdr tem) (and value (make-value value type)))))
	((and (or only-if-not-there (and (null (symbol-package variable))
					 (constantp value)))
	      (dolist (v (cdr *loop-bindings*))
		(cond ((setq tem (assoc variable (car v)))
		       (and force-new-value
			    (setf (cdr tem)
				  (and value (make-value value type))))
		       (return t))))))
	(t (push (cons variable  (and value (make-value value type)))
		 (caar *loop-bindings*))))
  (and type (loop-declare-binding variable type force-type))
  variable)

;(defmacro nth-level (n) `(nth ,n *loop-bindings*))
;if x = (nth i *loop-bindings*)
;(defmacro binding-declares (x) `(cdr ,x)) ;(cons 'declare (binding-declares x)) to get honest declare statement
;(defmacro binding-values (x) `(car ,x))  ;(let (binding-values x) ) to get let.

(defun loop-declare-binding (var type force-type &optional odd-type
				 &aux found tem)
  (declare (special *loop-bindings* *Automatic-declarations*
		    *no-declare* *loop-map*))
  odd-type ;;ignored
  (and type (setf type (or (getf *Automatic-declarations* type)
			   (and  (not (keywordp type)) type))))
  (when (and type(or force-type (null *no-declare*)))
    (dolist (v *loop-bindings*)
      (cond ((assoc var (car v)) (setf found t)
	     (do ((decs (cdr v) (cdr decs)))
		 ((null decs) (push nil (cdr v))(setf tem (cdr v)))
		 (when (or (and (eq (caar decs) 'type)
				(eq (third (car decs)) var))
			   (eql (second (car decs)) var))
		       (setf tem decs) (return 'done)))
	     (setf (car tem)
		   (cond ((and (consp type) (eq (car type) 'type))
			  (list 'type (second type) var))
			 (t (list type var))))

	     (and  found (return 'done)))))
    (or found *loop-map* (error "Could not find variable ~a in bindings" var)))
  var)

(defun parse-loop-declare (&optional (decl-list (loop-pop)) (force t))
  (let ((type (car decl-list)) odd-type)
    (cond ((eq type 'type)
	   (setf decl-list (cdr decl-list) type (car decl-list) odd-type t)))
    (dolist (v (cdr decl-list))
      (loop-declare-binding v (car decl-list) force odd-type))))

(defun loop-add-temps (form &optional val type new-level only-if-not-there)
  (cond ((null form))
	((symbolp form)
	 (loop-add-binding form val new-level type nil  t only-if-not-there))
	((listp form)
	 (loop-add-temps (car form))
	 (loop-add-temps (cdr form)))))

