1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
|
#|
The Apprentice Example
J Strother Moore and George Porter
Roughly speaking, we prove that a certain Java class file implements a
monotonically increasing counter. The counter is the subject of
contention by an unbounded number of threads. To insure monotonicity,
the threads achieve mutually exclusive access to the counter, using
synchronized blocks. Here is the Java
class Container {
public int counter;
}
class Job extends Thread {
Container objref;
public Job incr () {
synchronized(objref) {
objref.counter = objref.counter + 1;
}
return this;
}
public void setref(Container o) {
objref = o;
}
public void run() {
for (;;) {
incr();
}
}
}
class Apprentice {
public static void main(String[] args) {
Container container = new Container();
for (;;) {
Job job = new Job();
job.setref(container);
job.start();
}
}
}
We translated this file into the bytecode supported by our M5 model of
the JVM. The translation is the value of the ACL2 constant *a0* declared
below. We then proved:
(defthm monotonicity
(let* ((s1 (run sched *a0*))
(s2 (step th s1)))
(implies (not (equal (counter s1) nil))
(or (equal (counter s1)
(counter s2))
(equal (int-fix (+ 1 (counter s1)))
(counter s2))))))
It may be read as follows. Let s1 be a JVM state obtained by running
*a0* under an arbitrarily long schedule of interleaved steps by
arbitrary threads. Think of s2 as the successor state to s1 obtained
by stepping an arbitrary thread th once. Then if the counter in s1 is
non-null, it and the counter in s2 are related by a predicate named
rel. Rel holds between two things if either they are the same or else
the second is the result of incrementing the first (in 32-bit
arithmetic). Roughly speaking, this says the counter increases weakly
monotonically.
Provision must be made for the null value of the counter because the
Container object holding the counter is not yet allocated in *a0*. It
may remain unallocated for an arbitrary number of thread steps (since
sched may call for the stepping of non-existent or unscheduled
threads). The Container is not allocated until thread 0 has been
stepped once.
Proof of Monotonicity:
Suppose (good-state s) is a predicate with the following three
properties:
[1] (good-state *a0*)
[2] (good-state s) -> (good-state (step th s))
[3] (good-state s) -> (or (equal (counter s) nil)
(rel (counter s)
(counter (step th s))))
Then it is easy to get:
[4] (good-state (run sched *a0*)) {by induction, [1], and [2]}
[5] Monotonicity {by [3] and [4]}
Q.E.D.
The key is thus the definition of good-state to have properties
[1]-[3]. The proof of [1] will be by computation.
[2] and [3] will be proved in three parts, each, (a) th = 0, (b)
scheduled th such that 1 <= th <= (- (len (heap s)) 9), (c)
unscheduled th. We will then prove a case analysis that shows
(a)-(b)-(c) are exhaustive.
To prove these we will use staged simplification.
(a) expand (good-state s) in the hypothesis so as to develop each of
the possible cases.
(b) when that stabilizes for a given case, expand (step th s) to
symbolically compute the next state for the case in question.
(c) when the next state is stable, expand the good-state predicate on
and see that it is t.
Unguided expansion just blows up.
History:
The project started with the M4 model of the JVM. Initially, the
example only had three threads: the main method and two Jobs. That
was completed on Sep 30, 2000. Then we changed it to the unbounded
thread version. That was completed for the first time on Oct 7, 2000.
The proof was cleaned up and presented in the first version of our
paper on this subject, which is /v/hank/v104/text/m4/proofs.tex.
Indeed, all of the m4 work on this example is on the directory above.
In June and July, 2001, George created M5 and the jvm2acl2 tool. The
Java above was mechanically translated to ACL2 on July 12, 2001. The
proof here was finished on July 15, 2001. The key part of the proof
-- the good-state invariant -- was hand-translated by Moore from the
M4 version to the M5 version. The proof was then hand-translated and
re-certified.
The comments below are historical and concern the original M4 2-Job
version.
George wrote M4 and the system below. He then made
several useful suggestions for simplifying his original code. The most
important was to rearrange the code sequence
(load job1)
(invokevirtual "Job" "start" 0)
(load job2)
(invokevirtual "Job" "start" 0)
to
(load job2)
(load job1)
(invokevirtual "Job" "start" 0)
(invokevirtual "Job" "start" 0)
In retrospect this is not a big deal and could be easily dealt with.
But at the time I was doing the proof I just couldn't stand the
idea of carrying more invariants further into the ``pre-*s1*'' state.
Pete helped me clarify my thoughts after three days of struggle. He
also contributed the idea of using computation to define the
invariant. I didn't use his idea as fully here as he thinks it could
be used, but I used it to great and beneficial effect in the
``bootstrapping'' proof here, i.e., in proving that the first 25
states are ok.
Timesheet on the 2-Job Version: I started on this task on Saturday,
Sep 23. I spent two and a half frustrating days before asking Pete
and George for some time together. My problem was that I had tried to
tackle the good-state invariant without wanting to say everything I
actually knew. I should have known better. On Monday night I didn't
work on it. On Tuesday I taught and started defining good-state as it
exists below. I completed good-state on Wednesday and began exploring
ways to control the proof of the good-state invariance through step.
The work I did on Wednesday was largely irrelevant because I had not
seen the simplicity of doing a case for each of th=0,1,2, and other.
I was proving many theorems about parts of good-state. On Thursday
and Friday I was with Legato. On Friday night I saw to do the th case
split and I also figured out the very first ``staged simplification''
hack based on a bogus elim lemma and its use to trigger a rewrite
rule. On Saturday Sep 30, I got the proof done, working about 8
hours. I presented the 2-Job proof to the ACL2 research seminar on
Wednesday, Oct 4.
At that seminar it became clear that the 2-Job version could yield to
a finite state exploration. In fact, Pete used ACL2 to prove the
2-Job version within a day or two of when I did, above. At the
seminar I realized that an unbounded number of threads would not be
significantly harder. Indeed, I had by then gotten a clear view of
the big picture.
Therefore, on Saturday, Oct 7, I worked several hours on it, while
also working on other things. On Sunday, Oct 8, I spent another 6
hours and finished.
The next time I turned my attention to this problem was July 12, 2001,
after George showed me jvm2acl2. But by serendipity, I had that week
implemented computed hints and the :comptuted-hint-replacement feature
by which staged simplification could be more directly programmed as a
hint.
Not much was done on the proof until the evening of Friday, July 13,
when I worked about 8 hours on it. No real problems were encountered
but it took me many hours to get my head into M5. In addition, the
programs had changed some because they were now exactly as produced by
Sun's Javac; they contain some dead code and other oddities. The
presence of the constructor methods, <init>, greatly complicated the
main thread -- the stack in that thread can be four frames deep now.
Some method bodies are identical so it is no longer possible to tell
which frame is which merely by looking at the program. But the
biggest problem for me to grapple with was the presence in the heap of
representatives of all the classes. In the simpler n-Job version,
thread i was represented by at heap address i. This was a fortunate
simplification that permitted me not to distinguish thread numbers
from heap addresses. But in the new version, thread i is allocated to
the object at heap address i+8. I had to hand-translate all the
theorems, distinguishing thread numbers from heap addresses. I got
this down pat by Friday evening and was making good progress at
working my way through the script.
But on Saturday I made a mistake and accidentally strengthened the
a hypothesis of [2b] from
(<= th (- (len (heap s)) 9))
to
(< th (- (len (heap s)) 9))
After working about 8 hours on Saturday I was trying to put everything
together and things were not working. I did not realize why until I
had struggled with it for another 3 hours! Once I fixed [2b], I got
the good-state invariant proved and spent about 2 hours thinking about
what I wanted the main theorem (monotonicity) to be. On Sunday, I
proved it after about an hour's work.
----------------------------------------------------------------------------
; Comments on Proof Management.
; These proofs generate many megabytes of output. Emacs has a serious
; limit of 100MB on buffer size and it is easy in the course of a
; day's work to exceed that with this exercise. I periodically delete
; old Emacs text from the top region of the buffer, using, e.g.,
; meta 10000000 ctrl-d
; so as not to put it in the kill ring.
; I sometimes divert output to foo.log and use
; /u/moore/bin/watchlog foo.log
; to observe it in another buffer. To get the diversion stuff, do
(include-book
"watchlog")
(acl2::divert)
...
(acl2::undivert)
; But diversions are not allowed in certified books. Furthermore,
; if you are diverting output, you cannot use proof trees.
; I tend to use proof trees to watch these proofs during development.
; However you cannot divert output to foo.log and use proof trees, so
; undivert.
; To use proof trees, do
; meta-x start-proof-tree
(start-proof-tree)
...
(stop-proof-tree)
; Here is the standard ld command to load the file skipping proofs.
(ld (cons '(include-book
"m5")
"apprentice.lisp")
:ld-pre-eval-print t :ld-skip-proofsp t)
; Here is how to load it and ship proofs to a log file.
(ld (cons '(include-book
"m5")
"apprentice.lisp")
:ld-pre-eval-print t
:standard-co "apprentice.log"
:proofs-co "apprentice.log")
; Here is how to certify and keep a log file.
(ld '((include-book
"m5")
(certify-book "apprentice" 1))
:standard-co "apprentice.log"
:proofs-co "apprentice.log"
:ld-pre-eval-print t)
JSM
Sun Jul 15 14:17:26 2001
|#
(in-package "M5")
(include-book "apprentice-state")
(defconst *a0* (Apprentice))
(defmacro gf (class field i heap)
`(binding ,field (binding ,class (binding ,i ,heap))))
; It is known that the Container will be at (REF 8).
(defun counter (s)
(gf "Container" "counter" 8 (heap s)))
(defun rel (c1 c2)
(or (equal c2 c1)
(equal c2 (int-fix (+ 1 c1)))))
; We will need a constant corresponding to every method invoked in this
; system.
