1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
|
; Yul Library
;
; Copyright (C) 2025 Kestrel Institute (http://www.kestrel.edu)
;
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;
; Authors: Alessandro Coglio (www.alessandrocoglio.info)
; Eric McCarthy (mccarthy@kestrel.edu)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "YUL")
(include-book "std/strings/decimal" :dir :system)
(include-book "kestrel/utilities/strings/chars-codes" :dir :system)
(include-book "kestrel/fty/boolean-result" :dir :system)
(include-book "tokenizer")
(include-book "abstract-syntax")
(local (include-book "std/lists/len" :dir :system))
(local (include-book "std/typed-lists/character-listp" :dir :system))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defxdoc+ parser
:parents (concrete-syntax)
:short "An executable parser of Yul."
:long
(xdoc::topstring
(xdoc::p
"This is a simple parser for Yul code.
The parser <see topic='@(url lexer)'>lexes</see>
and <see topic='@(url tokenizer)'>tokenizes</see>
according to the lexical grammar rules,
and then parses according to the syntactic grammar rules.
See @(see grammar-new).")
(xdoc::p
"The primary API for parsing Yul is
@(see parse-yul) and @(see parse-yul-bytes)."))
:order-subtopics t
:default-parent t)
;; Some conventions:
;; * If a parsing function just fails to parse, a reserr is returned
;; so that its caller can try other alternatives.
;; * If a parsing function fails due to malformed or unexpected input,
;; we throw a hard error, and then return a reserr for logic reasons.
;; When successful, some parsing functions just eat (e.g., parse-symbol);
;; some parsing functions sometimes just eat and sometimes eat and build (e.g., parse-keyword);
;; and some parsing functions always eat and build (e.g., parse-identifier).
;; If it only eats, there is only one return value, which is the remaining tokens.
;; If it sometimes or always builds,
;; there is another return value of type "-option" for the built object.
;; If parsing is successful and something is built, the built object is returned,
;; but if either (a) parsing is successful but doesn't build anything or
;; (b) parsing is not successful, then the built object returned is NIL.
;; Possible future work:
;; * Regularize the return value structure so that each parse function returns
;; a single typed value rather than multiple values.
;; This would have the benefits of being easier to read and extend,
;; and it would make some jobs easier for the prover.
;; * Improve error handling so that callers keep a stack of errors.
;; This would have the benefit that you can connect the top-level error
;; to an inner error that is closer to where a problem needs to be fixed.
;; Of course, many soft errors are expected, since parse rules are speculatively
;; applied, using errors to indicate a particular rule does not apply.
;; However, when a rule starts to apply and then fails in the middle,
;; that information is often interesting.
;; * Improve xdoc.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; token type: symbol
;; We could compute *yul-symbols* starting with this:
;; (abnf::lookup-rulename (abnf::rulename "symbol") abnf::*def-parse-grammar*)
;; Currently the rule looks like
;; symbol = "." / "," / "->" / "(" / ")" / ":=" / "{" / "}"
(defval *yul-symbols*
'( "." "," "->" "(" ")" ":=" "{" "}"))
(define parse-symbol ((symbol stringp) (tokens abnf::tree-listp))
:returns (tokens-after-symbol-or-reserr abnf::tree-list-resultp
:hints
(("Goal" :in-theory
(enable abnf::tree-listp-when-tree-list-resultp-and-not-reserrp))))
; :verbosep t ; for debugging
:short "Attempts to eat the named @('symbol'), returning either the list of remaining tokens or a reserr."
:long
(xdoc::topstring
(xdoc::p
"@('parse-symbol') does not build any AST on its own, since there is no Yul AST node class
whose surface syntax can consist solely of a single symbol.")
(xdoc::p
"In this context, @('symbol') is a nonterminal in the ABNF grammar for Yul,
and its alternatives are terminal symbols.
See @('grammar-new.abnf').")
(xdoc::p
"Parsing a symbol as a concrete syntax tree means we look for a nonleaf tree
where the rulename is @('\"symbol\"')
and the leafterm has the bytes (ASCII codes) of the terminal symbol's string."))
;; It is a logic error for this function to be called with a first argument that
;; does not name a valid Yul symbol.
(if (not (member-equal symbol *yul-symbols*))
(prog2$ (er hard? 'top-level
(string-append "parse-symbol called on something not in *yul-symbols*: " symbol))
(reserrf (cons "program logic error" tokens)))
(b* (((when (endp tokens))
;; It is possible this always indicates malformed input or logic error.
;; However, just in case this can occur on a false parse branch,
;; we will detect and report it in the top-level entry point
;; rather than throwing a hard error here.
(reserrf (cons (string-append "ran out of tokens when trying to parse symbol: " symbol) tokens)))
(putative-symbol-tree (first tokens))
((unless (and (abnf::tree-case putative-symbol-tree :nonleaf)
(equal (abnf::tree-nonleaf->rulename? putative-symbol-tree)
(abnf::rulename "symbol"))))
;; This is normal when trying various alternatives, so just return the reserr.
(reserrf (cons "token is not a symbol" tokens)))
(branches (abnf::tree-nonleaf->branches putative-symbol-tree))
((unless (and (listp branches)
(equal (len branches) 1)
(listp (car branches))
(equal (len (car branches)) 1)
(abnf::treep (caar branches))
(abnf::tree-case (caar branches) :leafterm)))
;; Once we know it is a nonleaf for rulename symbol, the structure should be fixed,
;; so this is a hard error.
(prog2$ (er hard? 'top-level
(string-append "symbol token seems to have the wrong structure for symbol:" symbol))
(reserrf (cons "cst structure error" tokens))))
(leafterm-nats (abnf::tree-leafterm->get (caar branches)))
((unless (unsigned-byte-listp 8 leafterm-nats))
;; Another incorrect structure hard error
(prog2$ (er hard? 'top-level
(string-append "unexpected type of leafterm nats when parsing symbol: " symbol))
(reserrf (cons "cst structure error 2" tokens))))
(terminal-symbol (nats=>string leafterm-nats))
((unless (equal symbol terminal-symbol))
;; We didn't find this symbol, but something else might be valid at this point.
(reserrf (cons (concatenate 'string
"looking for symbol: '" symbol
"', but received symbol: '" terminal-symbol "'")
tokens))))
(abnf::tree-list-fix (rest tokens))))
///
(defret len-of-parse-symbol-<
(implies (not (reserrp tokens-after-symbol-or-reserr))
(< (len tokens-after-symbol-or-reserr)
(len tokens)))
:rule-classes :linear
)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; token type: keyword
;; PARSE-KEYWORD eats the given keyword.
;; We could compute *yul-keywords* starting with this:
;; (abnf::lookup-rulename (abnf::rulename "keyword") abnf::*def-parse-grammar*)
;; Currently the rule looks like
;; keyword = %s"function" / %s"if" / %s"for" / %s"switch" / %s"case" / %s"default" / %s"let" / %s"leave" / %s"break" / %s"continue"
(defval *yul-keywords*
'( "function" "if" "for" "switch" "case" "default" "let" "leave" "break" "continue" ))
(define parse-keyword ((keyword stringp) (tokens abnf::tree-listp))
:returns (mv (ast-node statement-optionp) (tokens-after-keyword-or-reserr abnf::tree-list-resultp))
:short "Attempts to eat the named @('keyword')."
:long
(xdoc::topstring
(xdoc::p
"Returns two values: an optional statement AST node and either the list of remaining tokens or a reserr.")
(xdoc::p
"If a keyword is found, and if it is @('leave'), @('break'), or @('continue'), then
the appropriate statement is built and returned as the first value.
If a different keyword is found, the first value returned is @('NIL'), since no other Yul AST node
has surface syntax consisting solely of a single keyword.
In either case, the second value returns is the list of remaining tokens after eating the keyword token.")
(xdoc::p
"If no keyword is found, the first value returned is @('NIL') and the second is a reserr.")
(xdoc::p
"In this context, @('keyword') is a nonterminal in the ABNF grammar for Yul,
and its alternatives are terminals (aka terminal symbols) that are the actual keywords.
See @('grammar-new.abnf').")
(xdoc::p
"Parsing a keyword as a concrete syntax tree means we look for a nonleaf tree
where the rulename is @('\"keyword\"')
and the leafterm has the bytes (ASCII codes) of the keyword string."))
;; It is a logic error for this function to be called with a first argument that
;; does not name a valid Yul keyword.
(if (not (member-equal keyword *yul-keywords*))
(prog2$ (er hard? 'top-level
(string-append "parse-keyword called on something not in *yul-keywords*: " keyword))
(mv nil
(reserrf (cons "program logic error" tokens))))
(b* (((when (endp tokens))
;; It is possible this always indicates malformed input or logic error.
;; However, just in case this can occur on a false parse branch,
;; we will detect and report it in the top-level entry point
;; rather than throwing a hard error here.