(defun parse-loop-for ( &aux direction inc)
  (declare (special *loop-form*  *loop-map-declares*  *loop-map*
		    *loop-body* *loop-increment* *no-declare*
		    *loop-prologue*
		    *loop-epilogue*
		    *loop-end-test*
		    *loop-bindings*
		    ))
  (let* ((var (loop-pop)) test incr)
    (do ((v (loop-pop) (loop-pop)))
	(())
      (lcase v
	(in (let ((lis (gensym "LIS")))
	      (loop-add-temps var nil :in t)
	      (loop-add-binding lis (loop-pop) nil)
  	      (push  `(desetq ,var (car ,lis)) *loop-body*)
	      (setf incr `(setf ,lis (cdr ,lis)))
	      (setq test   `(null ,lis) )
	      ))
	(on (let ((lis
		    (cond ((symbolp var) var)
			  (t (gensym "LIS")))))
	      (loop-add-temps var nil :in t)
	      (loop-add-binding lis (loop-pop) nil)
	      (setf incr `(setf ,lis (cdr ,lis)))
	      (unless (eql lis var)
		(push `(desetq ,var ,lis) *loop-body*))
	      (setf test `(null ,lis))))
	((upfrom from)
	    (loop-add-binding var (loop-pop) (not(prog1 direction (setf direction 'up))) :from)
	    (setf incr `(setf ,var ,(the-type `(+  ,var 1) :from))))
	(downfrom
	  (loop-add-binding var (loop-pop) (not(prog1 direction (setf direction 'down))) :from)
	  (setf incr `(setf ,var ,(the-type `(-  ,var 1) :from))))
	(by(setq inc (loop-pop))
	      (cond ((and (listp inc)(eql (car inc) 'quote))
		     (setf inc (second inc))
		     ))
	      (cond (direction
		      (setf incr (subst inc 1 incr)))
		    (t (setf incr (subst inc 'cdr incr)))))
	(below
	  (let ((lim (gensym "LIM")))
	    (loop-add-binding var 0 (not(prog1 direction (setf direction 'up)))
			      :from nil nil)
	    (loop-add-binding lim (loop-pop) nil :from )
	    (or incr (setf incr `(setf ,var ,(the-type `(+  ,var 1) :from))))
	    (setq test `(>= ,var ,lim))))
	(above
	  (let ((lim (gensym "ABOVE")))
	    (loop-add-binding var 0 (not(prog1 direction (setf direction 'down)))
			      :from nil nil)
	    (loop-add-binding lim (loop-pop) nil :from )
	       (or incr (setf incr `(setf ,var ,(the-type `(-  ,var 1) :from))))
	       (setq test `(<= ,var ,lim))))
	(to
	  (let ((lim (gensym "LIM")))
	    (loop-add-binding var 0 (not(prog1 direction (or direction (setf direction 'up))))
			      :from nil nil)
	    (loop-add-binding lim (loop-pop) nil :from )
             (or incr (setf incr `(setf ,var ,(the-type `(+  ,var 1) :from))))
     	     (setq test `(,(if (eql direction 'down) '< '>),var ,lim))))
	(:sloop-for (parse-loop-macro (translate-name v) :sloop-for var )
		    (return 'done))
        (:sloop-map (parse-loop-map (translate-name v) var ) (return nil))
	(t(or ; (null *loop-form*)
	      (loop-un-pop))
	  (return 'done)
	  )
	))

    (let (type)
      ;;whew maybe this is a for from type loop
      ;;with no bound so to be safe need a fixnum bound..
      (cond ((and direction (not *no-declare*)
		  (not test)
		  *type-check*
		  (setq type (getf *automatic-declarations* :from))
		  (progn (if (and (consp type)(eq (car type) 'type))
			     (setf type      (second type)))
			 (subtypep type 'fixnum)))
             (or (constantp inc) (error "increment must be constant."))
	     (push
	        (cond ((eq direction 'up)
			  `(or (< ,var ,(- most-positive-fixnum
					  (or inc 1)))
			       (type-error)))
		      (t
		       `(or (> ,var  ,(+ most-negative-fixnum
					  (or inc 1))))
			       (type-error))
		    ) *loop-increment* )
	     )))

    (and test (push (copy-tree `(and ,test (local-finish))) *loop-end-test*))
    (and incr (push incr *loop-increment*))
		))

(defun parse-loop-macro (v type &optional initial &aux result)
  (declare (special *loop-form*))
  (let ((helper (get v type)) args)
    (setq args
	  (ecase type
	    (:sloop-for
	     (let ((tem (get v :sloop-for-args)))
	       (or (cdr tem) (error "sloop-for macro needs at least one arg"))
	       (cdr tem)))
	    (:sloop-macro(get v :sloop-macro-args))))
    (let ((last-helper-apply-arg
	    (cond ((member '&rest args) (prog1 *loop-form* (setf *loop-form* nil)))
		  (t (dotimes (i (length args) (nreverse result))
			     (push (car *loop-form*) result)
			     (setf *loop-form* (cdr *loop-form*)))))))
      (setq *loop-form*
	    (append
	      (case type
		    (:sloop-for (apply helper initial last-helper-apply-arg))
		    (:sloop-macro(apply helper  last-helper-apply-arg)))
	      *loop-form*)))))