(defconst *java.lang.Object.<init>*
'((RETURN))) ;;; 0
(defconst *java.lang.Thread.<init>*
'((ALOAD_0) ;;; 0
(INVOKESPECIAL "java.lang.Object" "<init>" 0) ;;; 1
(RETURN))) ;;; 4
(defconst *Apprentice.main*
'((NEW "Container") ;;; 0
(DUP) ;;; 3
(INVOKESPECIAL "Container" "<init>" 0) ;;; 4
(ASTORE_1) ;;; 7
(GOTO 3) ;;; 8
(NEW "Job") ;;; 11
(DUP) ;;; 14
(INVOKESPECIAL "Job" "<init>" 0) ;;; 15
(ASTORE_2) ;;; 18
(ALOAD_2) ;;; 19
(ALOAD_1) ;;; 20
(INVOKEVIRTUAL "Job" "setref" 1) ;;; 21
(ALOAD_2) ;;; 24
(INVOKEVIRTUAL "java.lang.Thread" "start" 0) ;;; 25
(GOTO -17))) ;;; 28
(defconst *Container.<init>*
'((ALOAD_0) ;;; 0
(INVOKESPECIAL "java.lang.Object" "<init>" 0) ;;; 1
(RETURN))) ;;; 4
(defconst *Job.<init>*
'((ALOAD_0) ;;; 0
(INVOKESPECIAL "java.lang.Thread" "<init>" 0) ;;; 1
(RETURN))) ;;; 4
(defconst *Job.incr*
'((ALOAD_0) ;;; 0
(GETFIELD "Job" "objref") ;;; 1
(ASTORE_1) ;;; 4
(ALOAD_1) ;;; 5
(MONITORENTER) ;;; 6
(ALOAD_0) ;;; 7
(GETFIELD "Job" "objref") ;;; 8
(ALOAD_0) ;;; 11
(GETFIELD "Job" "objref") ;;; 12
(GETFIELD "Container" "counter") ;;; 15
(ICONST_1) ;;; 18
(IADD) ;;; 19
(PUTFIELD "Container" "counter") ;;; 20
(ALOAD_1) ;;; 23
(MONITOREXIT) ;;; 24
(GOTO 8) ;;; 25
(ASTORE_2) ;;; 28
(ALOAD_1) ;;; 29
(MONITOREXIT) ;;; 30
(ALOAD_2) ;;; 31
(ATHROW) ;;; 32
(ALOAD_0) ;;; 33
(ARETURN))) ;;; 34
(defconst *Job.setref*
'((ALOAD_0) ;;; 0
(ALOAD_1) ;;; 1
(PUTFIELD "Job" "objref") ;;; 2
(RETURN))) ;;; 5
(defconst *Job.run*
'((GOTO 3) ;;; 0
(ALOAD_0) ;;; 3
(INVOKEVIRTUAL "Job" "incr" 0) ;;; 4
(POP) ;;; 7
(GOTO -5))) ;;; 8
; Some of these constants are identical, e.g.,
; *java.lang.Thread.<init>* is equal to *Container.<init>*.
; Therefore, it is not sufficient to test merely the program of a
; frame to decide what we're doing. We make the following macro,
; which also looks at the cur-class of the frame.
; I don't want to introduce these constants into the proof scripts.
; So I will define the concept of being in a certain program and I
; will arrange for the next-inst to compute to the appropriate
; (constant) instruction given knowledge of which program it's in.
; Then I will disable these concepts.
(defun program1 (class method)
(cond
((equal class "java.lang.Object")
(cond
((equal method "<init>")
*java.lang.Object.<init>*)
(t nil)))
((equal class "java.lang.Thread")
(cond
((equal method "<init>")
*java.lang.Thread.<init>*)
(t nil)))
((equal class "Apprentice")
(cond
((equal method "main")
*Apprentice.main*)
(t nil)))
((equal class "Container")
(cond
((equal method "<init>")
*Container.<init>*)
(t nil)))
((equal class "Job")
(cond
((equal method "<init>")
*Job.<init>*)
((equal method "incr")
*Job.incr*)
((equal method "setref")
*Job.setref*)
((equal method "run")
*Job.run*)
(t nil)))
(t nil)))
(defun programp (frame class method)
(let ((const (program1 class method)))
(and (equal (cur-class frame)
(cond ((equal class "Apprentice") nil)
(t class)))
(equal (program frame) const))))
(defthm next-inst-from-programp
(implies (and (syntaxp (quotep pc))
(programp frame class method))
(equal (INDEX-INTO-PROGRAM pc
(PROGRAM frame))
(index-into-program pc
(program1 class method)))))
; Details: In the defthm above, class and method and pc will always be
; constant. Generally (program frame) will be undetermined, but
; (programp frame "..." "...") will be settled by some case of the
; good-state invariant. The lemma above will essentially replace
; (program frame) by (program1 class method), which will then compute.
; Then index-to-program will compute.
(defthm programp-list
(implies (syntaxp (and (quotep program)
(quotep class)
(quotep method)))
(equal (programp (list pc locals stack program sync-flg cur-class)
class
method)
(let ((const (program1 class method)))
(and (equal cur-class
(cond ((equal class "Apprentice") nil)
(t class)))
(equal program const)))))
:hints (("Goal" :in-theory (enable program cur-class))))
; Details: Programp is disabled but I want it to compute if the
; program of the frame is a constant. (Typically class and method are
; always constants in my usage.)
(defthm programp-mx-1
(implies (and (programp frame class1 method1)
(syntaxp (and (quotep class1)
(quotep method1)
(quotep class2)
(quotep method2)))
(not (equal (program1 class1 method1) nil))
(or (not (equal class1 class2))
(not (equal method1 method2))))
(not (programp frame class2 method2))))
; Details: You can't be in two different programs at the same time.
; This is a nice example of something that is manifest if you just
; compute.
(defthm programp-mx-2
(implies (and (programp frame1 class1 method1)
(syntaxp (and (quotep class1)
(quotep method1)
(quotep class2)
(quotep method2)))
(not (equal (program1 class1 method1) nil))
(equal (cur-class frame1) cur-class)
(not (equal class1 class2)))
(not (programp
(list pc locals stack (PROGRAM frame1) sync-flg cur-class)
class2
method2)))
:hints (("Goal" :in-theory (enable program cur-class))))
(defthm programp-mx-3
(implies (and (programp frame1 class1 method1)
(equal (cur-class frame1) cur-class))
(programp
(list pc locals stack (PROGRAM frame1) sync-flg cur-class)
class1
method1))
:hints (("Goal" :in-theory (enable program cur-class))))
(defthm programp-mx-4
(implies (and (programp frame1 class1 method1)
(syntaxp (and (quotep class1)
(quotep method1)
(quotep method2)))
(not (equal (program1 class1 method1) nil))
(equal (cur-class frame1) cur-class)
(not (equal method1 method2)))
(not (programp
(list pc locals stack (PROGRAM frame1) sync-flg cur-class)
class1
method2)))
:hints (("Goal" :in-theory (enable program))))
; Details: It just goes on and on doesn't it?
(in-theory (disable programp index-into-program))
; Now onwards to the invariants.
; My plan is to start by defining the good threads but without stating
; the constraints on the heap that are implicit in the various pcs.
; Then I will define the good heaps and use the basic case analysis
; developed for the threads.
(defun good-java.lang.Object.<init>-frame (frame)
(let ((pc (pc frame))
(flg (sync-flg frame)))
(and
(programp frame "java.lang.Object" "<init>")
(equal flg 'UNLOCKED)
(equal pc 0))))
(defun good-java.lang.Thread.<init>-frame (frame)
(let ((pc (pc frame))
(flg (sync-flg frame)))
(and
(programp frame "java.lang.Thread" "<init>")
(equal flg 'UNLOCKED)
(or (equal pc 0)
(equal pc 1)
(equal pc 4)))))
(defun good-Container.<init>-frame (frame)
(let ((pc (pc frame))
(flg (sync-flg frame)))
(and
(programp frame "Container" "<init>")
(equal flg 'UNLOCKED)
(or (equal pc 0)
(equal pc 1)
(equal pc 4)))))
(defun good-Job.<init>-frame (frame)
(let ((pc (pc frame))
(flg (sync-flg frame)))
(and
(programp frame "Job" "<init>")
(equal flg 'UNLOCKED)
(or (equal pc 0)
(equal pc 1)
(equal pc 4)))))
(defun good-Job.setref-frame (i frame)
(let ((pc (pc frame))
(locals (locals frame))
(stack (stack frame))
(flg (sync-flg frame)))
(and
(programp frame "Job" "setref")
(equal locals `((REF ,i) (REF 8)))
(equal flg 'UNLOCKED)
(case pc
(0 (equal stack nil))
(1 (equal stack `((REF ,i))))
(2 (equal stack `((REF 8) (REF ,i))))
(5 t)
(t nil)))))
(defun good-main-frame (i frame suspendedp)
; i is the number of the last item in the heap. I won't attempt to
; constrain the heap in this function. Suspendedp is either nil,
; which means the frame is active, or else it is a pc, indicating that
; I am suspended with the indicated pc.
(let* ((pc (pc frame))
(locals (locals frame))
(stack (stack frame))
(flg (sync-flg frame))
(container (nth 1 locals))
(job (nth 2 locals)))
(and
(programp frame "Apprentice" "main")
(equal flg 'UNLOCKED)
(case pc
(0 (and (not suspendedp)
(equal stack nil)))
(3 (and (not suspendedp)
(equal stack '((REF 8)))))
(4 (and (not suspendedp)
(equal stack '((REF 8) (REF 8)))))
(7 (and (or (not suspendedp)
(equal suspendedp 7))
(equal stack '((REF 8)))))
(8 (and (not suspendedp)
(equal container '(REF 8))
(equal stack nil)))
(11 (and (not suspendedp)
(equal container '(REF 8))
(equal stack nil)))
(14 (and (not suspendedp)
(equal container '(REF 8))
(equal stack `((REF ,i)))))
(15 (and (not suspendedp)
(equal container '(REF 8))
(equal stack `((REF ,i) (REF ,i)))))
(18 (and (or (not suspendedp)
(equal suspendedp 18))
(equal container '(REF 8))
(equal stack `((REF ,i)))))
(19 (and (not suspendedp)
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack nil)))
(20 (and (not suspendedp)
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack `((REF ,i)))))
(21 (and (not suspendedp)
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack `((REF 8) (REF ,i)))))
(24 (and (or (not suspendedp)
(equal suspendedp 24))
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack nil)))
(25 (and (not suspendedp)
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack `((REF ,i)))))
(28 (and (not suspendedp)
(equal container '(REF 8))
(equal job `(REF ,i))
(equal stack nil)))
(t nil)))))
(defun thread-no (thread) (nth 0 thread))
(defun thread-call-stack (thread) (nth 1 thread))
(defun thread-status (thread) (nth 2 thread))
(defun thread-rref (thread) (nth 3 thread))
(defun frame0 (cs) (first cs))
(defun frame1 (cs) (second cs))
(defun frame2 (cs) (third cs))
(defun frame3 (cs) (fourth cs))
(defun good-thread0 (thread i)
; The variable i here is the heap address of the most recently
; allocated object.