(mv nil
(reserrf (cons (string-append "ran out of tokens when trying to parse keyword: " keyword) tokens))))
(putative-keyword-tree (first tokens))
((unless (and (abnf::tree-case putative-keyword-tree :nonleaf)
(equal (abnf::tree-nonleaf->rulename? putative-keyword-tree)
(abnf::rulename "keyword"))))
;; This is normal when trying various alternatives, so just return the reserr.
(mv nil
(reserrf (cons "token is not a keyword" tokens))))
(branches (abnf::tree-nonleaf->branches putative-keyword-tree))
((unless (and (listp branches)
(equal (len branches) 1)
(listp (car branches))
(equal (len (car branches)) 1)
(abnf::treep (caar branches))
(abnf::tree-case (caar branches) :leafterm)))
;; Once we know it is a nonleaf for rulename keyword, the structure should be fixed,
;; so this is a hard error.
(prog2$ (er hard? 'top-level
(string-append "keyword token seems to have the wrong structure for keyword:" keyword))
(mv nil
(reserrf (cons "cst structure error" tokens)))))
(leafterm-nats (abnf::tree-leafterm->get (caar branches)))
((unless (unsigned-byte-listp 8 leafterm-nats))
;; Another incorrect structure hard error
(prog2$ (er hard? 'top-level
(string-append "unexpected type of leafterm nats when parsing keyword: " keyword))
(mv nil
(reserrf (cons "cst structure error 2" tokens)))))
(terminal-keyword (nats=>string leafterm-nats))
((unless (equal keyword terminal-keyword))
;; We didn't find this keyword, but something else might be valid at this point.
(mv nil
(reserrf (cons (concatenate 'string
"looking for keyword: '" keyword
"', but received keyword: '" terminal-keyword "'")
tokens)))))
(mv (cond ((equal keyword "leave") (make-statement-leave))
((equal keyword "break") (make-statement-break))
((equal keyword "continue") (make-statement-continue))
(t nil))
(abnf::tree-list-fix (rest tokens)))))
///
(defret len-of-parse-keyword-<
(implies (not (reserrp tokens-after-keyword-or-reserr))
(< (len tokens-after-keyword-or-reserr)
(len tokens)))
:rule-classes :linear)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; token type: identifier
;; After identifying the token as an identifier, Let the fringe walker gather the full text of it.
(define parse-identifier ((tokens abnf::tree-listp))
:returns (mv (ast-node identifier-optionp) (tokens-after-identifier-or-reserr abnf::tree-list-resultp))
:short "Attempts to eat an identifier token and build an identifier AST node."
:long
(xdoc::topstring
(xdoc::p
"Returns two values: an optional identifier AST node and either the list of remaining tokens or a reserr.")
(xdoc::p
"If an identifier token is found, the first value returned is an identifier AST node with the full token leaf text.")
(xdoc::p
"If no identifier is found, the first value returned is @('NIL') and the second value is a reserr."))
(b* (((when (endp tokens))
;; It is possible this always indicates malformed input or logic error.
;; However, just in case this can occur on a false parse branch,
;; we will detect and report it in the top-level entry point
;; rather than throwing a hard error here
(mv nil
(reserrf (cons "ran out of tokens when trying to parse identifier" tokens))))
(putative-identifier-tree (first tokens))
((unless (and (abnf::tree-case putative-identifier-tree :nonleaf)
(equal (abnf::tree-nonleaf->rulename? putative-identifier-tree)
(abnf::rulename "identifier"))))
;; This is normal when trying various alternatives, so just return the reserr.
(mv nil
(reserrf (cons "token is not an identifier" tokens)))))
;; For brevity, do not walk the whole identifier tree separately here, just grab the fringe text.
;; abnf::tree->string states it returns stringp but it actually returns a list of nats.
;; Grab the nats, make sure they are unsigned bytes, and then convert them to a string.
(b* ((fringe (abnf::tree->string (first tokens)))
((unless (unsigned-byte-listp 8 fringe))
(prog2$ (er hard? 'top-level
"unexpected type of leafterm nats when parsing identifier")
(mv nil
(reserrf (cons "cst structure error" tokens))))))
(mv (make-identifier :get (nats=>string fringe))
(abnf::tree-list-fix (rest tokens)))))
///
(defret len-of-parse-identifier-<
(implies (not (reserrp tokens-after-identifier-or-reserr))
(< (len tokens-after-identifier-or-reserr)
(len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; token type: literal
;; ABNF rule:
;; literal = decimal-number / hex-number / boolean / string-literal / hex-string
;; In the AST these alternatives map directly to alternatives of the sum type LITERAL.
;; 'literal' is an alternative under 'expression',
;; and it also is part of a 'switch-statement' after "case".
;; ---------------------------------
;; decimal-number
(define cst2ast-decimal-number ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a :nonleaf ABNF tree with rulename \"decimal-number\",
return the appropriate literal AST node."
;; We don't bother checking the whole substructure.
(b* ((fringe (abnf::tree->string tree))
((unless (unsigned-byte-listp 8 fringe))
(prog2$ (er hard? 'top-level
"unexpected type of leafterm nats when parsing idenntifier")
nil))
(decimal-number-string (nats=>string fringe))
(maybe-nat (str::strval decimal-number-string)))
(if (natp maybe-nat)
(make-literal-dec-number :get maybe-nat)
nil)))
;; ---------------------------------
;; hex-number
(define cst2ast-hex-digit-char-list ((chars str::hex-digit-char-list*p))
:returns (hex-digits hex-digit-listp)
(cond (;; it would be good to get rid of this first condition
(not (and (str::hex-digit-char-list*p chars)
(true-listp chars))) nil)
((endp chars) nil)
(t (cons (make-hex-digit :get (car chars))
(cst2ast-hex-digit-char-list (cdr chars))))))
(define cst2ast-hex-number ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a :nonleaf tree with rulename \"hex-number\",
return the appropriate literal AST node."
;; We don't bother checking the whole substructure.
(b* ((fringe (abnf::tree->string tree))
((unless (unsigned-byte-listp 8 fringe))
(prog2$ (er hard? 'top-level
"unexpected type of leafterm nats when parsing identifier")
nil))
((unless (and (listp fringe)
(> (len fringe) 2)
(equal (first fringe) (char-code #\0))
(equal (second fringe) (char-code #\x))))
nil)
(hex-digit-char-codes (cddr fringe))
((unless (unsigned-byte-listp 8 hex-digit-char-codes))
nil)
(hex-digit-chars (nats=>chars hex-digit-char-codes))
((unless (str::hex-digit-char-list*p hex-digit-chars))
nil)
(hex-digits (cst2ast-hex-digit-char-list hex-digit-chars)))
(make-literal-hex-number :get hex-digits)))
;; ---------------------------------
;; boolean
(define cst2ast-boolean ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a :nonleaf tree with rulename \"boolean\",
return the appropriate literal AST node."
(b* ((fringe (abnf::tree->string tree))
((unless (unsigned-byte-listp 8 fringe))
(prog2$ (er hard? 'top-level
"unexpected type of leafterm nats when parsing identifier")
nil))
(fringe-string (nats=>string fringe)))
(cond ((equal fringe-string "true") (make-literal-boolean :get t))
((equal fringe-string "false") (make-literal-boolean :get nil))
(t nil))))
;; ---------------------------------
;; string-literal
(defval *single-quote-tree-list*
:short "A CST for the single quote start or end of a Yul string."
(list (abnf::make-tree-nonleaf :rulename? (abnf::rulename "squote")
:branches (list (list (abnf::make-tree-leafterm :get (list 39)))))))
(defval *double-quote-tree-list*
:short "A CST for the double quote start or end of a Yul string."