(defun parse-loop-map (v var)
  (declare (special *loop-map* *loop-map-declares* *loop-form*))
  (and *loop-map* (error "Sorry only one allowed loop-map per sloop"))
  (let ((helper (get v :sloop-map))
	(args  (get v :sloop-map-args)))
    (or args (error "map needs one arg before the key word"))
    (cond ((member '&rest args)(error "Build this in two steps if you want &rest")))
    (let* (result
	   (last-helper-apply-arg
	     (dotimes (i (1- (length args)) (nreverse result))
	       (push (car *loop-form*) result) (setf *loop-form* (cdr *loop-form*)))))
      (setq *loop-map-declares*
	    (do ((v (loop-pop)(loop-pop)) (result))
		((null (l-equal v 'declare))
		 (loop-un-pop)
		 (and result (cons 'declare result)))
	      (push (loop-pop) result)))
      (setq *loop-map* (apply helper var last-helper-apply-arg))
      nil)))

(defun substitute-sloop-body (inner-body)
  (declare (special *loop-map* *loop-map-declares*))
    (cond (*loop-map*
	   (setf inner-body (list  (subst (cons 'progn inner-body)
					  :sloop-body *loop-map*)))
	   (and *loop-map-declares*
		(setf inner-body(subst *loop-map-declares*
				       :sloop-map-declares inner-body)))))
  inner-body)

;;;**User Extensible Iteration Facility**

(eval-when (compile eval load)
(defun def-loop-internal (name args  body type &optional list min-args max-args
  &aux (*print-case* :upcase) (helper (intern (format nil "~a-SLOOP-~a" name type))))
  (and min-args (or (>= (length args) min-args)(error "need more args")))
  (and max-args (or (<= (length args) max-args)(error "need less args")))
 `(eval-when (load compile eval)
    (defun ,helper ,args
      ,@ body)
    ,@ (and list `((pushnew ',name ,list)))
    (setf (get ',name ,(intern (format nil "SLOOP-~a" type) (find-package 'keyword))) ',helper)
    (setf (get ',name ,(intern (format nil "SLOOP-~a-ARGS" type)(find-package 'keyword))) ',args)))
)


;;DEF-LOOP-COLLECT
;;lets you get a handle on the collection var.
;;exactly two args.
;;First arg=collection-variable
;;Second arg=value this time thru the loop.
(def-loop-collect sum (ans val)
  `(initially (setq ,ans 0)
    do (setq ,ans (+ ,ans ,val))))
(def-loop-collect logxor (ans val)
  `(initially (setf ,ans 0)
  do (setf ,ans (logxor ,ans ,val))
  declare (fixnum ,ans ,val)))
(def-loop-collect maximize (ans val)
  `(initially (setq ,ans nil)
  do (if ,ans (setf ,ans (max ,ans ,val)) (setf ,ans ,val))))

(def-loop-collect minimize (ans val)
  `(initially (setq ,ans nil)
  do (if ,ans (setf ,ans (min ,ans ,val)) (setf ,ans ,val))))

(def-loop-collect count (ans val)
  `(initially (setq ,ans 0)
  do (and ,val (setf ,ans (1+ ,ans)))))

(def-loop-collect thereis (ans val)(declare(ignore ans))`(do (if ,val (loop-return ,val))))
(def-loop-collect always (ans val) `(initially (setq ,ans t) do (and (null ,val)(loop-return nil))))
(def-loop-collect never (ans val)  `(initially (setq ,ans t) do (and  ,val  (loop-return nil))))


;;DEF-LOOP-MACRO
;;If we have done
;(def-loop-macro averaging (x)
;  `(sum ,x into .tot. and count t into .how-many.
;	finally (loop-return (/ .tot. (float .how-many.)))))

;(def-loop-collect average (ans val)
;  `(initially (setf ,ans 0.0)
;    with-unique .how-many. = 0
;    do (setf ,ans (/  (+ (* .how-many. ,ans) ,val) (incf .how-many.)))
;    ))

;;provides averaging with current value the acutal average.
(def-loop-macro averaging (x)
  `(with-unique .average. = 0.0
    and with-unique .n-to-average. = 0
    declare (float .average. ) declare (fixnum .n-to-average.)
    do (setf .average. (/  (+ (* .n-to-average. .average.) ,x) (incf .n-to-average.)))
    finally (loop-return .average.)))