(let ((n (thread-no thread))
(cs (thread-call-stack thread))
(status (thread-status thread))
(rref (thread-rref thread)))
(and (equal n 0)
(equal status 'SCHEDULED)
(equal rref nil)
(cond ((endp cs) nil)
((programp (frame0 cs) "java.lang.Object" "<init>")
(cond
((programp (frame1 cs) "java.lang.Thread" "<init>")
(and (good-java.lang.Object.<init>-frame (frame0 cs))
(not (endp (cdr cs)))
(good-java.lang.Thread.<init>-frame (frame1 cs))
(not (endp (cddr cs)))
(good-Job.<init>-frame (frame2 cs))
(not (endp (cdddr cs)))
(good-main-frame i (frame3 cs) 18)))
((programp (frame1 cs) "Container" "<init>")
(and (good-java.lang.Object.<init>-frame (frame0 cs))
(not (endp (cdr cs)))
(good-container.<init>-frame (frame1 cs))
(not (endp (cddr cs)))
(good-main-frame i (frame2 cs) 7)))
(t nil)))
((programp (frame0 cs) "java.lang.Thread" "<init>")
(and (good-java.lang.Thread.<init>-frame (frame0 cs))
(not (endp (cdr cs)))
(good-Job.<init>-frame (frame1 cs))
(not (endp (cddr cs)))
(good-main-frame i (frame2 cs) 18)))
((programp (frame0 cs) "Container" "<init>")
(and (good-container.<init>-frame (frame0 cs))
(not (endp (cdr cs)))
(good-main-frame i (frame1 cs) 7)))
((programp (frame0 cs) "Job" "<init>")
(and (good-Job.<init>-frame (frame0 cs))
(not (endp (cdr cs)))
(good-main-frame i (frame1 cs) 18)))
((programp (frame0 cs) "Job" "setref")
(and (good-Job.setref-frame i (frame0 cs))
(not (endp (cdr cs)))
(good-main-frame i (frame1 cs) 24)))
(t (good-main-frame i (frame0 cs) nil))))))
(defun good-objrefs (threads heap-pairs except-last-flg)
; Initially, threads is the cdr of the thread table and heap-pairs is
; the 9th cdr of the heap. That is where in the heap we have begun
; allocating "Job" instances. The 8th element of the heap will be the
; Container object (after it is allocated). Elements 0 through 7 of
; the heap are constant representing classes.
; We walk down both threads and heap-pairs. They must be the same
; length. Let the car of threads be (i call-stack status rref) and
; let the car of heap-pairs be (j . (("Job" ("objref" . ref0)) ...)).
; Then we insist that
; * (+ i 8) = j (the thread number is 8 less than the heap address of the
; object representing the thread)
; * rref = (REF j), and
; * ref0 = (REF 8) (with the exception noted below).
; If except-last-flg is t, then if this is the last item in the heap
; we insist that ref0 = 0, instead of (REF j) as above.
(cond
((endp heap-pairs) (endp threads))
((endp threads) nil)
(t (let* ((threadi (car threads))
(i (thread-no threadi))
(rref (thread-rref threadi))
(j (car (car heap-pairs)))
(obj (cdr (car heap-pairs))))
(and (equal (+ 8 i) j)
(equal rref `(REF ,j))
(equal obj
(if (and (endp (cdr heap-pairs))
except-last-flg)
'(("Job" ("objref" . 0))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
'(("Job" ("objref" . (REF 8)))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))))
(good-objrefs (cdr threads)
(cdr heap-pairs)
except-last-flg))))))
(defun standard-heap-prefixp1 (prefix heap)
(cond ((endp prefix) t)
(t (and (equal (car prefix) (car heap))
(standard-heap-prefixp1 (cdr prefix) (cdr heap))))))
(defun standard-heap-prefixp (heap)
(standard-heap-prefixp1
'((0 ("java.lang.Class" ("<name>" . "java.lang.Object"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(1 ("java.lang.Class" ("<name>" . "ARRAY"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(2 ("java.lang.Class" ("<name>" . "java.lang.Thread"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(3 ("java.lang.Class" ("<name>" . "java.lang.String"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(4 ("java.lang.Class" ("<name>" . "java.lang.Class"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(5 ("java.lang.Class" ("<name>" . "Apprentice"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(6 ("java.lang.Class" ("<name>" . "Container"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(7 ("java.lang.Class" ("<name>" . "Job"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0))))
heap))
(defun main-pc (cs)
; Cs is the call stack of thread 0. It is running main. What is
; the pc in the main frame? The main frame may be suspended,
; of course.
(cond ((programp (frame0 cs) "java.lang.Object" "<init>")
(cond
((programp (frame1 cs) "java.lang.Thread" "<init>")
; The main frame is suspended waiting for the Job.<init>.
18)
(t
; Otherwise, the only way we could be in Object.<init> is if the main
; frame is suspended waiting for Container.<init>.
7)))
((programp (frame0 cs) "java.lang.Thread" "<init>")
18)
((programp (frame0 cs) "Container" "<init>")
7)
((programp (frame0 cs) "Job" "<init>")
18)
((programp (frame0 cs) "Job" "setref")
24)
(t (pc (frame0 cs)))))
(defun good-heap (tt heap)
; Tt is the thread table of a state and heap is the heap. We
; determine whether the heap is consistent with the thread table. We
; assume we know that thread 0 is good wrt the length of heap. We do
; not enforce here any of the monitor/mcount invariants on (REF 8) in
; the heap, because they are entirely determined by the details of the
; Job threads.
(let* ((thread0 (first tt))
(n0 (thread-no thread0))
(frame0 (frame0 (thread-call-stack thread0))))
(and
(alistp heap)
(equal n0 0)
(standard-heap-prefixp heap)
(case (main-pc (thread-call-stack thread0))
(0 (null (nthcdr 8 heap)))
(3 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(null (nthcdr 9 heap))))
(4 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(null (nthcdr 9 heap))))
(7 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(null (nthcdr 9 heap))))
(8 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(null (nthcdr 9 heap))))
(11 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(good-objrefs (cdr tt) (nthcdr 9 heap) nil)))
(14 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(15 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(18 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(19 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(20 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(21 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
t)))
(24 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
; If we are suspended at 24 and frame0 is really the active setref,
; then the flag is t if we're at pc 5 in setref and is nil otherwise.
; If we are active at 24, the flag is nil.
(if (equal (pc frame0) 24) nil
(not (equal (pc frame0) 5))))))
(25 (and (equal (car (nth 8 heap)) 8)
(consp (nthcdr 9 heap))
(good-objrefs (cdr tt)
(nthcdr 9 heap)
nil)))
(28 (and (consp (nthcdr 8 heap))
(equal (car (nth 8 heap)) 8)
(good-objrefs (cdr tt)
(nthcdr 9 heap)
nil)))
(t nil)))))
(defun good-class-table (ct)
(equal ct (class-table *a0*)))
; I don't want the class table slipping into my output so I disable it.
(defthm assoc-equal-in-good-class-table
(implies (and (syntaxp (quotep str))
(good-class-table ct))
(equal (assoc-equal str ct)
(assoc-equal str (class-table *a0*)))))
(in-theory (disable good-class-table))
(defun object-lockedp (th monitor mcount)
(and (equal mcount 1)
(equal th monitor)))
(defun good-run-frame (th frame activep monitor mcount)
(let ((pc (pc frame))
(locals (locals frame))
(stack (stack frame))
(flg (sync-flg frame)))
(and
(programp frame "Job" "run")
(equal locals `((REF ,(+ 8 th))))
(equal flg 'UNLOCKED)
(if activep
(not (object-lockedp th monitor mcount))
t)
(case pc
(0 (and activep (equal stack nil)))
(3 (and activep (equal stack nil)))
(4 (and activep (equal stack `((REF ,(+ 8 th))))))
(7 (if activep
(equal stack `((REF ,(+ 8 th))))
(equal stack nil)))
(8 (and activep (equal stack nil)))
(t nil)))))
(defun good-incr-frame (th frame counter monitor mcount)
; In this system it happens that the heap address of the THIS object
; of every invocation of the "incr" method is always 8 more than the
; number of thread, th, in which that method is running.
(let ((pc (pc frame))
(locals (locals frame))
(stack (stack frame))
(flg (sync-flg frame))
(self `(REF ,(+ 8 th))))
(and
(programp frame "Job" "incr")
(equal flg 'UNLOCKED)
(case pc
(0 (and (equal locals `(,self))
(not (object-lockedp th monitor mcount))
(equal stack nil)))
(1 (and (equal locals `(,self))
(not (object-lockedp th monitor mcount))
(equal stack `(,self))))
(4 (and (equal locals `(,self))
(equal stack '((REF 8)))
(not (object-lockedp th monitor mcount))))
(5 (and (equal locals
`(,self (REF 8)))
(equal stack nil)
(not (object-lockedp th monitor mcount))))
(6 (and (equal locals
`(,self (REF 8)))
(equal stack '((REF 8)))
(not (object-lockedp th monitor mcount))))
(7 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack nil)))
(8 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack `(,self))))
(11 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack '((REF 8)))))
(12 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack `(,self (REF 8)))))
(15 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack '((REF 8) (REF 8)))))
(18 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack `(,counter (REF 8)))))
(19 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack `(1 ,counter (REF 8)))))
(20 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack `(,(int-fix (+ 1 counter)) (REF 8)))))
(23 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack nil)))
(24 (and (equal locals
`(,self (REF 8)))
(object-lockedp th monitor mcount)
(equal stack '((REF 8)))))
(25 (and (equal locals
`(,self (REF 8)))
(not (object-lockedp th monitor mcount))
(equal stack nil)))
(28 nil)
(29 nil)
(30 nil)
(31 nil)
(32 nil)
(33 (and (equal locals
`(,self (REF 8)))
(not (object-lockedp th monitor mcount))
(equal stack nil)))
(34 (and (equal locals
`(,self (REF 8)))
(not (object-lockedp th monitor mcount))
(equal stack `(,self))))
(t nil)))))
(defun good-thread (th scheduled thread counter monitor mcount)
(let ((n (thread-no thread))
(cs (thread-call-stack thread))
(status (thread-status thread))
(rref (thread-rref thread)))
(and (equal n th)
(equal status scheduled)
(equal rref `(REF ,(+ 8 th)))
(cond ((equal scheduled 'UNSCHEDULED)
(and (good-run-frame th (frame0 cs) t monitor mcount)
(null (cdr cs))))
((endp cs) nil)
((programp (frame0 cs) "Job" "incr")
(and (good-incr-frame th (frame0 cs) counter monitor mcount)
(not (endp (frame0 cs)))
(good-run-frame th (frame1 cs) nil monitor mcount)))
(t (good-run-frame th (frame0 cs) t monitor mcount))))))
(defun good-threads (i threads counter monitor mcount except-last-flg)
(declare (xargs :measure (acl2-count threads)))
(cond
((endp threads) t)
(t (and (good-thread i
(if (and (endp (cdr threads))
except-last-flg)
'UNSCHEDULED
'SCHEDULED)
(car threads)
counter monitor mcount)
(good-threads (+ 1 i)
(cdr threads)
counter monitor mcount except-last-flg)))))
(defun good-thread-table (tt i counter monitor mcount)
(let* ((thread0 (first tt))
(main-pc (main-pc (thread-call-stack thread0))))
(and
(alistp tt)
(equal (thread-no thread0) 0)
(good-thread0 thread0 i)
(if (<= main-pc 8)
(equal (cdr tt) nil)
(good-threads 1 (cdr tt) counter monitor mcount
(and (<= 14 main-pc) (< main-pc 28)))))))
(defun good-state (s)
(let ((counter (gf "Container" "counter" 8 (heap s)))
(monitor (gf "java.lang.Object" "monitor" 8 (heap s)))
(mcount (gf "java.lang.Object" "mcount" 8 (heap s))))
(and (good-class-table (class-table s))
(good-thread-table (thread-table s)
(- (len (heap s)) 1)
counter monitor mcount)
(good-heap (thread-table s) (heap s))
; We must know the monitor is some existing thread, else a thread
; can come into existence owning the lock!