(list (abnf::make-tree-nonleaf :rulename? (abnf::rulename "dquote")
:branches (list (list (abnf::make-tree-leafterm :get (list 34)))))))
(defval *double-quoted-content-rulenames*
(list (abnf::rulename "double-quoted-printable") (abnf::rulename "escape-sequence")))
(defval *single-quoted-content-rulenames*
(list (abnf::rulename "single-quoted-printable") (abnf::rulename "escape-sequence")))
;; a single backslash for an escape sequence
(defval *list-leafterm-92*
(list (abnf::make-tree-leafterm :get (list (char-code #\\)))))
;; a single u for the start of a 4 hex digit unicode escape
(defval *list-leafterm-u*
(list (abnf::make-tree-leafterm :get (list (char-code #\u)))))
;; a single x for the start of a 2 hex digit unicode escape
(defval *list-leafterm-x*
(list (abnf::make-tree-leafterm :get (list (char-code #\x)))))
(define cst2ast-uhhhh ((escape-contents abnf::tree-listp))
:returns (escape escape-resultp)
(b* (((unless (and (abnf::tree-listp escape-contents)
(equal (len escape-contents) 4)))
(reserrf "unexpected input to cst2ast-uhhhh"))
(fringe (abnf::tree-list->string escape-contents))
((unless (and (unsigned-byte-listp 8 fringe)
(equal (len fringe) 4)))
(reserrf "unexpected input to cst2ast-uhhhh 2"))
(hex-digit-chars (nats=>chars fringe))
((unless (and (str::hex-digit-char-list*p hex-digit-chars)
(str::hex-digit-char-p (first hex-digit-chars))
(str::hex-digit-char-p (second hex-digit-chars))
(str::hex-digit-char-p (third hex-digit-chars))
(str::hex-digit-char-p (fourth hex-digit-chars))))
(reserrf "unexpected input to cst2ast-uhhhh 3")))
(make-escape-u
:get (make-hex-quad
:1st (make-hex-digit :get (first hex-digit-chars))
:2nd (make-hex-digit :get (second hex-digit-chars))
:3rd (make-hex-digit :get (third hex-digit-chars))
:4th (make-hex-digit :get (fourth hex-digit-chars))))))
(define cst2ast-xhh ((escape-contents abnf::tree-listp))
:returns (escape escape-resultp)
(b* (((unless (and (abnf::tree-listp escape-contents)
(equal (len escape-contents) 2)))
(reserrf "unexpected input to cst2ast-xhh"))
(fringe (abnf::tree-list->string escape-contents))
((unless (and (equal (len fringe) 2)
(unsigned-byte-listp 8 fringe)))
(reserrf "unexpected input to cst2ast-xhh 2"))
(hex-digit-chars (nats=>chars fringe))
((unless (and (str::hex-digit-char-list*p hex-digit-chars)
(str::hex-digit-char-p (first hex-digit-chars))
(str::hex-digit-char-p (second hex-digit-chars))))
(reserrf "unexpected input to cst2ast-xhh 3")))
(make-escape-x
:get (make-hex-pair
:1st (make-hex-digit :get (first hex-digit-chars))
:2nd (make-hex-digit :get (second hex-digit-chars))))))
(define cst2ast-single-char ((escape-contents abnf::tree-listp))
:returns (escape escape-resultp)
(b* (((unless (and (abnf::tree-listp escape-contents)
(equal (len escape-contents) 1)))
(reserrf "unexpected input to cst2ast-single-char"))
(fringe (abnf::tree-list->string escape-contents))
((unless (and (equal (len fringe) 1)
(unsigned-byte-listp 8 fringe)))
(reserrf "unexpected input to cst2ast-single-char 2")))
(case (car fringe)
(39 (make-escape-single-quote))
(34 (make-escape-double-quote))
(92 (make-escape-backslash))
(110 (make-escape-letter-n))
(114 (make-escape-letter-r))
(116 (make-escape-letter-t))
(110 (make-escape-line-feed))
(114 (make-escape-carriage-return))
(t (reserrf "unrecognized escaped character in cst2ast-single-char")))))
(define cst2ast-escape-sequence ((tree abnf::treep))
:returns (element string-element-resultp)
(b* (((unless (and (abnf::treep tree)
(abnf::tree-case tree :nonleaf)
(equal (abnf::tree-nonleaf->rulename? tree) (abnf::rulename "escape-sequence"))))
(reserrf "unexpected input to cst2ast-escape-sequence"))
((unless (and (equal (len (abnf::tree-nonleaf->branches tree)) 2)
(equal (car (abnf::tree-nonleaf->branches tree)) *list-leafterm-92*)))
(reserrf "unexpected input to cst2ast-escape-sequence 2"))
(second-branch (cadr (abnf::tree-nonleaf->branches tree)))
;; in the case of \uFFFF, for example,
;; second-branch looks like ((:NONLEAF NIL (((:LEAFTERM (117))) ..) ..))
((unless (and (abnf::tree-listp second-branch)
(equal (len second-branch) 1)))
(reserrf "unexpected input to cst2ast-escape-sequence 3"))
(subtree (car second-branch))
;; in the case of \uFFFF, for example,
;; subtree looks like (:NONLEAF NIL (((:LEAFTERM (117))) ..) ..)
((unless (and (abnf::treep subtree)
(abnf::tree-case subtree :nonleaf)
(null (abnf::tree-nonleaf->rulename? subtree))))
(reserrf "unexpected input to cst2ast-escape-sequence 4"))
(escape-sequence-contents (abnf::tree-nonleaf->branches subtree))
;; In the case of \uFFFF, for example,
;; escape-sequence-contents looks like (((:LEAFTERM (117))) ..)
;; where 117 is the char code of u.
;; escape-sequence-contents is either
;; (1) a tree-list-listp with a single tree containing the single char, or
;; (2) it has two branches, the first of which is u or x, and the second of which
;; has the four or two digits.
((unless (abnf::tree-list-listp escape-sequence-contents))
(reserrf "unexpected input to cst2ast-escape-sequence 5"))
(yul-escape-or-err
(cond ((= (length escape-sequence-contents) 1)
(cst2ast-single-char (car escape-sequence-contents)))
((and (= (length escape-sequence-contents) 2)
(equal (first escape-sequence-contents) *list-leafterm-u*) )
(cst2ast-uhhhh (second escape-sequence-contents)))
((and (= (length escape-sequence-contents) 2)
(equal (first escape-sequence-contents) *list-leafterm-x*))
(cst2ast-xhh (second escape-sequence-contents)))
(t (reserrf "unexpected input to cst2ast-escape-sequence 6"))))
((when (reserrp yul-escape-or-err))
yul-escape-or-err))
(make-string-element-escape :get yul-escape-or-err)))
(define cst2ast-quoted-printable ((subtree abnf::treep) (double-quoted-p booleanp))
:returns (element string-element-resultp)
:short "Given a :nonleaf tree for rulename \"single-quoted-printable\"
or \"double-quoted-printable\", returns a string-element-char."
;; We don't check the structure except for making sure it is a single character.
;; We could check the structure more.
(declare (ignorable double-quoted-p))
(b* (((unless (and (abnf::treep subtree)
(abnf::tree-case subtree :nonleaf)))
(reserrf "unexpected input to cst2ast-quoted-printable"))
(fringe (abnf::tree->string subtree))
((unless (and (equal (len fringe) 1)
(acl2::unsigned-byte-p 8 (car fringe))))
(reserrf "unexpected input to cst2ast-quoted-printable 2")))
(make-string-element-char :get (code-char (car fringe)))))
;; content should be a nonleaf with a rulename? nil
;; Then the branches are list of list of nonleaf
;; That lower nonleaf has rulename one of
;; single-quoted-printable, double-quoted-printable, escape-sequence
(define cst2ast-string-literal-content ((content abnf::treep) (double-quoted-p booleanp))
:returns (element string-element-resultp)
(b* (((unless (and (abnf::treep content)
(abnf::tree-case content :nonleaf)
(null (abnf::tree-nonleaf->rulename? content))))
(reserrf "bad structure for string literal content element"))
(branches (abnf::tree-nonleaf->branches content))
((unless (and (abnf::tree-list-listp branches)
(equal (len branches) 1)
(listp (car branches))
(equal (len (car branches)) 1)))
(reserrf "bad structure for string literal content element 2"))
(subtree (caar branches))
((unless (and (abnf::treep subtree)
(abnf::tree-case subtree :nonleaf)))
(reserrf "bad structure for string literal content element 3"))
(rulename (abnf::tree-nonleaf->rulename? subtree))
((unless (or (and double-quoted-p
(member-equal rulename *double-quoted-content-rulenames*))
(and (not double-quoted-p)
(member-equal rulename *single-quoted-content-rulenames*))))
(reserrf "bad structure for string literal content element 4"))
(string-element (cond ((equal rulename (abnf::rulename "escape-sequence"))
(cst2ast-escape-sequence subtree))
(t
(cst2ast-quoted-printable subtree double-quoted-p))))
((when (reserrp string-element))
(reserrf "bad structure for string literal content element 4")))
string-element))
(define cst2ast-string-literal-contents ((contents abnf::tree-listp) (double-quoted-p booleanp))
:returns (elements string-element-list-resultp)
;; Each tree is a nonleaf with no rulename.
(b* (((unless (and (abnf::tree-listp contents) (booleanp double-quoted-p)))
(reserrf "bad call to cst2ast-string-literal-contents"))
((when (endp contents))
nil)
(first-string-element (cst2ast-string-literal-content (car contents) double-quoted-p))
((unless (string-elementp first-string-element))
(reserrf "problem in cst2ast-string-literal-contents"))
((unless (listp (cdr contents)))
(reserrf "problem in cst2ast-string-literal-contents 2"))
(rest-string-elements (cst2ast-string-literal-contents (cdr contents) double-quoted-p))
((unless (string-element-listp rest-string-elements))
(reserrf "problem in cst2ast-string-literal-contents 3")))
(cons first-string-element
rest-string-elements)))
(define cst2ast-string-literal ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a :nonleaf tree with rulename \"string-literal\",
return the appropriate literal AST node."
(b* (((unless (abnf::tree-case tree :nonleaf))
nil)
(branches (abnf::tree-nonleaf->branches tree))
((unless (and (listp branches)
;; needs start and end quotes
(= (len branches) 3)))
nil)
;; The string literal must start and end with the same thing.
((unless (equal (first branches)
(third branches)))
nil)
(double-quoted (equal (first branches) *double-quote-tree-list*))
;; If not delimited by double quotes, it must have single quotes.