(def-loop-macro repeat (x)
  (let ((ind (gensym)))
    `(for ,ind below ,x)))

(def-loop-macro return (x)
  `(do (loop-return ,x)))
;;then we can write:
;(sloop for x in l when (oddp x) averaging x)


;;DEF-LOOP-FOR
;;def-loop-for and def-loop-macro
;;are almost identical except that the def-loop-for construct can only occur
;;after a for:
;(def-loop-for in-array (vars array)
;  (let ((elt (car vars))
;	(ind (second vars)))
;  `(for ,ind below (length ,array) do (setf ,elt (aref ,array ,ind)))))
;; (sloop for (elt ind) in-array ar when (oddp elt) collecting ind)
;;You are just building something understandable by loop but minus the for.
;;Since this is almost like a "macro", and users may want to customize their
;;own, the comparsion of tokens uses eq, ie. you must import IN-ARRAY to your package
;;if you define it in another one.   Actually we make a fancier in-array
;;below which understands from, to, below, downfrom,.. and can have
;;either (elt ind) or elt as the argument vars.

;;DEF-LOOP-MAP
;;A rather general iteration construct which allows you to map over things
;;It can only occur after FOR.
;;There can only be one loop-map for a given loop, so you want to only
;;use them for complicated iterations.

(def-loop-map in-table (var table)
  `(maphash #'(lambda ,var :sloop-map-declares :sloop-body) ,table))
;Usage  (sloop for (key elt) in-table table
;              declare (fixnum elt)
;              when (oddp elt) collecting (cons key elt))


(def-loop-map in-package (var pkg)
  `(do-symbols (,var (find-package ,pkg))  :sloop-body))

;(defun te()(sloop for sym in-package 'sloop when (fboundp sym) count t))

;;in-array that understands from,downfrowm,to, below, above,etc.
;;I used a do for the macro iteration to be able include it here.
(def-loop-for in-array (vars array &rest args)
  (let (elt ind to)
    (cond ((listp vars) (setf elt (car vars) ind (second vars)))
	  (t (setf elt vars ind (gensym "INDEX" ))))
    (let ((skip (do ((v args (cddr v)) (result))
		    (())
		   (lcase (car v)
		       ((from downfrom) )
		       ((to below above) (setf to t))
		       (by)
		       (t (setq args (copy-list v))
			  (return (nreverse result))))
		   (push (car v) result) (push (second v) result))))
      (or to (setf skip (nconc `(below (length ,array)) skip)))
      `(for ,ind
	,@ skip
	with ,elt
	do (setf ,elt (aref ,array ,ind)) ,@ args))))

;usage: IN-ARRAY
;(sloop for (elt i) in-array ar from 4
;       when (oddp i)
;       collecting elt)

;(sloop for elt in-array ar below 10 by 2
;       do (print elt))

(def-loop-for = (var val)
  (lcase (loop-peek)
    (then (loop-pop) `(with ,var initially (desetq ,var ,val) increment (desetq ,var ,(loop-pop))))
    (t  `(with ,var do (desetq ,var ,val)))))