(or (equal (len (heap s)) 8)
(and (integerp counter)
(if (equal mcount 0)
(equal monitor 0)
(and (equal mcount 1)
(< 0 monitor)
(< monitor (- (len (heap s)) 8)))))))))
; ---------------------------------------------------------------------------
; The Proof
(include-book "arithmetic/top-with-meta" :dir :system)
(in-theory (disable acl2::equal-constant-+))
(defthm states
(and (equal (thread-table (make-state tt h c)) tt)
(equal (heap (make-state tt h c)) h)
(equal (class-table (make-state tt h c)) c)))
; I'm not sure if this is needed...
(defthm states2
(and (equal (thread-table (list tt h c)) tt)
(equal (heap (list tt h c)) h)
(equal (class-table (list tt h c)) c)))
(in-theory (disable make-state thread-table heap class-table))
(defthm frames
(and
(equal (pc (make-frame pc l s prog sync-flg cur-class)) pc)
(equal (locals (make-frame pc l s prog sync-flg cur-class)) l)
(equal (stack (make-frame pc l s prog sync-flg cur-class)) s)
(equal (program (make-frame pc l s prog sync-flg cur-class)) prog)
(equal (sync-flg (make-frame pc l s prog sync-flg cur-class)) sync-flg)
(equal (cur-class (make-frame pc l s prog sync-flg cur-class)) cur-class)))
(in-theory (disable make-frame pc locals stack program sync-flg cur-class))
(defthm len-bind
(implies (alistp alist)
(equal (len (bind x v alist))
(if (bound? x alist)
(len alist)
(+ 1 (len alist))))))
(defthm assoc-equal-bind
(equal (assoc-equal x (bind y v alist))
(if (equal x y) (cons x v) (assoc-equal x alist))))
(defthm nth-add1!
(implies (and (integerp n)
(<= 0 n))
(equal (nth (+ 1 n) lst)
(nth n (cdr lst)))))
(defthm nthcdr-add1!
(implies (and (integerp n)
(<= 0 n))
(equal (nthcdr (+ 1 n) lst)
(nthcdr n (cdr lst)))))
(defthm alistp-bind
(implies (alistp alist)
(alistp (bind x v alist))))
(defthm do-inst-opener
(implies
(syntaxp (quotep inst))
(equal
(do-inst inst th s)
(CASE (OP-CODE INST)
(AALOAD (EXECUTE-AALOAD INST TH S))
(AASTORE (EXECUTE-AASTORE INST TH S))
(ACONST_NULL (EXECUTE-ACONST_NULL INST TH S))
(ALOAD (EXECUTE-ALOAD INST TH S))
(ALOAD_0 (EXECUTE-ALOAD_X INST TH S 0))
(ALOAD_1 (EXECUTE-ALOAD_X INST TH S 1))
(ALOAD_2 (EXECUTE-ALOAD_X INST TH S 2))
(ALOAD_3 (EXECUTE-ALOAD_X INST TH S 3))
(ANEWARRAY (EXECUTE-ANEWARRAY INST TH S))
(ARETURN (EXECUTE-ARETURN INST TH S))
(ARRAYLENGTH (EXECUTE-ARRAYLENGTH INST TH S))
(ASTORE (EXECUTE-ASTORE INST TH S))
(ASTORE_0 (EXECUTE-ASTORE_X INST TH S 0))
(ASTORE_1 (EXECUTE-ASTORE_X INST TH S 1))
(ASTORE_2 (EXECUTE-ASTORE_X INST TH S 2))
(ASTORE_3 (EXECUTE-ASTORE_X INST TH S 3))
(BALOAD (EXECUTE-BALOAD INST TH S))
(BASTORE (EXECUTE-BASTORE INST TH S))
(BIPUSH (EXECUTE-BIPUSH INST TH S))
(CALOAD (EXECUTE-CALOAD INST TH S))
(CASTORE (EXECUTE-CASTORE INST TH S))
(D2F (EXECUTE-D2F INST TH S))
(D2I (EXECUTE-D2I INST TH S))
(D2L (EXECUTE-D2L INST TH S))
(DADD (EXECUTE-DADD INST TH S))
(DALOAD (EXECUTE-DALOAD INST TH S))
(DASTORE (EXECUTE-DASTORE INST TH S))
(DCMPG (EXECUTE-DCMPG INST TH S))
(DCMPL (EXECUTE-DCMPL INST TH S))
(DCONST_0 (EXECUTE-DCONST_0 INST TH S))
(DCONST_1 (EXECUTE-DCONST_1 INST TH S))
(DDIV (EXECUTE-DDIV INST TH S))
(DLOAD (EXECUTE-DLOAD INST TH S))
(DLOAD_0 (EXECUTE-DLOAD_X INST TH S 0))
(DLOAD_1 (EXECUTE-DLOAD_X INST TH S 1))
(DLOAD_2 (EXECUTE-DLOAD_X INST TH S 2))
(DLOAD_3 (EXECUTE-DLOAD_X INST TH S 3))
(DMUL (EXECUTE-DMUL INST TH S))
(DNEG (EXECUTE-DNEG INST TH S))
(DREM (EXECUTE-DREM INST TH S))
(DRETURN (EXECUTE-DRETURN INST TH S))
(DSTORE (EXECUTE-DSTORE INST TH S))
(DSTORE_0 (EXECUTE-DSTORE_X INST TH S 0))
(DSTORE_1 (EXECUTE-DSTORE_X INST TH S 1))
(DSTORE_2 (EXECUTE-DSTORE_X INST TH S 2))
(DSTORE_3 (EXECUTE-DSTORE_X INST TH S 3))
(DSUB (EXECUTE-DSUB INST TH S))
(DUP (EXECUTE-DUP INST TH S))
(DUP_X1 (EXECUTE-DUP_X1 INST TH S))
(DUP_X2 (EXECUTE-DUP_X2 INST TH S))
(DUP2 (EXECUTE-DUP2 INST TH S))
(DUP2_X1 (EXECUTE-DUP2_X1 INST TH S))
(DUP2_X2 (EXECUTE-DUP2_X2 INST TH S))
(F2D (EXECUTE-F2D INST TH S))
(F2I (EXECUTE-F2I INST TH S))
(F2L (EXECUTE-F2L INST TH S))
(FADD (EXECUTE-FADD INST TH S))
(FALOAD (EXECUTE-FALOAD INST TH S))
(FASTORE (EXECUTE-FASTORE INST TH S))
(FCMPG (EXECUTE-FCMPG INST TH S))
(FCMPL (EXECUTE-FCMPL INST TH S))
(FCONST_0 (EXECUTE-FCONST_0 INST TH S))
(FCONST_1 (EXECUTE-FCONST_1 INST TH S))
(FCONST_2 (EXECUTE-FCONST_2 INST TH S))
(FDIV (EXECUTE-FDIV INST TH S))
(FLOAD (EXECUTE-FLOAD INST TH S))
(FLOAD_0 (EXECUTE-FLOAD_X INST TH S 0))
(FLOAD_1 (EXECUTE-FLOAD_X INST TH S 1))
(FLOAD_2 (EXECUTE-FLOAD_X INST TH S 2))
(FLOAD_3 (EXECUTE-FLOAD_X INST TH S 3))
(FMUL (EXECUTE-FMUL INST TH S))
(FNEG (EXECUTE-FNEG INST TH S))
(FREM (EXECUTE-FREM INST TH S))
(FRETURN (EXECUTE-FRETURN INST TH S))
(FSTORE (EXECUTE-FSTORE INST TH S))
(FSTORE_0 (EXECUTE-FSTORE_X INST TH S 0))
(FSTORE_1 (EXECUTE-FSTORE_X INST TH S 1))
(FSTORE_2 (EXECUTE-FSTORE_X INST TH S 2))
(FSTORE_3 (EXECUTE-FSTORE_X INST TH S 3))
(FSUB (EXECUTE-FSUB INST TH S))
(GETFIELD (EXECUTE-GETFIELD INST TH S))
(GETSTATIC (EXECUTE-GETSTATIC INST TH S))
(GOTO (EXECUTE-GOTO INST TH S))
(GOTO_W (EXECUTE-GOTO_W INST TH S))
(I2B (EXECUTE-I2B INST TH S))
(I2C (EXECUTE-I2C INST TH S))
(I2D (EXECUTE-I2D INST TH S))
(I2F (EXECUTE-I2F INST TH S))
(I2L (EXECUTE-I2L INST TH S))
(I2S (EXECUTE-I2S INST TH S))
(IADD (EXECUTE-IADD INST TH S))
(IALOAD (EXECUTE-IALOAD INST TH S))
(IAND (EXECUTE-IAND INST TH S))
(IASTORE (EXECUTE-IASTORE INST TH S))
(ICONST_M1 (EXECUTE-ICONST_X INST TH S -1))
(ICONST_0 (EXECUTE-ICONST_X INST TH S 0))
(ICONST_1 (EXECUTE-ICONST_X INST TH S 1))
(ICONST_2 (EXECUTE-ICONST_X INST TH S 2))
(ICONST_3 (EXECUTE-ICONST_X INST TH S 3))
(ICONST_4 (EXECUTE-ICONST_X INST TH S 4))
(ICONST_5 (EXECUTE-ICONST_X INST TH S 5))
(IDIV (EXECUTE-IDIV INST TH S))
(IF_ACMPEQ (EXECUTE-IF_ACMPEQ INST TH S))
(IF_ACMPNE (EXECUTE-IF_ACMPNE INST TH S))
(IF_ICMPEQ (EXECUTE-IF_ICMPEQ INST TH S))
(IF_ICMPGE (EXECUTE-IF_ICMPGE INST TH S))
(IF_ICMPGT (EXECUTE-IF_ICMPGT INST TH S))
(IF_ICMPLE (EXECUTE-IF_ICMPLE INST TH S))
(IF_ICMPLT (EXECUTE-IF_ICMPLT INST TH S))
(IF_ICMPNE (EXECUTE-IF_ICMPNE INST TH S))
(IFEQ (EXECUTE-IFEQ INST TH S))
(IFGE (EXECUTE-IFGE INST TH S))
(IFGT (EXECUTE-IFGT INST TH S))
(IFLE (EXECUTE-IFLE INST TH S))
(IFLT (EXECUTE-IFLT INST TH S))
(IFNE (EXECUTE-IFNE INST TH S))
(IFNONNULL (EXECUTE-IFNONNULL INST TH S))
(IFNULL (EXECUTE-IFNULL INST TH S))
(IINC (EXECUTE-IINC INST TH S))
(ILOAD (EXECUTE-ILOAD INST TH S))
(ILOAD_0 (EXECUTE-ILOAD_X INST TH S 0))
(ILOAD_1 (EXECUTE-ILOAD_X INST TH S 1))
(ILOAD_2 (EXECUTE-ILOAD_X INST TH S 2))