((unless (or double-quoted
(equal (first branches) *single-quote-tree-list*)))
nil)
(content (cst2ast-string-literal-contents (second branches) double-quoted))
((unless (string-element-listp content))
nil))
(make-literal-plain-string
:get (make-plain-string
:content content
:double-quote-p double-quoted))))
;; ---------------------------------
;; hex-string
(define looks-like-hex-string-fringe ((fringe nat-listp))
:returns (yes/no booleanp)
(and (true-listp fringe)
(>= (len fringe) 5)
(equal (subseq fringe 0 3)
(list (char-code #\h) (char-code #\e) (char-code #\x)))
(equal (nth 3 fringe) (nth (- (len fringe) 1) fringe))
(member (nth 3 fringe) (list (char-code #\") (char-code #\')))
t)) ; just so it will return t rather than the member it found
(define hex-chars-and-uscores-to-hex-string-rest-element-list
((chars character-listp))
:returns (hex-string-rest-elements hex-string-rest-element-listp)
:short "Map the characters of a hex string after the first two
to a list of hex string elements."
:long
(xdoc::topstring
(xdoc::p
"This is used after processing the first two hex digits of the hex string,
assuming that the hex string is not empty.")
(xdoc::p
"This is never expected to fail,
because the lexer should guarantee that
these characters have the expected form;
thus, we throw a hard error (which should never happen),
if the characters do not have the expected form."))
(b* (((when (endp chars)) nil)
((mv uscorep chars)
(if (eql (car chars) #\_)
(mv t (cdr chars))
(mv nil chars)))
((unless (and (consp chars)
(consp (cdr chars))
(str::hex-digit-char-p (first chars))
(str::hex-digit-char-p (second chars))))
(raise "Internal error: characters ~x0." chars))
(digit1 (make-hex-digit :get (first chars)))
(digit2 (make-hex-digit :get (second chars)))
(pair (make-hex-pair :1st digit1 :2nd digit2))
(elem (make-hex-string-rest-element :uscorep uscorep :pair pair))
(elems
(hex-chars-and-uscores-to-hex-string-rest-element-list (cddr chars))))
(cons elem elems)))
(define cst2ast-hex-string ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a :nonleaf tree with rulename \"hex-string\",
return the appropriate literal AST node."
(b* (((unless (and (abnf::treep tree)
(abnf::tree-case tree :nonleaf)))
nil)
;; There should be two branches, the first of which is "hex",
;; and then one with the delimited hex string.
;; However, for simplicity let's just use strings.
(fringe (abnf::tree-list-list->string (abnf::tree-nonleaf->branches tree)))
((unless (and (true-listp fringe)
(unsigned-byte-listp 8 fringe)
;; 3 for hex + 1 for opening quote + 1 for closing quote
(>= (len fringe) 5)))
nil)
(double-quote-p (equal (nth 3 fringe) (char-code #\")))
(hex-chars-and-underbars (subseq fringe 4 (- (len fringe) 1)))
((unless (unsigned-byte-listp 8 hex-chars-and-underbars))
(raise "Internal error: character codes ~x0." hex-chars-and-underbars))
(hex-chars-and-underbars (nats=>chars hex-chars-and-underbars))
((when (endp hex-chars-and-underbars))
(make-literal-hex-string
:get (make-hex-string :content nil :double-quote-p double-quote-p)))
((unless (and (consp hex-chars-and-underbars)
(consp (cdr hex-chars-and-underbars))
(str::hex-digit-char-p (first hex-chars-and-underbars))
(str::hex-digit-char-p (second hex-chars-and-underbars))))
(raise "Internal error: characters ~x0." hex-chars-and-underbars))
(digit1 (make-hex-digit :get (first hex-chars-and-underbars)))
(digit2 (make-hex-digit :get (second hex-chars-and-underbars)))
(pair (make-hex-pair :1st digit1 :2nd digit2))
(rest (hex-chars-and-uscores-to-hex-string-rest-element-list
(cddr hex-chars-and-underbars)))
(content (make-hex-string-content :first pair :rest rest))
(hex-string (make-hex-string :content content
:double-quote-p double-quote-p)))
(make-literal-hex-string :get hex-string)))
;; ---------------------------------
;; putting the literals together in parse-literal
(define cst2ast-literal-kind ((tree abnf::treep))
:returns (ast-node? literal-optionp)
:short "Given a tree under :nonleaf literal, return the appropriate literal AST node."
(b* (;; probably should be moved to the guard
((unless (abnf::tree-case tree :nonleaf))
nil)
(rulename-option (abnf::tree-nonleaf->rulename? tree))
((unless (abnf::rulenamep rulename-option))
nil)
(rulestring (abnf::rulename->get rulename-option)))
(cond ((equal rulestring "decimal-number")
(cst2ast-decimal-number tree))
((equal rulestring "hex-number")
(cst2ast-hex-number tree))
((equal rulestring "boolean")
(cst2ast-boolean tree))
((equal rulestring "string-literal")
(cst2ast-string-literal tree))
((equal rulestring "hex-string")
(cst2ast-hex-string tree))
(t nil))))
(define parse-literal ((tokens abnf::tree-listp))
:returns (mv (ast-node literal-optionp) (tokens-after-literal-or-reserr abnf::tree-list-resultp))
:short "Attempts to eat a literal and build a literal AST node."
:long
(xdoc::topstring
(xdoc::p
"Returns two values: an optional literal AST node and either the list of remaining tokens or a reserr.")
(xdoc::p
"If a valid literal token is found, the first value returned
is a literal AST node of the appropriate kind. Different kinds have different substructure.")
(xdoc::p
"If no literal is found, the first value returned is @('NIL') and the second value is a reserr."))
(b* (((when (endp tokens))
;; It is possible this always indicates malformed input or logic error.
;; However, just in case this can occur on a false parse branch,
;; we will detect and report it in the top-level entry point
;; rather than throwing a hard error here
(mv nil
(reserrf (cons "ran out of tokens when trying to parse literal" tokens))))
((unless (abnf::tree-listp tokens))
(mv nil
(reserrf "guard of parse-literal")))
(putative-literal-tree (first tokens))
((unless (and (abnf::tree-case putative-literal-tree :nonleaf)
(equal (abnf::tree-nonleaf->rulename? putative-literal-tree)
(abnf::rulename "literal"))))
;; This is normal when trying various alternatives, so just return the reserr.
(mv nil
(reserrf (cons "token is not a literal" tokens))))
(branches (abnf::tree-nonleaf->branches putative-literal-tree))
((unless (and (listp branches)
(equal (len branches) 1)
(listp (car branches))
(equal (len (car branches)) 1)
(abnf::treep (caar branches))
(abnf::tree-case (caar branches) :nonleaf)))
;; Once we know it is a nonleaf for rulename 'literal', the structure should be fixed,
;; so this is a hard error.
(prog2$ (er hard? 'top-level
"literal token seems to have the wrong structure for a literal")
(mv nil
(reserrf (cons "program logic error 2" tokens)))))
(parsed-literal-kind (cst2ast-literal-kind (caar branches)))
((when (null parsed-literal-kind))
(mv nil
(reserrf "problem with literal substructure"))))
(mv parsed-literal-kind
(rest tokens)))
///
(defret len-of-parse-literal-<
(implies (not (reserrp tokens-after-literal-or-reserr))
(< (len tokens-after-literal-or-reserr)
(len tokens)))
:rule-classes :linear)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; path
(define parse-*-.-identifier ((tokens abnf::tree-listp))
:returns (mv (result-asts identifier-listp) (tokens-after-identifiers abnf::tree-listp))
:short "Parses zero or more occurrences of '\".\" identifier' and returns a list of identifier AST nodes."
(b* ((tokens (abnf::tree-list-fix tokens))
((when (endp tokens)) (mv nil tokens))
(tokens-after-dot-or-err (parse-symbol "." tokens))
((when (reserrp tokens-after-dot-or-err))
(mv nil tokens))
;; saw a dot; look for an identifier
((mv first-id tokens-after-first-id)
(parse-identifier tokens-after-dot-or-err))
((when (null first-id))
(mv nil tokens))
((when (reserrp tokens-after-first-id))
(mv nil tokens))
((unless (identifierp first-id))
(mv nil tokens))
((mv rest-ids tokens-after-rest-ids)
(parse-*-.-identifier tokens-after-first-id)))
(mv (cons first-id rest-ids)
tokens-after-rest-ids))
:measure (len tokens)
///
(defret len-of-parse-*-.-identifier
(<= (len tokens-after-identifiers)
(len tokens))
:rule-classes :linear))
;; path = identifier *( "." identifier )
(define parse-path ((tokens abnf::tree-listp))
:returns (mv (ast-node path-resultp) (tokens-after-path abnf::tree-listp))
:short "Attempts to eat a path and build a path AST node."