(def-loop-macro sloop (for-loop)
  (lcase (car for-loop)
    (for))
  (let (*inner-sloop* *loop-body* *loop-map* inner-body
	(finish-loop (gensym "FINISH"))
	a b c e f (*loop-form* for-loop))
    (declare (special *inner-sloop* *loop-end-test* *loop-increment*
		      *product-for* *loop-map*
		      *loop-form*  *loop-body*  *loop-prologue*  *loop-epilogue* *loop-end-test*
		      *loop-bindings*
		      ))
    (setf *product-for* t)
    (loop-pop)
    (sloop-swap)
    (parse-loop-for)
     (sloop-swap)
    (do ()
	((null *loop-form*))
      (cond ((catch 'collect  (parse-loop1)))
	    ((null *loop-form*)(return 'done))
	    (t ;(fsignal "hi")
	     (print *loop-form*)
	     (sloop-swap)
	     (parse-loop-collect)
	     (sloop-swap)
	     	     (print *loop-form*)
	     )))
    (sloop-swap)
    (setf inner-body (nreverse *loop-body*))
    (and *loop-map*  (setf inner-body (substitute-sloop-body inner-body)))
    (let ((bod
	    `(macrolet ((local-finish () `(go ,',finish-loop)))
	      (tagbody
		  ,@ (nreverse *loop-prologue*)
	          ,@ (and (null *loop-map*) '(next-loop))
		  ,@ (nreverse *loop-end-test*)
		  ,@ inner-body
		  ,@ (nreverse *loop-increment*)
		  ,@ (and (null *loop-map*) '((go next-loop)))
		  ,finish-loop
		  ,@ (nreverse *loop-epilogue*)))))
      (dolist (v *loop-bindings*)
	(setf bod
	      `(let ,(loop-let-bindings v) ,@(and (cdr v) `(,(cons 'declare (cdr v))))
		    ,bod)))
      (sloop-swap)
      `(do ,bod))))

;Usage: SLOOP FOR
;(defun te ()
;  (sloop for i below 5
;	 sloop (for j  to i collecting (list i j))))

(def-loop-for in-carefully (var lis)
  "Path with var in lis except lis may end with a non nil cdr"
  (let ((point (gensym "POINT")))
    `(with ,point and with ,var initially (setf ,point ,lis)
           do(desetq ,var (car ,point))
	   end-test (and (atom ,point)(local-finish))
	   increment (setf ,point (cdr ,point)))))

;usage: IN-CAREFULLY
;(defun te (l)
;  (sloop for v in-carefully l collecting v))

;Note the following is much like the mit for i first expr1 then expr2
;but it is not identical, in that if expr1 refers to paralell for loop
;it will not get the correct initialization.  But since we have such generality in the
;our definition of a for construct, it is unlikely that all people who define
;This is why we use a different name

(def-loop-for first-use (var expr1 then expr2)
  (or (l-equal then 'then) (error "First must be followed by then"))
  `(with ,var initially (desetq ,var ,expr1) increment (desetq ,var ,expr2)))

(defvar *collate-order* #'<)

;;of course this should be a search of the list based on the
;;order and splitting into halves.  I have one such written,
;;but for short lists it may not be important.  It takes more space.
(defun find-in-ordered-list
       (it list &optional (order-function *collate-order*) &aux prev)
  (do ((v list (cdr v)))
      ((null v) (values prev nil))
	 (cond ((eql (car v) it) (return (values v t)))
	       ((funcall order-function it (car v))
		(return (values prev nil))))
	 (setq prev v)))

(def-loop-collect collate (ans val)
  "Collects values into a sorted list without duplicates.
Order based order function *collate-order*"
  `(do (multiple-value-bind
       (after already-there )
       (find-in-ordered-list ,val ,ans)
       (unless already-there
	  (cond (after (setf (cdr after) (cons ,val (cdr after))))
		(t (setf ,ans (cons ,val ,ans))))))))

;usage: COLLATE
;(defun te ()
;  (let ((res
;	  (sloop for i below 10
;            sloop (for j downfrom 8 to 0
;		          collate (* i (mod j (max i 1)) (random 2))))))))

(defun map-fringe (fun tree)
      (do ((v tree))
	       (())
	(cond ((atom v)
		    (and v (funcall fun v))(return 'done))
	      ((atom (car v))
		    (funcall fun (car v)))
	      (t (map-fringe fun (car v) )))
	     (setf v (cdr v))))

(def-loop-map in-fringe (var tree)
  "Map over the non nil atoms in the fringe of tree"
  `(map-fringe #'(lambda (,var) :sloop-map-declares :sloop-body) ,tree))

;;usage: IN-FRINGE
;(sloop for v in-fringe '(1 2 (3 (4 5) . 6) 8 1 2)
;       declare (fixnum v)
;       maximize v)