(ILOAD_3 (EXECUTE-ILOAD_X INST TH S 3))
(IMUL (EXECUTE-IMUL INST TH S))
(INEG (EXECUTE-INEG INST TH S))
(INSTANCEOF (EXECUTE-INSTANCEOF INST TH S))
(INVOKESPECIAL (EXECUTE-INVOKESPECIAL INST TH S))
(INVOKESTATIC (EXECUTE-INVOKESTATIC INST TH S))
(INVOKEVIRTUAL (EXECUTE-INVOKEVIRTUAL INST TH S))
(IOR (EXECUTE-IOR INST TH S))
(IREM (EXECUTE-IREM INST TH S))
(IRETURN (EXECUTE-IRETURN INST TH S))
(ISHL (EXECUTE-ISHL INST TH S))
(ISHR (EXECUTE-ISHR INST TH S))
(ISTORE (EXECUTE-ISTORE INST TH S))
(ISTORE_0 (EXECUTE-ISTORE_X INST TH S 0))
(ISTORE_1 (EXECUTE-ISTORE_X INST TH S 1))
(ISTORE_2 (EXECUTE-ISTORE_X INST TH S 2))
(ISTORE_3 (EXECUTE-ISTORE_X INST TH S 3))
(ISUB (EXECUTE-ISUB INST TH S))
(IUSHR (EXECUTE-IUSHR INST TH S))
(IXOR (EXECUTE-IXOR INST TH S))
(JSR (EXECUTE-JSR INST TH S))
(JSR_W (EXECUTE-JSR_W INST TH S))
(L2D (EXECUTE-L2D INST TH S))
(L2F (EXECUTE-L2F INST TH S))
(L2I (EXECUTE-L2I INST TH S))
(LADD (EXECUTE-LADD INST TH S))
(LALOAD (EXECUTE-LALOAD INST TH S))
(LAND (EXECUTE-LAND INST TH S))
(LASTORE (EXECUTE-LASTORE INST TH S))
(LCMP (EXECUTE-LCMP INST TH S))
(LCONST_0 (EXECUTE-LCONST_X INST TH S 0))
(LCONST_1 (EXECUTE-LCONST_X INST TH S 1))
(LDC (EXECUTE-LDC INST TH S))
(LDC_W (EXECUTE-LDC INST TH S))
(LDC2_W (EXECUTE-LDC2_W INST TH S))
(LDIV (EXECUTE-LDIV INST TH S))
(LLOAD (EXECUTE-LLOAD INST TH S))
(LLOAD_0 (EXECUTE-LLOAD_X INST TH S 0))
(LLOAD_1 (EXECUTE-LLOAD_X INST TH S 1))
(LLOAD_2 (EXECUTE-LLOAD_X INST TH S 2))
(LLOAD_3 (EXECUTE-LLOAD_X INST TH S 3))
(LMUL (EXECUTE-LMUL INST TH S))
(LNEG (EXECUTE-LNEG INST TH S))
(LOR (EXECUTE-LOR INST TH S))
(LREM (EXECUTE-LREM INST TH S))
(LRETURN (EXECUTE-LRETURN INST TH S))
(LSHL (EXECUTE-LSHL INST TH S))
(LSHR (EXECUTE-LSHR INST TH S))
(LSTORE (EXECUTE-LSTORE INST TH S))
(LSTORE_0 (EXECUTE-LSTORE_X INST TH S 0))
(LSTORE_1 (EXECUTE-LSTORE_X INST TH S 1))
(LSTORE_2 (EXECUTE-LSTORE_X INST TH S 2))
(LSTORE_3 (EXECUTE-LSTORE_X INST TH S 3))
(LSUB (EXECUTE-LSUB INST TH S))
(LUSHR (EXECUTE-LUSHR INST TH S))
(LXOR (EXECUTE-LXOR INST TH S))
(MONITORENTER (EXECUTE-MONITORENTER INST TH S))
(MONITOREXIT (EXECUTE-MONITOREXIT INST TH S))
(MULTIANEWARRAY (EXECUTE-MULTIANEWARRAY INST TH S))
(NEW (EXECUTE-NEW INST TH S))
(NEWARRAY (EXECUTE-NEWARRAY INST TH S))
(NOP (EXECUTE-NOP INST TH S))
(POP (EXECUTE-POP INST TH S))
(POP2 (EXECUTE-POP2 INST TH S))
(PUTFIELD (EXECUTE-PUTFIELD INST TH S))
(PUTSTATIC (EXECUTE-PUTSTATIC INST TH S))
(RET (EXECUTE-RET INST TH S))
(RETURN (EXECUTE-RETURN INST TH S))
(SALOAD (EXECUTE-SALOAD INST TH S))
(SASTORE (EXECUTE-SASTORE INST TH S))
(SIPUSH (EXECUTE-SIPUSH INST TH S))
(SWAP (EXECUTE-SWAP INST TH S))
(HALT S)
(OTHERWISE S))))
:hints (("Goal"
:in-theory (disable
EXECUTE-AALOAD
EXECUTE-AASTORE
EXECUTE-ACONST_NULL
EXECUTE-ALOAD
EXECUTE-ALOAD_X
EXECUTE-ALOAD_X
EXECUTE-ALOAD_X
EXECUTE-ALOAD_X
EXECUTE-ANEWARRAY
EXECUTE-ARETURN
EXECUTE-ARRAYLENGTH
EXECUTE-ASTORE
EXECUTE-ASTORE_X
EXECUTE-ASTORE_X
EXECUTE-ASTORE_X
EXECUTE-ASTORE_X
EXECUTE-BALOAD
EXECUTE-BASTORE
EXECUTE-BIPUSH
EXECUTE-CALOAD
EXECUTE-CASTORE
EXECUTE-DUP
EXECUTE-DUP_X1
EXECUTE-DUP_X2
EXECUTE-DUP2
EXECUTE-DUP2_X1
EXECUTE-DUP2_X2
EXECUTE-GETFIELD
EXECUTE-GETSTATIC
EXECUTE-GOTO
EXECUTE-GOTO_W
EXECUTE-I2B
EXECUTE-I2C
EXECUTE-I2L
EXECUTE-I2S
EXECUTE-IADD
EXECUTE-IALOAD
EXECUTE-IAND
EXECUTE-IASTORE
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-ICONST_X
EXECUTE-IDIV
EXECUTE-IF_ACMPEQ
EXECUTE-IF_ACMPNE
EXECUTE-IF_ICMPEQ
EXECUTE-IF_ICMPGE
EXECUTE-IF_ICMPGT
EXECUTE-IF_ICMPLE
EXECUTE-IF_ICMPLT
EXECUTE-IF_ICMPNE
EXECUTE-IFEQ
EXECUTE-IFGE
EXECUTE-IFGT
EXECUTE-IFLE
EXECUTE-IFLT
EXECUTE-IFNE
EXECUTE-IFNONNULL
EXECUTE-IFNULL
EXECUTE-IINC
EXECUTE-ILOAD
EXECUTE-ILOAD_X
EXECUTE-ILOAD_X
EXECUTE-ILOAD_X
EXECUTE-ILOAD_X
EXECUTE-IMUL
EXECUTE-INEG
EXECUTE-INSTANCEOF
EXECUTE-INVOKESPECIAL
EXECUTE-INVOKESTATIC
EXECUTE-INVOKEVIRTUAL
EXECUTE-IOR
EXECUTE-IREM
EXECUTE-IRETURN
EXECUTE-ISHL
EXECUTE-ISHR
EXECUTE-ISTORE
EXECUTE-ISTORE_X
EXECUTE-ISTORE_X
EXECUTE-ISTORE_X
EXECUTE-ISTORE_X
EXECUTE-ISUB
EXECUTE-IUSHR
EXECUTE-IXOR
EXECUTE-JSR
EXECUTE-JSR_W
EXECUTE-L2I
EXECUTE-LADD
EXECUTE-LALOAD
EXECUTE-LAND
EXECUTE-LASTORE
EXECUTE-LCMP
EXECUTE-LCONST_X
EXECUTE-LCONST_X
EXECUTE-LDC
EXECUTE-LDC
EXECUTE-LDC2_W
EXECUTE-LDIV
EXECUTE-LLOAD
EXECUTE-LLOAD_X
EXECUTE-LLOAD_X
EXECUTE-LLOAD_X
EXECUTE-LLOAD_X
EXECUTE-LMUL
EXECUTE-LNEG
EXECUTE-LOR
EXECUTE-LREM
EXECUTE-LRETURN
EXECUTE-LSHL
EXECUTE-LSHR
EXECUTE-LSTORE
EXECUTE-LSTORE_X
EXECUTE-LSTORE_X
EXECUTE-LSTORE_X
EXECUTE-LSTORE_X
EXECUTE-LSUB
EXECUTE-LUSHR
EXECUTE-LXOR
EXECUTE-MONITORENTER
EXECUTE-MONITOREXIT
EXECUTE-MULTIANEWARRAY
EXECUTE-NEW
EXECUTE-NEWARRAY
EXECUTE-NOP
EXECUTE-POP
EXECUTE-POP2
EXECUTE-PUTFIELD
EXECUTE-PUTSTATIC
EXECUTE-RET
EXECUTE-RETURN
EXECUTE-SALOAD
EXECUTE-SASTORE
EXECUTE-SIPUSH
EXECUTE-SWAP))))
(in-theory (disable do-inst))
(defthm step-opener
(implies (syntaxp (and (quotep th)
(integerp (cadr th))))
(equal (step th s)
(if (equal (status th s)
'SCHEDULED)
(do-inst (next-inst th s) th s)
s))))
(in-theory (disable step))
(defthm run-opener
(and (implies (endp schedule) (equal (run schedule s) s))
(equal (run (cons th schedule) s)
(run schedule (step th s)))))
(defthm run-append
(equal (run (append a b) s)
(run b (run a s))))
(in-theory (disable run))
; Lemma [1]
(defthm [1]
(good-state *a0*)
:rule-classes nil)
; Lemma [2]
; We will decompose [2] into (a) th=0, (b) other scheduled threads, (c)
; unscheduled threads.
; First a few lemmas.
(defthm equal-len-0
(equal (equal (len x) 0)
(endp x)))
(defthm assoc-equal-i-cdr-heap
(implies (and (good-threads j tt c m mc flg1)
(integerp j)
(good-objrefs tt heap flg2))
(equal (ASSOC-EQUAL i heap)
(if (and (integerp i)
(<= (+ 8 j) i)
(<= i (+ 7 j (len heap))))
(if (and flg2 (equal i (+ 7 j (len heap))))
(cons i '(("Job" ("objref" . 0))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0))))
(cons i '(("Job" ("objref" REF 8))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))))
nil)))
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
(defthm good-objrefs-setref-gen
(implies
(and (consp heap)
(integerp j)
(good-threads j tt c m mc flg1)
(good-objrefs tt heap t))
(good-objrefs
tt
(bind (- (+ 8 (len heap) j) 1)
'(("Job" ("objref" REF 8))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
heap)
nil))
:rule-classes nil
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
; This lemma establishes that when setref writes to the "objref" field,
; we can convert the ``except last'' flag of good-objrefs from t to nil.