(b* (((when (endp tokens))
(mv (reserrf (cons "no path here" tokens))
nil))
((mv first-id tokens-after-first-id)
(parse-identifier tokens))
((when (null first-id))
(mv (reserrf (cons "can't be path since no identifier" tokens))
nil))
((when (reserrp tokens-after-first-id))
(mv (reserrf (cons "can't be path since no identifier 2" tokens))
nil))
((mv rest-ids rest-tokens)
(parse-*-.-identifier tokens-after-first-id))
((unless (mbt (< (len rest-tokens) (len tokens))))
(mv (reserrf (cons "logic error" (cons tokens-after-first-id tokens))) nil)))
(mv (make-path :get (cons first-id rest-ids)) rest-tokens))
///
(defret len-of-parse-path-<
(implies (not (reserrp ast-node))
(< (len tokens-after-path)
(len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; expression and function-call mutual-recursion
;; Used in parse-function-call to help out the measure proof
(define parse-identifier-and-open-paren ((tokens abnf::tree-listp))
:returns (mv (result-ast identifier-resultp) (tokens-after-id-and-open-paren abnf::tree-listp))
:short "Attempts to eat an identifier and a following open parenthesis, and build an identifier AST node."
(b* (((when (endp tokens))
(mv (reserrf "no id here") nil))
((mv id-ast? tokens-after-identifier-or-error)
(parse-identifier tokens))
((when (or (null id-ast?)
(reserrp tokens-after-identifier-or-error)))
(mv (reserrf "no id here 2") nil))
(tokens-after-paren-or-error (parse-symbol "(" tokens-after-identifier-or-error))
((when (reserrp tokens-after-paren-or-error))
(mv (reserrf "no start of funcall here") nil)))
(mv id-ast? tokens-after-paren-or-error))
///
(defret len-of-parse-identifier-and-open-paren-<
(implies (not (reserrp result-ast))
(< (len tokens-after-id-and-open-paren)
(len tokens)))
:rule-classes :linear))
(defines parse-yul-expressions
;; expression = path / function-call / literal
(define parse-expression ((tokens abnf::tree-listp))
:returns (mv (result-ast expression-resultp) (tokens-after-expression abnf::tree-listp))
:short "Attempts to eat an expression and build an expression AST node."
(b* (((when (endp tokens))
(mv (reserrf (cons "no expression here" tokens)) nil))
;; First look for the literal, since that is unambiguous
((mv literal-ast tokens-after-literal-or-err)
(parse-literal tokens))
((when (and (literalp literal-ast)
(not (reserrp tokens-after-literal-or-err))))
(mv (make-expression-literal :get literal-ast) tokens-after-literal-or-err))
;; Since path and function-call both start with an identifier,
;; but function-call requires a following "(", try function-call next
((mv function-call-ast tokens-after-function-call)
(parse-function-call tokens))
((unless (reserrp function-call-ast))
(mv (make-expression-funcall :get function-call-ast)
tokens-after-function-call))
;; Finally, try path.
((mv path-ast tokens-after-path)
(parse-path tokens))
((unless (reserrp path-ast))
(mv (make-expression-path :get path-ast) tokens-after-path)))
;; none of those worked
(mv (reserrf (cons "no expression here 2" tokens)) nil))
:measure (two-nats-measure (len tokens) 1))
;; function-call = identifier "(" [ expression *( "," expression ) ] ")"
(define parse-function-call ((tokens abnf::tree-listp))
:returns (mv (result-ast funcall-resultp) (tokens-after-funcall abnf::tree-listp))
:short "Attempts to eat a function call and build a funcall AST node."
(b* (((mv id-or-err tokens-after-id-and-open-paren)
(parse-identifier-and-open-paren tokens))
((when (reserrp id-or-err))
(mv (reserrf "no function call here 0") nil))
;; First expression in optional expression list
((mv first-expression-arg-ast tokens-after-first-expression)
(parse-expression tokens-after-id-and-open-paren)))
(if (reserrp first-expression-arg-ast)
;; There are no expressions, so we need to see a close paren now
(b* ((tokens-after-close-paren-or-err (parse-symbol ")" tokens-after-id-and-open-paren))
((when (reserrp tokens-after-close-paren-or-err))
(mv (reserrf (cons "no ) after zero expressions so not a function call" tokens)) nil))
((unless (mbt (< (len tokens-after-close-paren-or-err)
(len tokens))))
(mv (reserrf "bad logic for defret") nil))
)
(mv (make-funcall :name id-or-err :args nil)
tokens-after-close-paren-or-err))
;; we have one expression, now get zero or more ( "," expression )
(b* (;; but first inform the measure proof that len of tokens is decreasing
((unless (mbt (< (len tokens-after-first-expression) (len tokens))))
(mv (reserrf "bad logic for measure") nil))
((mv rest-expressions rest-tokens)
(parse-*-comma-expression tokens-after-first-expression))
(tokens-after-close-paren-or-err2 (parse-symbol ")" rest-tokens))
((when (reserrp tokens-after-close-paren-or-err2))
(mv (reserrf (cons "no ) after one or more expressions so not a function call" tokens)) nil)))
(mv (make-funcall
:name id-or-err
:args (cons first-expression-arg-ast rest-expressions))
tokens-after-close-paren-or-err2))))
:measure (two-nats-measure (len tokens) 0))
(define parse-*-comma-expression ((tokens abnf::tree-listp))
:returns (mv (result-asts expression-listp) (tokens-after-expressions abnf::tree-listp))
:short "Parses zero or more occurrences of '\",\" expression' and returns a list of expression AST nodes."
(b* ((tokens (abnf::tree-list-fix tokens)) ; either this or fix every return, for return type proof
((when (endp tokens))
(mv nil tokens))
(tokens-after-comma-or-err (parse-symbol "," tokens))
((when (reserrp tokens-after-comma-or-err))
(mv nil tokens))
;; saw a comma; look for an expression
((mv first-expr tokens-after-first-expr)
(parse-expression tokens-after-comma-or-err))
((when (reserrp first-expr))
(mv nil tokens))
((unless (expressionp first-expr))
(mv nil tokens))
;; inform measure proof
((unless (mbt (< (len tokens-after-first-expr) (len tokens))))
(mv nil nil))
((mv rest-exprs tokens-after-rest-exprs)
(parse-*-comma-expression tokens-after-first-expr)))
(mv (cons first-expr rest-exprs)
tokens-after-rest-exprs))
:measure (two-nats-measure (len tokens) 0))
:verify-guards nil
///
(std::defret-mutual len-of-parse-expressions-<
(defret len-of-parse-expression-<
(implies (not (reserrp result-ast))
(< (len tokens-after-expression)
(len tokens)))
:rule-classes :linear
:fn parse-expression)
(defret len-of-parse-function-call-<
(implies (not (reserrp result-ast))
(< (len tokens-after-funcall)
(len tokens)))
:rule-classes :linear
:fn parse-function-call)
(defret len-of-parse-*-comma-expression-<=
(<= (len tokens-after-expressions) (len tokens))
:rule-classes :linear
:fn parse-*-comma-expression)
:hints (("Goal"
:expand ((parse-*-comma-expression tokens)
(parse-function-call tokens))))
)
(verify-guards parse-expression)
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; variable-declaration = %s"let" identifier [ ":=" expression ]
;; / %s"let" identifier *( "," identifier )
;; [ ":=" function-call ]
;; In the abstract syntax, we have two kinds of statement
;; modelling these two alternatives: variable-single and variable-multi.
(define parse-*-comma-identifier ((tokens abnf::tree-listp))
:returns (mv (result-asts identifier-listp) (tokens-after-identifiers abnf::tree-listp))
:short "Parses zero or more occurrences of '\",\" identifier' and returns a list of identifier AST nodes."
(b* ((tokens (abnf::tree-list-fix tokens))
((when (endp tokens)) (mv nil tokens))
(tokens-after-comma-or-err (parse-symbol "," tokens))
((when (reserrp tokens-after-comma-or-err))
(mv nil tokens))
;; saw a comma; look for an identifier
((mv first-id tokens-after-first-id)
(parse-identifier tokens-after-comma-or-err))
((when (null first-id))
(mv nil tokens))
((when (reserrp tokens-after-first-id))
(mv nil tokens))
((unless (identifierp first-id))
(mv nil tokens))
((mv rest-ids tokens-after-rest-ids)
(parse-*-comma-identifier tokens-after-first-id)))
(mv (cons first-id rest-ids)
tokens-after-rest-ids))
:measure (len tokens)
///
(defret len-of-parse-*-comma-identifier-<=
(<= (len tokens-after-identifiers)
(len tokens))
:rule-classes :linear))
;; consider having theorems that say
;; (implies (null result-asts) (= (len tokens-after-identifiers) (len tokens)))
;; and
;; (implies (not (null result-asts)) (< (len tokens-after-identifiers) (len tokens)))
(define parse-variable-declaration ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Attempts to eat a variable declaration and build a @('statement') AST node of kind @(':variable-single') or @(':variable-multi')."
:long
(xdoc::topstring
(xdoc::p
"The syntax diagram for "
(xdoc::ahref "https://docs.soliditylang.org/en/v0.8.10/grammar.html#a4.SolidityParser.yulVariableDeclaration"
"`yul-variable-declaration'")
" allows two ways of parsing a variable declaration with a single identifier and an initialization of a function call."
"For example, @('let x := s(0)').")
(xdoc::p
"The initialization can be a @('yul-expression') which can be a @('yul-function-call'), or the initialization can be a @('yul-function-call') directly."
"Although the syntax does not differ, and a grammar does not dictate the AST that is built,
we still must decide what to build."
"We decided to build an @('expression') of kind @(':funcall') containing a @('funcall') object whenever there is a single identifier.")
(xdoc::p
"This treatment is consistent with the handling of single and muli-assignmebnts, but in "
(xdoc::ahref "https://docs.soliditylang.org/en/v0.8.10/grammar.html#a4.SolidityParser.yulAssignment" "that case")
" the syntax diagram dictates at least two @('yul-path') instances prior to a direct @('yul-function-call')."))
(b* (((mv ?key1 tokens-after-let)
(parse-keyword "let" tokens))
((when (reserrp tokens-after-let))
(mv (reserrf (cons "no variable decl here" tokens)) nil))
((mv let-var-1 tokens-after-let-var-1)
(parse-identifier tokens-after-let))
((when (null let-var-1))
(mv (reserrf (cons "no variable decl here 2" tokens)) nil))
((when (reserrp tokens-after-let-var-1))
(mv (reserrf (cons "no variable decl here 3" tokens)) nil))
;; see if there are any more identifiers (preceded by commas)
((mv rest-identifiers tokens-after-rest-identifiers)
(parse-*-comma-identifier tokens-after-let-var-1))
;; The init is optional in both the single and multi case.
(tokens-after-init-symbol
(parse-symbol ":=" tokens-after-rest-identifiers))
((mv init-ast tokens-final)
(if (reserrp tokens-after-init-symbol)
(mv nil tokens-after-rest-identifiers)
(b* (((mv init-ast tokens-after-init)
(if (null rest-identifiers)
(parse-expression tokens-after-init-symbol)
(parse-function-call tokens-after-init-symbol)))
((when (reserrp init-ast))
;; the init doesn't parse, but it is optional,
;; so skip it and unwind the tokens
(mv nil tokens-after-rest-identifiers)))
(mv init-ast tokens-after-init)))))
(mv (if (null rest-identifiers)
(make-statement-variable-single :name let-var-1
:init init-ast)
(make-statement-variable-multi :names (cons let-var-1 rest-identifiers)
:init init-ast))
tokens-final))
///
(defret len-of-parse-variable-declaration-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement) (len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Note:
;; Assignment statements and function call statements are the only two kinds of statements
;; that do not begin with a keyword.
;; assignment = path ":=" expression
;; / path 1*( "," path ) ":=" function-call
(define parse-*-comma-path ((tokens abnf::tree-listp))
:returns (mv (result-asts path-listp) (tokens-after-paths abnf::tree-listp))
:short "Parses zero or more occurrences of '\",\" path' and returns a list of path AST nodes."
(b* ((tokens (abnf::tree-list-fix tokens))
((when (endp tokens)) (mv nil tokens))
(tokens-after-comma-or-err (parse-symbol "," tokens))
((when (reserrp tokens-after-comma-or-err))
(mv nil tokens))
;; saw a comma; look for an path
((mv first-path tokens-after-first-path)
(parse-path tokens-after-comma-or-err))
((unless (pathp first-path))
(mv nil tokens))
((mv rest-paths tokens-after-rest-paths)
(parse-*-comma-path (abnf::tree-list-fix tokens-after-first-path))))
(mv (cons first-path rest-paths)
(abnf::tree-list-fix tokens-after-rest-paths)))
:measure (len tokens)
:hints (("Goal" :in-theory (enable not-reserrp-when-pathp)))
:verify-guards nil
///
(verify-guards parse-*-comma-path)
(defret len-of-parse-*-comma-path-<=
(<= (len tokens-after-paths)
(len tokens))
:rule-classes :linear
:hints (("Goal" :in-theory (enable not-reserrp-when-pathp)))))
;; consider having theorems that say
;; (implies (null result-asts) (= (len tokens-after-paths) (len tokens)))
;; and
;; (implies (not (null result-asts)) (< (len tokens-after-paths) (len tokens)))
(define parse-assignment-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Attempts to eat an assignment statement and build a @('statement') AST node of kind @(':assign-single') or @(':assign-multiple')."
(b* (((mv path-ast tokens-after-path)
(parse-path tokens))
((when (reserrp path-ast))
(mv (reserrf (cons "no assignment statement here" tokens))
nil))
;; See how many more instances of ( "," path ) can be parsed.
;; Use zero-or-more and then check for quantity
;; before deciding whether to parse expression or function-call.
((mv additional-paths tokens-after-additional-paths)
(parse-*-comma-path tokens-after-path))
(tokens-after-assignment-symbol (parse-symbol ":=" tokens-after-additional-paths))
((when (reserrp tokens-after-assignment-symbol))
(mv (reserrf (cons "assignment statement requires ':='" tokens)) nil))
((mv init-ast tokens-after-init-form)
(if (null additional-paths)
(parse-expression tokens-after-assignment-symbol)
(parse-function-call tokens-after-assignment-symbol)))
((when (reserrp init-ast))
(mv (reserrf (cons "assignment statement does not finish properly" tokens))
nil)))
(mv (if (null additional-paths)
(make-statement-assign-single :target path-ast
:value init-ast)
(make-statement-assign-multi :targets (cons path-ast additional-paths)
:value init-ast))
tokens-after-init-form))
///
(defret len-of-parse-assignment-statement-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement) (len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; leave statement
(define parse-leave-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Attempts to eat a @('\"leave\"') keyword and build a @('statement') AST node of kind @(':leave')."
(b* (((mv statement-or-nil tokens-after-statement)
(parse-keyword "leave" tokens)))
(if (or (not (statementp statement-or-nil))
(reserrp tokens-after-statement))
(mv (reserrf "no leave statement here") (abnf::tree-list-fix tokens))
(mv statement-or-nil (abnf::tree-list-fix tokens-after-statement))))
///
(defret len-of-parse-leave-statement-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement) (len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; break statement
(define parse-break-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Attempts to eat a @('\"break\"') keyword and build a @('statement') AST node of kind @(':break')."
(b* (((mv statement-or-nil tokens-after-statement)
(parse-keyword "break" tokens)))
(if (or (not (statementp statement-or-nil))
(reserrp tokens-after-statement))
(mv (reserrf "no break statement here") (abnf::tree-list-fix tokens))
(mv statement-or-nil (abnf::tree-list-fix tokens-after-statement))))
///
(defret len-of-parse-break-statement-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement) (len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; continue statement
(define parse-continue-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Attempts to eat a @('\"continue\"') keyword and build a @('statement') AST node of kind @(':continue')."
(b* (((mv statement-or-nil tokens-after-statement)
(parse-keyword "continue" tokens)))
(if (or (not (statementp statement-or-nil))
(reserrp tokens-after-statement))
(mv (reserrf "no continue statement here") (abnf::tree-list-fix tokens))
(mv statement-or-nil (abnf::tree-list-fix tokens-after-statement))))
///
(defret len-of-parse-continue-statement-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement) (len tokens)))
:rule-classes :linear))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; mutual recursion:
;; block, if-statement, for-statement, switch-statement, function-definition
;; [ Note: From the examples in solidity/test/libyul/yulOptimizerTests/*.yul
;; the top level is either a block or an object.
;; We do not support yul objects at this time. ]
;; The following hand-written recursive-descent parser is intended
;; to follow the syntactic grammar described in grammar-new.abnf.
;; The top-level ast node is assumed to be a block, so that is what parse-yul will call.
;; But conceptually, a block is just one sort of statement, so we define that first.
;; tokens is a list of abnf trees, each of which has a rulename
;; from the set {"keyword", "literal", "identifier", "symbol"}
(defines parse-yul-statements
;; Note on return values.
;; If a given construct is not seen in the token stream,
;; we return '() as the new token stream (although it doesn't much matter what we return).
;; If we want to refer to the token stream, we put it in the err object
;; instead of returning it as the second value.
;; Note: use the same order to try statement alternatives
;; as they appear in the abnf grammar, as long as that will work.
;; If that does not work, permute as needed, but document why it must be permuted.