(defthm good-objrefs-setref
(implies (and (consp heap)
(good-threads 1 tt c m mc flg1)
(good-objrefs tt heap t)
(force (equal delta (+ 8 (len heap)))))
(good-objrefs
tt
(bind delta
'(("Job" ("objref" REF 8))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
heap)
nil))
:hints (("Goal" :use ((:instance good-objrefs-setref-gen (j 1))))))
; We now prove a symmetric lemma that says when we allocate a new thread
; and a new object in the heap we can convert the flag from nil to t.
(defthm good-objrefs-new-thread
(implies (and (integerp j)
(good-threads j tt c m mc flg1)
(good-objrefs tt heap nil)
(force (equal delta (+ 8 j))))
(good-objrefs
(bind (+ j (len heap))
(list cs
'UNSCHEDULED
(list 'REF (+ delta (len heap))))
tt)
(bind (+ delta (len heap))
'(("Job" ("objref" . 0))
("java.lang.Thread")
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
heap)
t))
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
; This undoes something added to m5.lisp. I might just remove the disables
; there.
; This undoes another disable in m5. Maybe just delete that one.
(in-theory (enable make-state thread-table heap class-table))
(in-theory (enable make-frame pc locals stack
;program
sync-flg cur-class))
(defthm good-threads-new-thread
(implies (and (integerp j)
(good-threads j tt c m mc nil)
(good-objrefs tt heap flg)
(< m (+ j (len heap)))
(force (equal delta (+ 8 j))))
(good-threads j
(bind (+ j (len heap))
(list
`((0
((REF ,(+ delta (len heap))))
NIL
,*Job.run*
UNLOCKED
"Job"))
'UNSCHEDULED
(list 'REF (+ delta (len heap))))
tt)
c m mc t))
:hints (("Goal" :in-theory (disable good-incr-frame
;good-run-frame
))))
(defthm rreftothread-good-threads
(implies (and (good-threads j tt c m mc flg1)
(integerp j))
(equal (rreftothread ref tt)
(if (and (consp ref)
(equal (car ref) 'REF)
(null (cddr ref)))
(let ((i (cadr ref)))
(if (and (integerp i)
(<= (+ 8 j) i)
(<= i (- (+ 8 j (len tt)) 1)))
(- i 8)
NIL))
nil)))
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
(defthm len-thread-table-len-heap-gen
(implies (and (integerp j)
(good-threads j tt c m mc flg1)
(good-objrefs tt heap flg2))
(equal (len tt)
(len heap)))
:rule-classes nil
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
; This looks scary because the len expression is replaced by something
; bigger. But I want to think in terms of the length of the heap, not
; the length of the thread table.
(defthm len-thread-table-len-heap
(implies (and (good-threads 1 (cdar s) c m mc flg1)
(good-objrefs (cdar s)
(CDDDDR (CDDDDR (CDADR S)))
flg2))
(equal (len (cdar s))
(len (CDDDDR (CDDDDR (CDADR S))))))
:hints (("Goal" :use ((:instance len-thread-table-len-heap-gen
(j 1)
(tt (cdar s))
(heap (CDDDDR (CDDDDR (CDADR S)))))))))
(defthm good-objrefs-new-schedule
(implies (and (good-threads j tt c m mc flg1)
(integerp j)
(good-objrefs tt heap flg2)
(integerp th)
(<= j th)
(<= th (- (+ j (len tt)) 1)))
(good-objrefs (bind th
(list (cadr (assoc-equal th tt))
'SCHEDULED
(cadddr (assoc-equal th tt)))
tt)
heap
flg2))
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
(defthm good-threads-new-schedule-gen
(implies
(and (good-threads j tt c m mc t)
(consp heap)
(integerp j)
(good-objrefs tt heap flg2))
(good-threads
j
(bind (- (+ j (len heap)) 1)
(list (cadr (assoc-equal (- (+ j (len heap)) 1) tt))
'SCHEDULED
(cadddr (assoc-equal (- (+ j (len heap)) 1) tt)))
tt)
c m mc nil))
:rule-classes nil
:hints (("Goal" :in-theory (disable good-incr-frame
; good-run-frame
))))
(defthm good-threads-new-schedule
(implies
(and (good-threads 1 tt c m mc t)
(good-objrefs tt heap flg2)
(consp heap)
(force (equal n (len heap))))
(good-threads
1
(bind n
(list (cadr (assoc-equal n tt))
'SCHEDULED
(cadddr (assoc-equal n tt)))
tt)
c m mc nil))
:hints (("Goal" :use ((:instance good-threads-new-schedule-gen
(j 1))))))
(defthm nth-0 (equal (nth 0 x) (car x)))
(in-theory (disable nth))
(defthm popn-n
(implies (and (integerp n)
(<= 0 n))
(equal (popn (+ 1 n) x)
(popn n (cdr x)))))
(defthm ref-hack
(implies (equal ref (list 'REF n))
(equal (cadr ref) n)))
(defthm stack-hack-1
(implies (equal stack (list item0))
(equal (car stack) item0)))
(defthm stack-hack-2a
(implies (equal stack (list item0 item1))
(equal (car stack) item0)))
(defthm stack-hack-2b
(implies (equal stack (list item0 item1))
(equal (cadr stack) item1)))
; Phased simplification
(mutual-recursion
(defun find-first-use (fn term)
(cond ((acl2::variablep term) nil)
((acl2::fquotep term) nil)
((eq fn (acl2::ffn-symb term)) term)
(t (find-first-use-lst fn (acl2::fargs term)))))
(defun find-first-use-lst (fn terms)
(cond ((endp terms) nil)
(t (or (find-first-use fn (car terms))
(find-first-use-lst fn (cdr terms)))))))
(defun phase1-hint (clause stablep)
(cond (stablep
(let ((term (find-first-use-lst 'step clause)))
(cond
(term
`(:computed-hint-replacement
((phase2-hint acl2::clause acl2::stable-under-simplificationp))
:expand (,term)))
(t nil))))
(t nil)))
(defun phase2-hint (clause stablep)
(cond (stablep
(let ((term (find-first-use-lst 'good-state clause)))
(cond
(term
`(:in-theory (enable good-state)))
(t nil))))
(t nil)))
(in-theory (disable good-state step-opener))
(defthm update-nth-n
(implies (and (integerp n)
(<= 0 n))
(equal (update-nth (+ 1 n) v lst)
(cons (car lst) (update-nth n v (cdr lst))))))
; (acl2::divert)
(defthm [2a]
(implies (good-state s)
(good-state (step 0 s)))
:rule-classes nil
:hints
(("Goal" :expand (good-state s))
(phase1-hint acl2::clause acl2::stable-under-simplificationp)))
; (acl2::undivert)
(in-theory (disable int-fix))
;I have changed this theorem so it is true but I don't really know what
;form I should use...
(defthm [3a]
(implies (good-state s)
(or (equal (counter s) nil)
(rel (counter s) (counter (step 0 s)))))
:rule-classes nil
:hints
(("Goal" :expand (good-state s))
(phase1-hint acl2::clause acl2::stable-under-simplificationp)))
; We next deal with stepping an arbitrary Job, i.e, a thread th such
; that 1<= th < (len (heap s)).
; Suppose we know (good-state s). Now how do we open up (step th s)?
; We need to get
; (good-thread i
; (if (and (endp (cdr tt))
; except-last-flg)
; 'unscheduled
; 'scheduled)
; (car tt)
; counter monitor mcount)
; appropriately instantiated and into the theorem. Then we need
; to get it splattered open.
(defthm good-threads-step
(implies
(and (case-split (good-thread th 'SCHEDULED (cons th thread) c m mc))
(integerp i)
(good-threads i tt c m mc flg)
(equal (cadr (binding th tt)) 'SCHEDULED))
(good-threads i (bind th thread tt) c m mc flg))
:hints (("Goal" :in-theory (disable good-run-frame good-incr-frame))))
(defthm good-objrefs-step
(implies
(and (equal (caddr thread) (list 'REF (+ 8 th)))
(assoc-equal th tt)
(good-objrefs tt heap flg))
(good-objrefs (bind th thread tt) heap flg)))
; The proof of lemma1 raises the case that (equal th <monitor>) and
; because th is a variable, it is replaced everywhere by <monitor>. I
; don't want that to happen because its harder for me to read. So I
; shut off object-lockedp after proving this little theorem.
; Object-lockedp was invented just to hide the (equal th monitor).
(defthm object-lockedp-opener-1
(implies (equal th thmon)
(equal (object-lockedp th thmon 1) t)))
(defthm object-lockedp-opener-2
(implies (not (equal th thmon))
(equal (object-lockedp th thmon 1) nil)))
(defthm object-lockedp-opener-3
(equal (object-lockedp th1 th2 0) nil))
(in-theory (disable object-lockedp))
; Free-var below prevents frequent tries.
(defthm assoc-equal-non-nil
(implies (and (equal (car (assoc-equal free-th (cdar s))) th)
(syntaxp (equal free-th th))
(equal free-th th)
(integerp th))
(assoc-equal th (cdar s))))
(defthm lookup-method-incr
(implies (and (equal ct (class-table *a0*))
(force (equal class "Job")))
(equal (lookup-method "incr" class ct)
'("incr" NIL NIL
(ALOAD_0)
(GETFIELD "Job" "objref")
(ASTORE_1)
(ALOAD_1)
(MONITORENTER)
(ALOAD_0)
(GETFIELD "Job" "objref")
(ALOAD_0)
(GETFIELD "Job" "objref")
(GETFIELD "Container" "counter")
(ICONST_1)
(IADD)
(PUTFIELD "Container" "counter")
(ALOAD_1)
(MONITOREXIT)
(GOTO 8)
(ASTORE_2)
(ALOAD_1)
(MONITOREXIT)
(ALOAD_2)
(ATHROW)
(ALOAD_0)
(ARETURN)))))
(defthm lookup-method-run
(implies (and (equal ct (class-table *a0*))
(force (equal class "Job")))
(equal (lookup-method "run" class ct)
'("run" NIL NIL
(GOTO 3)
(ALOAD_0)
(INVOKEVIRTUAL "Job" "incr" 0)
(POP)
(GOTO -5)))))
(in-theory (disable lookup-method))
(defthm good-threads-step-over-monitorenter-lemma1
(implies
(and (integerp i)
(integerp th)
(< th i)
(good-threads i tt c 0 0 flg))
(good-threads i tt c th 1 flg))
:hints (("Goal" :in-theory (enable object-lockedp))))
(defthm good-threads-step-over-monitorenter
(implies
(and (object-lockedp th thmon 1)
(case-split (good-thread th 'SCHEDULED
(cons th thread) c thmon 1))
(integerp i)
(good-threads i tt c 0 0 flg)
(equal (cadr (binding th tt)) 'SCHEDULED))
(good-threads i (bind th thread tt) c thmon 1 flg))
:hints (("Goal" :in-theory (enable object-lockedp))))
(defthm good-threads-step-over-monitorexit-lemma1
(implies
(and (integerp i)
(integerp th)
(< th i)
(good-threads i tt c th 1 flg))
(good-threads i tt c 0 0 flg))
:hints (("Goal" :in-theory (enable object-lockedp))))
(defthm good-threads-step-over-monitorexit
(implies
(and (case-split (good-thread th 'SCHEDULED (cons th thread) c 0 0))
(integerp i)
(good-threads i tt c th 1 flg)
(equal (cadr (binding th tt)) 'SCHEDULED))
(good-threads i (bind th thread tt) c 0 0 flg))
:hints (("Goal" :in-theory (enable object-lockedp))))
; Now I need to prove that you can step over the putfield.