(define parse-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
(b* (((when (endp tokens))
(mv (reserrf "no statement here") nil))
;; block
((mv block-result tokens-after) (parse-block tokens))
((unless (reserrp block-result))
(mv (make-statement-block :get block-result)
tokens-after))
;; variable declaration
((mv decl-result tokens-after) (parse-variable-declaration tokens))
((unless (reserrp decl-result))
(mv decl-result tokens-after))
;; assignment
((mv assignment-result tokens-after) (parse-assignment-statement tokens))
((unless (reserrp assignment-result))
(mv assignment-result tokens-after))
;; function call
((mv function-call-result tokens-after) (parse-function-call tokens))
((unless (reserrp function-call-result))
(mv (make-statement-funcall :get function-call-result)
tokens-after))
;; if statement
((mv if-result tokens-after) (parse-if-statement tokens))
((unless (reserrp if-result))
(mv if-result tokens-after))
;; for statement
((mv for-result tokens-after) (parse-for-statement tokens))
((unless (reserrp for-result))
(mv for-result tokens-after))
;; switch statement
((mv switch-result tokens-after) (parse-switch-statement tokens))
((unless (reserrp switch-result))
(mv switch-result tokens-after))
;; leave
((mv leave-result tokens-after) (parse-leave-statement tokens))
((unless (reserrp leave-result))
(mv leave-result tokens-after))
;; break
((mv break-result tokens-after) (parse-break-statement tokens))
((unless (reserrp break-result))
(mv break-result tokens-after))
;; continue
((mv continue-result tokens-after) (parse-continue-statement tokens))
((unless (reserrp continue-result))
(mv continue-result tokens-after))
;; function definition
((mv fundef-result tokens-after) (parse-fundef tokens))
((unless (reserrp fundef-result))
(mv (make-statement-fundef :get fundef-result)
tokens-after))
)
;; if none of those
(mv (reserrf (cons "no statement seen" tokens)) nil))
:measure (two-nats-measure (len tokens) 1))
(define parse-block ((tokens abnf::tree-listp))
:returns (mv (result-ast block-resultp) (tokens-after-block abnf::tree-listp))
:short "Eats a block (delimited by @('{ }')) and builds a @('block') AST node."
(b* (((when (endp tokens))
(mv (reserrf "no block here") nil))
;; parse required symbol "{"
(tokens-after-open-brace-or-err
(parse-symbol "{" tokens))
((when (reserrp tokens-after-open-brace-or-err))
(mv (reserrf (cons "no block start here" tokens)) nil))
;; parse zero or more statements
((mv block-statements tokens-after-block-statements)
(parse-*-statement tokens-after-open-brace-or-err))
;; parse required symbol "}"
(tokens-after-close-brace-or-err
(parse-symbol "}" tokens-after-block-statements))
((when (reserrp tokens-after-close-brace-or-err))
(mv (reserrf (cons "no close brace for block" tokens)) nil))
((unless (mbt (< (len tokens-after-close-brace-or-err)
(len tokens))))
(mv (reserrf "logic error") nil)))
(mv (make-block :statements block-statements)
(abnf::tree-list-fix tokens-after-close-brace-or-err)))
:measure (two-nats-measure (len tokens) 0))
;; if-statement = %s"if" expression block
(define parse-if-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Eats an @('if') statement and builds a @('statement') AST node of kind @(':if')."
(b* (((when (endp tokens))
(mv (reserrf "no if statement here") nil))
;; parse required keyword "if"
((mv ?if-ast-node tokens-after-if-or-reserr)
(parse-keyword "if" tokens))
((when (reserrp tokens-after-if-or-reserr))
(mv (reserrf "no if statement here 2") nil))
((mv expression-or-err tokens-after-if-expression)
(parse-expression tokens-after-if-or-reserr))
((when (reserrp expression-or-err))
(mv (reserrf "no expression after 'if'") nil))
((mv block-or-err tokens-after-if-block)
(parse-block tokens-after-if-expression))
((unless (blockp block-or-err))
(mv (reserrf "no block after 'if' expression") nil)))
(mv (make-statement-if :test expression-or-err
:body block-or-err)
(abnf::tree-list-fix tokens-after-if-block)))
:measure (two-nats-measure (len tokens) 0))
;; for-statement = %s"for" block expression block block
(define parse-for-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Eats a @('for') statement and builds a @('statement') AST node of kind @(':for')."
(b* (((when (endp tokens))
(mv (reserrf "no for statement here") nil))
;; parse required keyword "for"
((mv ?for-ast-node tokens-after-for-or-reserr)
(parse-keyword "for" tokens))
((when (reserrp tokens-after-for-or-reserr))
(mv (reserrf "no for statement here 2") nil))
;; parse init block
((mv init-block tokens-after-init-block)
(parse-block tokens-after-for-or-reserr))
((when (reserrp init-block))
(mv (reserrf "no init block after 'for'") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-init-block)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse test expression
((mv test-expression tokens-after-test-expression)
(parse-expression tokens-after-init-block))
((when (reserrp test-expression))
(mv (reserrf "no test expression for 'for'") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-test-expression)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse update block
((mv update-block tokens-after-update-block)
(parse-block tokens-after-test-expression))
((when (reserrp update-block))
(mv (reserrf "no update block for 'for'") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-update-block)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse body block
((mv body-block tokens-after-body-block)
(parse-block tokens-after-update-block))
((when (reserrp body-block))
(mv (reserrf "no body block for 'for'") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-body-block)
(len tokens))))
(mv (reserrf "logic error") nil)))
(mv (make-statement-for :init init-block
:test test-expression
:update update-block
:body body-block)
(abnf::tree-list-fix tokens-after-body-block)))
:measure (two-nats-measure (len tokens) 0))
;; switch-statement = %s"switch" expression
;; ( 1*( %s"case" literal block ) [ %s"default" block ]
;; / %s"default" block )
(define parse-switch-statement ((tokens abnf::tree-listp))
:returns (mv (result-ast statement-resultp) (tokens-after-statement abnf::tree-listp))
:short "Eats a @('switch') statement and builds a @('statement') AST node of kind @(':switch')."
(b* (((when (endp tokens))
(mv (reserrf "no switch statement here") nil))
;; parse required keyword "switch"
((mv ?switch-ast-node tokens-after-switch-or-reserr)
(parse-keyword "switch" tokens))
((when (reserrp tokens-after-switch-or-reserr))
(mv (reserrf "no switch statement here 2") nil))
;; parse target expression
((mv target-expression tokens-after-target-expression)
(parse-expression tokens-after-switch-or-reserr))
((when (reserrp target-expression))
(mv (reserrf "no target expression after 'switch'") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-target-expression)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse as many case clauses as we see (zero or more)
;; This combines the two alternatives; we will sort them out later.
((mv case-clauses tokens-after-case-clauses)
(parse-*-case-clause tokens-after-target-expression))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-case-clauses)
(len tokens))))
(mv (reserrf "logic error") nil))
;; Parse an optional default clause.
;; Although the "default" keyword is not used anywhere else,
;; the most correct thing is if either the keyword or the block fails,
;; the whole clause fails and the clause is omitted.
((mv default-block-option tokens-after-block-option)
(b* (;; parse default block keyword
((mv ?default-ast tokens-after-default-or-reserr)
(parse-keyword "default" tokens-after-case-clauses))
((when (reserrp tokens-after-default-or-reserr))
(mv nil tokens-after-case-clauses))
;; parse default block
((mv default-block tokens-after-default-block)
(parse-block tokens-after-default-or-reserr))
((when (reserrp default-block))
(mv nil tokens-after-case-clauses)))
(mv default-block tokens-after-default-block)))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-block-option)
(len tokens))))
(mv (reserrf "logic error") nil)))
(if (and (null case-clauses) (null default-block-option))
(mv (reserrf "switch default block is not optional if there are no case clauses")
nil)
(mv (make-statement-switch
:target target-expression
:cases case-clauses
:default default-block-option)
(abnf::tree-list-fix tokens-after-block-option))))
:measure (two-nats-measure (len tokens) 0))
(define parse-case-clause ((tokens abnf::tree-listp))
:returns (mv (result-ast swcase-resultp) (tokens-after-clause abnf::tree-listp))
:short "Eats a @('case') clause for a @('switch') statement and builds an @('swcase') AST node."
(b* (((when (endp tokens))
(mv (reserrf "no case clause here") nil))
;; parse required keyword "case"
((mv ?case-ast-node tokens-after-case-or-reserr)
(parse-keyword "case" tokens))
((when (reserrp tokens-after-case-or-reserr))
(mv (reserrf "no case clause here 2") nil))
;; parse the case's value, a literal
((mv value-literal? tokens-after-value-literal-or-reserr)
(parse-literal tokens-after-case-or-reserr))
((unless (and (literalp value-literal?)
(not (reserrp tokens-after-value-literal-or-reserr))))
(mv (reserrf "can't parse case's value literal") nil))
;; parse the case's body, a block
((mv body-block tokens-after-body-block)
(parse-block tokens-after-value-literal-or-reserr))
((when (reserrp body-block))
(mv (reserrf "can't parse case's body block") nil)))
(mv (make-swcase :value value-literal?
:body body-block)
tokens-after-body-block))
:measure (two-nats-measure (len tokens) 0))
(define parse-*-case-clause ((tokens abnf::tree-listp))
:returns (mv (result-asts swcase-listp) (tokens-after-clauses abnf::tree-listp))
:short "Eats as many case clauses and possible (zero or more)."
:long
(xdoc::topstring
(xdoc::p
"Although the syntax diagram for 'switch' shows one-or-more case clauses in the first alternative,
the second alternative shows zero case clauses, so we combine those into this
single function that parses zero-or-more clauses."))