(defthm good-threads-step-over-putfield-lemma1
(implies
(and (integerp i)
(integerp th)
(< th i)
(good-threads i tt c th 1 flg))
(good-threads i tt (int-fix (+ 1 c)) th 1 flg))
:hints (("Goal" :in-theory (enable object-lockedp))))
(defthm good-thread-without-lock-allows-bump
(implies (and (good-thread i 'SCHEDULED thread c1 m 1)
(not (equal (car thread) m)))
(good-thread i 'SCHEDULED thread c2 m 1)))
(defthm good-threads-step-over-putfield
(implies
(and (object-lockedp th thmon 1)
(case-split (good-thread th 'SCHEDULED
(cons th thread)
(int-fix (+ 1 c))
th 1))
(integerp i)
(good-threads i tt c thmon 1 flg)
(equal (cadr (binding th tt)) 'SCHEDULED))
(good-threads i (bind th thread tt) (int-fix (+ 1 c)) thmon 1 flg))
:hints (("Goal" :in-theory (cons 'object-lockedp (disable good-thread)))
("Subgoal *1/2'"
:cases ((equal i th))
:in-theory (enable good-thread))))
(defthm last-thread-sometimes-unscheduled-gen
(implies (and (integerp i)
(consp heap)
(good-threads i tt c m mc T)
(GOOD-OBJREFS tt heap T))
(EQUAL (CADDR (ASSOC-EQUAL (- (+ i (LEN heap)) 1) tt))
'UNSCHEDULED))
:rule-classes nil)
(defthm last-thread-sometimes-unscheduled
(implies (and (good-threads 1 tt c m mc t)
(consp heap)
(good-objrefs tt heap t))
(EQUAL (CADDR (ASSOC-EQUAL (len heap) tt))
'UNSCHEDULED))
:hints (("Goal" :use ((:instance last-thread-sometimes-unscheduled-gen
(i 1))))))
(defthm bind-bind
(equal (bind i v1 (bind i v2 lst))
(bind i v1 lst)))
(defthm lookup-method-in-good-class-table
(implies (and (syntaxp (and (quotep class)
(quotep method)))
(good-class-table ct))
(equal (lookup-method class method ct)
(lookup-method class method (class-table *a0*))))
:hints (("Goal" :in-theory (enable good-class-table))))
; (acl2::divert)
(in-theory (disable good-thread0 main-pc))
(defthm integerp-int-fix
(integerp (int-fix x))
:hints (("Goal" :in-theory (enable int-fix))))
(defthm [2b]
(implies (and (good-state s)
(integerp th)
(<= 1 th)
(<= th (- (len (heap s)) 9))
(good-thread th
'SCHEDULED
(assoc-equal th (thread-table s))
(gf "Container" "counter" 8 (heap s))
(gf "java.lang.Object" "monitor" 8 (heap s))
(gf "java.lang.Object" "mcount" 8 (heap s))))
(good-state (step th s)))
:rule-classes nil
:hints
(("Goal" :expand (good-state s))
(phase1-hint acl2::clause acl2::stable-under-simplificationp)))
; (acl2::undivert)
(defthm [3b]
(implies (and (good-state s)
(integerp th)
(<= 1 th)
(<= th (- (len (heap s)) 9))
(good-thread th
'SCHEDULED
(assoc-equal th (thread-table s))
(gf "Container" "counter" 8 (heap s))
(gf "java.lang.Object" "monitor" 8 (heap s))
(gf "java.lang.Object" "mcount" 8 (heap s))))
(or (equal (counter s) nil)
(rel (counter s) (counter (step th s)))))
:rule-classes nil
:hints
(("Goal" :expand (good-state s))
(phase1-hint acl2::clause acl2::stable-under-simplificationp)))
(defthm [2c]
(implies (and (good-state s)
(not (equal (status th s) 'SCHEDULED)))
(good-state (step th s)))
:rule-classes nil
:otf-flg t
:hints
(("Goal" :in-theory (enable step))))
(defthm [3c]
(implies (and (good-state s)
(not (equal (status th s) 'SCHEDULED)))
(or (equal (counter s) nil)
(rel (counter s) (counter (step th s)))))
:rule-classes nil
:otf-flg t
:hints
(("Goal" :in-theory (enable step))))
; Now we put a, b, and c together.
(defthm assoc-equal-th-cdr-thread-table
(implies (and (alistp tt)
(good-threads j tt c m mc flg1)
(integerp j))
(equal (consp (ASSOC-EQUAL th tt))
(and (integerp th)
(<= j th)
(<= th (- (+ (len tt) j) 1)))))
:rule-classes nil
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
; This is a surprisingly long proof at about 530 seconds. I am sure I
; could shorten it by proving good-state implies good-threads and
; good-objrefs, appropriately.
(defthm cases-on-th
(implies (good-state s)
(or (equal th 0)
(and (integerp th)
(<= 1 th)
(<= th (- (len (heap s)) 9)))
(not (equal (status th s) 'SCHEDULED))))
:rule-classes nil
:hints (("Goal"
:use
(:instance assoc-equal-th-cdr-thread-table
(tt (cdr (thread-table s)))
(j 1)
(c (gf "Container" "counter" 8 (heap s)))
(m (gf "java.lang.Object" "monitor" 8 (heap s)))
(mc (gf "java.lang.Object" "mcount" 8 (heap s)))
(flg1
(case (main-pc
(thread-call-stack
(car (thread-table s))))
(11 nil)
(28 nil)
(otherwise t))
))
:in-theory (cons 'good-state (disable good-threads
STANDARD-HEAP-PREFIXP)))))
(defthm good-threads-all-lemma
(implies (and (good-threads j tt c m mc flg1)
(integerp th)
(<= j th)
(<= th (- (+ (len tt) j) 1))
(integerp j))
(good-thread th
(if (and flg1 (equal th (- (+ (len tt) j) 1)))
'UNSCHEDULED
'SCHEDULED)
(assoc-equal th tt)
c m mc))
:rule-classes nil
:hints (("Goal" :in-theory (disable good-incr-frame good-run-frame))))
(defthm good-threads-all
(implies (and (good-state s)
(integerp th)
(<= 1 th)
(<= th (- (len (heap s)) 9)))
(good-thread th
(if (and (<= 14 (main-pc
(thread-call-stack
(car (thread-table s)))))
(< (main-pc
(thread-call-stack
(car (thread-table s))))
28)
(equal th (- (len (heap s)) 9)))
'UNSCHEDULED
'SCHEDULED)
(assoc-equal th (thread-table s))
(gf "Container" "counter" 8 (heap s))
(gf "java.lang.Object" "monitor" 8 (heap s))
(gf "java.lang.Object" "mcount" 8 (heap s))))
:rule-classes nil
:hints (("Goal" :use
(:instance good-threads-all-lemma
(tt (cdr (thread-table s)))
(j 1)
(c (gf "Container" "counter" 8 (heap s)))
(m (gf "java.lang.Object" "monitor" 8 (heap s)))
(mc (gf "java.lang.Object" "mcount" 8 (heap s)))
(flg1 (and (<= 14 (main-pc
(thread-call-stack
(car (thread-table s)))))
(< (main-pc
(thread-call-stack
(car (thread-table s))))
28))))
:in-theory (cons 'good-state (disable good-threads
good-thread
good-thread0
)))))
(defthm good-thread-unscheduled-means-not-scheduled
(implies (good-thread th 'UNSCHEDULED thread c m mc)
(equal (caddr thread) 'UNSCHEDULED)))
(defthm [2]
(implies (good-state s)
(good-state (step th s)))
:hints
(("Goal" :use ([2a] [2b] [2c]
cases-on-th
good-threads-all)
:in-theory (cons 'main-pc (disable good-thread)))))
(defthm [3]
(implies (good-state s)
(or (equal (counter s) nil)
(rel (counter s) (counter (step th s)))))
:rule-classes nil
:hints
(("Goal" :use ([3a] [3b] [3c]
cases-on-th
good-threads-all)
:in-theory (disable good-thread rel))))
(defthm good-state-run
(implies (good-state s)
(good-state (run sched s)))
:hints (("Goal" :in-theory (enable run))))
(defthm [4]
(good-state (run sched *a0*)))
; In the following theorems, read (run sched *a0*) as ``a state reached
; after an arbitrary amount of computation.'' Monotonicty-1 says that
; if the counter in such a state is non-nil, then it is rel to the
; counter in the next state. Monotonicity-2, further below, says once
; the counter is non-nil, it stays non-nil.
(defthm Monotonicity
(let* ((s1 (run sched *a0*))
(s2 (step th s1)))
(implies (not (equal (counter s1) nil))
(or (equal (counter s1)
(counter s2))
(equal (int-fix (+ 1 (counter s1)))
(counter s2)))))
:rule-classes nil
:hints (("Goal" :use (:instance [3] (s (run sched *a0*))))))
(defthm Monotonicity-corollary
(let* ((s1 (run sched *a0*))
(s2 (step th s1)))
(implies (not (equal (counter s1) nil))
(not (equal (counter s2) nil))))
:rule-classes nil
:hints (("Goal" :use Monotonicity)))
; ---------------------------------------------------------------------------
; Appendix 1. Heap Size
; Here are a couple of nice lemmas I proved but don't need. They
; address the heap size and the relation between it and the counter
; allocation.