(b* (((when (endp tokens)) (mv nil nil))
((mv first-clause tokens-after-clause) (parse-case-clause tokens))
((when (reserrp first-clause))
; found zero clauses here
(mv nil (abnf::tree-list-fix tokens)))
;; We found first-clause, now look for more.
;; But first, help out the measure proof.
((unless (mbt (< (len tokens-after-clause) (len tokens))))
(mv nil nil))
((mv rest-clauses rest-tokens)
(parse-*-case-clause tokens-after-clause)))
(mv (abnf::list-fix (cons first-clause rest-clauses))
(abnf::tree-list-fix rest-tokens)))
:measure (two-nats-measure (len tokens) 2))
(define parse-fundef ((tokens abnf::tree-listp))
:returns (mv (result-ast fundef-resultp) (tokens-after-fundef abnf::tree-listp))
:short "Eats a function definition and builds a @('fundef') AST node."
(b* (((when (endp tokens))
(mv (reserrf "no function definition here") nil))
;; parse required keyword "function"
((mv ?function-ast-node tokens-after-function-or-reserr)
(parse-keyword "function" tokens))
((when (reserrp tokens-after-function-or-reserr))
(mv (reserrf "no function definition here 2") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-function-or-reserr)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse the function's name, an identifier
((mv id-or-null tokens-after-id-or-reserr)
(parse-identifier tokens-after-function-or-reserr))
((when (null id-or-null))
(mv (reserrf "missing function name") nil))
((when (reserrp tokens-after-id-or-reserr))
(mv (reserrf "missing function name") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-id-or-reserr)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse the required "("
(tokens-after-open-paren (parse-symbol "(" tokens-after-id-or-reserr))
((when (reserrp tokens-after-open-paren))
(mv (reserrf "missing '(' in function definition") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-open-paren)
(len tokens))))
(mv (reserrf "logic error") nil))
;; Parse the function inputs, zero or more identifiers separated by commas.
;; Zero identifiers is allowed, so we return (mv nil tokens-after-open-paren)
;; in that case.
((mv input-ids tokens-after-input-ids)
(b* (;; first identifier
((mv first-id tokens-after-first-id)
(parse-identifier tokens-after-open-paren))
((when (null first-id))
(mv nil tokens-after-open-paren))
((when (reserrp tokens-after-first-id))
(mv nil tokens-after-open-paren))
;; remaining identifiers
((mv rest-ids tokens-after-rest-ids)
(parse-*-comma-identifier tokens-after-first-id)))
(mv (cons first-id rest-ids) tokens-after-rest-ids)))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-input-ids)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse the required ")"
(tokens-after-close-paren (parse-symbol ")" tokens-after-input-ids))
((when (reserrp tokens-after-close-paren))
(mv (reserrf "missing ')' in function definition") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-close-paren)
(len tokens))))
(mv (reserrf "logic error") nil))
;; the "->" is optional
((mv output-ids tokens-after-output-ids)
(b* ((tokens-after-arrow (parse-symbol "->" tokens-after-close-paren))
((when (reserrp tokens-after-arrow))
(mv nil tokens-after-close-paren))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-arrow)
(len tokens))))
(mv (reserrf "logic error") nil))
;; Parse the function outputs, one or more identifiers separated by commas.
;; The first identifier is required since we already saw a "->"
((mv first-output-id tokens-after-first-output-id)
(parse-identifier tokens-after-arrow))
((when (null first-output-id))
(mv (reserrf "missing output identifier in function definition") nil))
((when (reserrp tokens-after-first-output-id))
(mv (reserrf "missing output identifier in function definition") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-first-output-id)
(len tokens))))
(mv (reserrf "logic error") nil))
;; remaining output identifiers
((mv rest-output-ids tokens-after-rest-output-ids)
(parse-*-comma-identifier tokens-after-first-output-id))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-rest-output-ids)
(len tokens))))
(mv (reserrf "logic error") nil)))
(mv (cons first-output-id rest-output-ids)
tokens-after-rest-output-ids)))
((when (reserrp output-ids))
(mv (reserrf (cons "parse error in output ids" output-ids)) nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-output-ids)
(len tokens))))
(mv (reserrf "logic error") nil))
;; parse the required function body block
((mv body-block tokens-after-body-block)
(parse-block tokens-after-output-ids))
((when (reserrp body-block))
(mv (reserrf "no function definition body") nil))
;; inform the measure proof of the intermediate decrease
((unless (mbt (< (len tokens-after-body-block)
(len tokens))))
(mv (reserrf "logic error") nil)))
(mv (make-fundef :name id-or-null
:inputs input-ids
:outputs output-ids
:body body-block)
tokens-after-body-block))
:measure (two-nats-measure (len tokens) 0))
(define parse-*-statement ((tokens abnf::tree-listp))
:returns (mv (result-asts statement-listp) (tokens-after-statements abnf::tree-listp))
:short "Eats as many statements as possible (zero or more)."
:long
(xdoc::topstring
(xdoc::p
"In Yul, there is no statement separator. There is enough syntax on each
statement rule to make it reasonably easy to disambiguate the statements."))
(b* (((when (endp tokens)) (mv nil nil))
((mv first-statement tokens-after-statement) (parse-statement tokens))
((when (reserrp first-statement))
;; found zero statements here
(mv nil (abnf::tree-list-fix tokens)))
;; We found first-statement, now look for more and return those found.
;; But first, help out the measure proof.
((unless (mbt (< (len tokens-after-statement) (len tokens))))
(mv nil nil))
((mv rest-statements rest-tokens)
(parse-*-statement tokens-after-statement)))
(mv (abnf::list-fix (cons first-statement rest-statements))
(abnf::tree-list-fix rest-tokens)))
:measure (two-nats-measure (len tokens) 2))
:ruler-extenders :all ; it is possible that some of the uses of mbt to prove
; token length decrease are unnecessary after we added :ruler-extenders :all
:verify-guards nil
///
(std::defret-mutual len-of-parse-statements-<
(defret len-of-parse-statement-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement)
(len tokens)))
:rule-classes :linear
:fn parse-statement)
(defret len-of-parse-block-<
(implies (not (reserrp result-ast))
(< (len tokens-after-block)
(len tokens)))
:rule-classes :linear
:fn parse-block)
(defret len-of-parse-if-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement)
(len tokens)))
:rule-classes :linear
:fn parse-if-statement)
(defret len-of-parse-for-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement)
(len tokens)))
:rule-classes :linear
:fn parse-for-statement)
(defret len-of-parse-switch-<
(implies (not (reserrp result-ast))
(< (len tokens-after-statement)
(len tokens)))
:rule-classes :linear
:fn parse-switch-statement)
(defret len-of-parse-case-<
(implies (not (reserrp result-ast))
(< (len tokens-after-clause)
(len tokens)))
:rule-classes :linear
:fn parse-case-clause)
(defret len-of-parse-*-case-clause-<=
(<= (len tokens-after-clauses)
(len tokens))
:rule-classes :linear
:fn parse-*-case-clause)
(defret len-of-parse-fundef-<
(implies (not (reserrp result-ast))
(< (len tokens-after-fundef)
(len tokens)))
:rule-classes :linear
:fn parse-fundef)
(defret len-of-parse-*-statement-<=
(<= (len tokens-after-statements)
(len tokens))
:rule-classes :linear
:fn parse-*-statement)
:hints (("Goal" :expand ((parse-*-statement tokens)
(parse-*-case-clause tokens)))))
(verify-guards parse-statement)
)
(define parse-yul ((yul-string stringp))
:returns (block? block-resultp)
:short "Parses a Yul source program string into abstract syntax."
:long
(xdoc::topstring
(xdoc::p
"@('yul-string') must contain the surface syntax of a single Yul block.")
(xdoc::p "Returns either a block or a reserrp.
Yul object notation is not supported at this time."))
(b* ((tokens (tokenize-yul yul-string))
((when (reserrp tokens))
tokens)
((mv top-block tokens-after-ast) (parse-block tokens))
((when (reserrp top-block))
top-block)
;; We may want to relax this next restriction if we want multiple things
;; at the top level.
((unless (null tokens-after-ast))
(reserrf "after parsing top-level yul block, there should be no more tokens")))
top-block))
;; variation on parse-yul that takes a list of bytes
(define parse-yul-bytes ((yul-bytes nat-listp))
:returns (block? block-resultp)
:short "Parses the Yul source program bytes into abstract syntax."
:long
(xdoc::topstring
(xdoc::p
"This does the same thing as @(see parse-yul), but does not need to
convert the string to bytes first."))
(b* ((tokens (tokenize-yul-bytes yul-bytes))
((when (reserrp tokens))
tokens)
((mv top-block tokens-after-ast) (parse-block tokens))
((when (reserrp top-block))
top-block)
;; We may want to relax this next restriction if we want multiple things
;; at the top level.
((unless (null tokens-after-ast))
(reserrf "after parsing top-level yul block, there should be no more tokens")))
top-block))
|