(defthm len-bind-weak
(<= (len a) (len (bind x v a)))
:rule-classes :linear)
(include-book "ordinals/e0-ordinal" :dir :system)
(encapsulate
nil
(local
(defun makemultiarray-fn (fn car-counts cdr-counts s ac)
(declare
(xargs :measure
(if (equal fn 'makemultiarray2)
(cons (len (cons car-counts cdr-counts))
(natural-sum (cons car-counts cdr-counts)))
(cons (+ 1 (len cdr-counts))
(natural-sum cdr-counts)))
:well-founded-relation e0-ord-<))
(if (equal fn 'makemultiarray2)
(if
(zp car-counts)
(mv (heap s) ac)
(mv-let
(new-addr new-heap)
(makemultiarray-fn 'makemultiarray car-counts cdr-counts s ac)
(makemultiarray-fn 'makemultiarray2
(- car-counts 1)
cdr-counts
(make-state (thread-table s)
new-heap (class-table s))
(cons (list 'ref new-addr) ac))))
(if (<= (len cdr-counts) 1)
(mv (len (heap s))
(bind (len (heap s))
(makearray 't_ref
(car cdr-counts)
(init-array 't_ref (car cdr-counts))
(class-table s))
(heap s)))
(mv-let (heap-prime lst-of-refs)
(makemultiarray-fn 'makemultiarray2
(car cdr-counts)
(cdr cdr-counts)
s nil)
(let* ((obj (makearray 't_ref
(car cdr-counts)
lst-of-refs (class-table s)))
(new-addr (len heap-prime))
(new-heap (bind new-addr obj heap-prime)))
(mv new-addr new-heap)))))))
(local
(defthm mv-nth-1
(equal (mv-nth 1 x) (cadr x))))
(local
(defthm len-makemultiarray-fn
(<= (len (heap s))
(if (equal fn 'makemultiarray2)
(len (car (makemultiarray-fn fn car-counts cdr-counts s ac)))
(len (cadr (makemultiarray-fn fn car-counts cdr-counts s ac)))))
:rule-classes nil))
(local
(defthm makemultiarray-fn-is-makemultiarray
(equal (makemultiarray-fn fn car-counts cdr-counts s ac)
(if (equal fn 'makemultiarray2)
(makemultiarray2 car-counts cdr-counts s ac)
(makemultiarray cdr-counts s)))))
(defthm makemultiarray-len
(and (<= (len (heap s))
(len (car (makemultiarray2 car-counts cdr-counts s ac))))
(<= (len (heap s))
(len (mv-nth 1 (makemultiarray cdr-counts s)))))
:rule-classes :linear
:hints (("Goal" :use ((:instance len-makemultiarray-fn
(fn 'makemultiarray2))
(:instance len-makemultiarray-fn
(fn 'makemultiarray)))))))
(defthm heap-len-grows-monotonically
(<= (len (heap s))
(len (heap (step th s))))
:rule-classes nil
:hints (("Goal" :in-theory (enable step do-inst))))
(defthm null-counter-means-heap-len-8
(implies (good-state s)
(if (equal (len (heap s)) 8)
(null (counter s))
(integerp (counter s))))
:rule-classes nil
:hints (("Goal" :in-theory (cons 'good-state
(disable good-thread-table)))))
(defthm heap-len-never-less-than-8
(implies (good-state s)
(<= 8 (len (heap s))))
:rule-classes nil
:hints (("Goal" :in-theory (cons 'good-state
(disable good-thread-table)))))
; ---------------------------------------------------------------------------
; Appendix 2. Some Handy Utilities
#|
; Here is a handy macro. The global variable s is a pseudo-state for
; M5. If you evaluate (s (caar (cadaar s))) it will return
; thread0-frame0-pc, telling you what state component that refers to.
(assign s
'(((0 ((thread0-frame0-pc (thread0-frame0-local0
thread0-frame0-local1
thread0-frame0-local2)
(thread0-frame0-stack0
thread0-frame0-stack1
thread0-frame0-stack2)
(thread0-frame0-program0
thread0-frame0-program1
thread0-frame0-program2)
thread0-frame0-sync-flg
thread0-frame0-cur-class)
(thread0-frame1-pc (thread0-frame1-local0
thread0-frame1-local1
thread0-frame1-local2)
(thread0-frame1-stack0
thread0-frame1-stack1
thread0-frame1-stack2)
(thread0-frame1-program0
thread0-frame1-program1
thread0-frame1-program2)
thread0-frame1-sync-flg
thread0-frame1-cur-class)
(thread0-frame2-pc (thread0-frame2-local0
thread0-frame2-local1
thread0-frame2-local2)
(thread0-frame2-stack0
thread0-frame2-stack1
thread0-frame2-stack2)
(thread0-frame2-program0
thread0-frame2-program1
thread0-frame2-program2)
thread0-frame2-sync-flg
thread0-frame2-cur-class)
(thread0-frame3-pc (thread0-frame3-local0
thread0-frame3-local1
thread0-frame3-local2)
(thread0-frame3-stack0
thread0-frame3-stack1
thread0-frame3-stack2)
(thread0-frame3-program0
thread0-frame3-program1
thread0-frame3-program2)
thread0-frame3-sync-flg
thread0-frame3-cur-class))
thread0-scheduled-flg
thread0-rref)
(1 ((thread1-frame0-pc (thread1-frame0-local0
thread1-frame0-local1
thread1-frame0-local2)
(thread1-frame0-stack0
thread1-frame0-stack1
thread1-frame0-stack2)
(thread1-frame0-program0
thread1-frame0-program1
thread1-frame0-program2)
thread1-frame0-sync-flg
thread1-frame0-cur-class)
(thread1-frame1-pc (thread1-frame1-local0
thread1-frame1-local1
thread1-frame1-local2)
(thread1-frame1-stack0
thread1-frame1-stack1
thread1-frame1-stack2)
(thread1-frame1-program0
thread1-frame1-program1
thread1-frame1-program2)
thread1-frame1-sync-flg
thread1-frame1-cur-class)
(thread1-frame2-pc (thread1-frame2-local0
thread1-frame2-local1
thread1-frame2-local2)
(thread1-frame2-stack0
thread1-frame2-stack1
thread1-frame2-stack2)
(thread1-frame2-program0
thread1-frame2-program1
thread1-frame2-program2)
thread1-frame2-sync-flg
thread1-frame2-cur-class)
(thread1-frame3-pc (thread1-frame3-local0
thread1-frame3-local1
thread1-frame3-local2)
(thread1-frame3-stack0
thread1-frame3-stack1
thread1-frame3-stack2)
(thread1-frame3-program0
thread1-frame3-program1
thread1-frame3-program2)
thread1-frame3-sync-flg
thread1-frame3-cur-class))
thread1-scheduled-flg
thread1-rref)
(2 ((thread2-frame0-pc (thread2-frame0-local0
thread2-frame0-local1
thread2-frame0-local2)
(thread2-frame0-stack0
thread2-frame0-stack1
thread2-frame0-stack2)
(thread2-frame0-program0
thread2-frame0-program1
thread2-frame0-program2)
thread2-frame0-sync-flg
thread2-frame0-cur-class)
(thread2-frame1-pc (thread2-frame1-local0
thread2-frame1-local1
thread2-frame1-local2)
(thread2-frame1-stack0
thread2-frame1-stack1
thread2-frame1-stack2)
(thread2-frame1-program0
thread2-frame1-program1
thread2-frame1-program2)
thread2-frame1-sync-flg
thread2-frame1-cur-class)
(thread2-frame2-pc (thread2-frame2-local0
thread2-frame2-local1
thread2-frame2-local2)
(thread2-frame2-stack0
thread2-frame2-stack1
thread2-frame2-stack2)
(thread2-frame2-program0
thread2-frame2-program1
thread2-frame2-program2)
thread2-frame2-sync-flg
thread2-frame2-cur-class)
(thread2-frame3-pc (thread2-frame3-local0
thread2-frame3-local1
thread2-frame3-local2)
(thread2-frame3-stack0
thread2-frame3-stack1
thread2-frame3-stack2)
(thread2-frame3-program0
thread2-frame3-program1
thread2-frame3-program2)
thread2-frame3-sync-flg
thread2-frame3-cur-class))
thread2-scheduled-flg
thread2-rref))
((0 ("java.lang.Class" ("<name>" . "java.lang.Object"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(1 ("java.lang.Class" ("<name>" . "ARRAY"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(2 ("java.lang.Class" ("<name>" . "java.lang.Thread"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(3 ("java.lang.Class" ("<name>" . "java.lang.String"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(4 ("java.lang.Class" ("<name>" . "java.lang.Class"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(5 ("java.lang.Class" ("<name>" . "Apprentice"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(6 ("java.lang.Class" ("<name>" . "Container"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(7 ("java.lang.Class" ("<name>" . "Job"))
("java.lang.Object" ("monitor" . 0)
("mcount" . 0)
("wait-set" . 0)))
(8 counter)
(9 job1)
(10 job2)
(11 job3))
(("java.lang.Object" NIL ("monitor" "mcount" "wait-set")
NIL
NIL (("<init>" NIL NIL (RETURN)))
(REF 0))
("ARRAY" ("java.lang.Object")
(("<array>" . *ARRAY*))
NIL NIL NIL (REF 1))
("java.lang.Thread"
("java.lang.Object")
NIL NIL NIL
(("run" NIL NIL (RETURN))
("start" NIL NIL NIL)
("stop" NIL NIL NIL)
("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN)))
(REF 2))
("java.lang.String"
("java.lang.Object")
("strcontents")
NIL NIL
(("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN)))
(REF 3))
("java.lang.Class"
("java.lang.Object")
NIL NIL NIL
(("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN)))
(REF 4))
("Apprentice" ("java.lang.Object")
NIL NIL NIL
(("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN))
("main" (|JAVA.LANG.STRING[]|)
NIL (NEW "Container")
(DUP)
(INVOKESPECIAL "Container" "<init>" 0)
(ASTORE_1)
(GOTO 3)
(NEW "Job")
(DUP)
(INVOKESPECIAL "Job" "<init>" 0)
(ASTORE_2)
(ALOAD_2)
(ALOAD_1)
(INVOKEVIRTUAL "Job" "setref" 1)
(ALOAD_2)
(INVOKEVIRTUAL "java.lang.Thread" "start" 0)
(GOTO -17)))
(REF 5))
("Container" ("java.lang.Object")
("counter")
NIL NIL
(("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Object" "<init>" 0)
(RETURN)))
(REF 6))
("Job" ("java.lang.Thread" "java.lang.Object")
("objref")
NIL NIL
(("<init>" NIL NIL (ALOAD_0)
(INVOKESPECIAL "java.lang.Thread" "<init>" 0)
(RETURN))
("incr" NIL NIL (ALOAD_0)
(GETFIELD "Job" "objref")
(ASTORE_1)
(ALOAD_1)
(MONITORENTER)
(ALOAD_0)
(GETFIELD "Job" "objref")
(ALOAD_0)
(GETFIELD "Job" "objref")
(GETFIELD "Container" "counter")
(ICONST_1)
(IADD)
(PUTFIELD "Container" "counter")
(ALOAD_1)
(MONITOREXIT)
(GOTO 8)
(ASTORE_2)
(ALOAD_1)
(MONITOREXIT)
(ALOAD_2)
(ATHROW)
(ALOAD_0)
(ARETURN))
("setref" (CONTAINER)
NIL (ALOAD_0)
(ALOAD_1)
(PUTFIELD "Job" "objref")
(RETURN))
("run" NIL NIL (GOTO 3)
(ALOAD_0)
(INVOKEVIRTUAL "Job" "incr" 0)
(POP)
(GOTO -5)))
(REF 7)))))
(defmacro s (form) `(let ((s (@ s))) ,form))
; This program can be used to test whether good-state is invariant for
; a few steps
(defun test (sched s)
(declare (xargs :mode :program))
(cond ((good-state s)
(cond ((endp sched) (list 'YES s))
(t (test (cdr sched) (step (car sched) s)))))
(t (list 'NO s))))
; This test runs 530 steps, leaves the counter at 15, and confirms
; that we are always in good-states during the run.
(defun repeat (th n)
(if (zp n)
nil
(cons th (repeat th (- n 1)))))
(test (append (repeat 0 50)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20)
(repeat 1 10)
(repeat 2 10)
(repeat 1 20)
(repeat 2 20))
*a0*)
; jsm
; ----------------------------------------------------------------------------
|#
|