File: isort.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (1300 lines) | stat: -rw-r--r-- 39,470 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
; (ld "isort.lisp" :ld-pre-eval-print t)
#|

; Certification instructions:

(include-book "utilities")

(certify-book "isort" 1)

JSM June, 2000
|#

(in-package "M5")

#|
Here is Isort.java:

class Cons {
    int car;
    Object cdr;
    public static Cons cons(int x, Object y){
	Cons c = new Cons();
        c.car = x;
	c.cdr = y;
	return c;
    }
}

class ListProc extends Cons {
    public static Cons insert(int e,Object x){
	if (x==null)
	    {return cons(e,x);}
	else if (e <= ((Cons)x).car)
	    {return cons(e,x);}
	else return cons(((Cons)x).car,insert(e,((Cons)x).cdr));
    }

    public static Object isort(Object x){
	if (x==null)
	    {return x;}
	else return insert(((Cons)x).car,isort(((Cons)x).cdr));
    }
}
---------------------------------------------------------------------------
And here is the bytecode generated by javac and displayed by javap:

javap -c Cons
Compiled from Isort.java
synchronized class Cons extends java.lang.Object
    /* ACC_SUPER bit set */
{
    int car;
    java.lang.Object cdr;
    public static Cons cons(int, java.lang.Object);
    Cons();
}

Method Cons cons(int, java.lang.Object)
   0 new #1 <Class Cons>
   3 dup
   4 invokespecial #4 <Method Cons()>
   7 astore_2
   8 aload_2
   9 iload_0
  10 putfield #6 <Field int car>
  13 aload_2
  14 aload_1
  15 putfield #7 <Field java.lang.Object cdr>
  18 aload_2
  19 areturn

Method Cons()
   0 aload_0
   1 invokespecial #5 <Method java.lang.Object()>
   4 return
---------------------------------------------------------------------------
javap -c ListProc
Compiled from Isort.java
synchronized class ListProc extends Cons
    /* ACC_SUPER bit set */
{
    public static Cons insert(int, java.lang.Object);
    public static java.lang.Object isort(java.lang.Object);
    ListProc();
}

Method Cons insert(int, java.lang.Object)
   0 aload_1
   1 ifnonnull 10
   4 iload_0
   5 aload_1
   6 invokestatic #6 <Method Cons cons(int, java.lang.Object)>
   9 areturn
  10 iload_0
  11 aload_1
  12 checkcast #1 <Class Cons>
  15 getfield #4 <Field int car>
  18 if_icmpgt 27
  21 iload_0
  22 aload_1
  23 invokestatic #6 <Method Cons cons(int, java.lang.Object)>
  26 areturn
  27 aload_1
  28 checkcast #1 <Class Cons>
  31 getfield #4 <Field int car>
  34 iload_0
  35 aload_1
  36 checkcast #1 <Class Cons>
  39 getfield #5 <Field java.lang.Object cdr>
  42 invokestatic #7 <Method Cons insert(int, java.lang.Object)>
  45 invokestatic #6 <Method Cons cons(int, java.lang.Object)>
  48 areturn

Method java.lang.Object isort(java.lang.Object)
   0 aload_0
   1 ifnonnull 6
   4 aload_0
   5 areturn
   6 aload_0
   7 checkcast #1 <Class Cons>
  10 getfield #4 <Field int car>
  13 aload_0
  14 checkcast #1 <Class Cons>
  17 getfield #5 <Field java.lang.Object cdr>
  20 invokestatic #8 <Method java.lang.Object isort(java.lang.Object)>
  23 invokestatic #7 <Method Cons insert(int, java.lang.Object)>
  26 areturn

Method ListProc()
   0 aload_0
   1 invokespecial #3 <Method Cons()>
   4 return
---------------------------------------------------------------------------
|#

; Here is the state.  This state was hand created by reading the javap
; output.  (I don't have access to jvm2acl2 from this particular
; machine.)  I have had to omit several CHECKCAST instructions because
; they are not supported by M5.

(defconst *Isort-state*
  (make-state
   (list
    (cons 0
          (make-thread
           (push
            (make-frame
             0
             nil
             nil
             '()
             'UNLOCKED
             "ListProc")
            nil)
           'SCHEDULED
           nil)))
   '((0 . (("java.lang.Class"
           ("<name>" . "java.lang.Object"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (1 . (("java.lang.Class"
           ("<name>" . "ARRAY"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (2 . (("java.lang.Class"
           ("<name>" . "java.lang.Thread"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (3 . (("java.lang.Class"
           ("<name>" . "java.lang.String"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (4 . (("java.lang.Class"
           ("<name>" . "java.lang.Class"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (5 . (("java.lang.Class"
           ("<name>" . "Cons"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0))))
    (6 . (("java.lang.Class"
           ("<name>" . "ListProc"))
          ("java.lang.Object"
           ("monitor" . 0)
           ("mcount" . 0)
           ("wait-set" . 0)))))
   '(("java.lang.Object"
     NIL
     ("monitor" "mcount" "wait-set")
     NIL
     NIL
     (("<init>" NIL NIL (RETURN)))
     (REF 0))
    ("ARRAY"
     ("java.lang.Object")
     (("<array>" . *ARRAY*))
     NIL
     NIL
     NIL
     (REF 1))
    ("java.lang.Thread"
     ("java.lang.Object")
     NIL
     NIL
     NIL
     (("run" NIL NIL (RETURN))
      ("start" NIL NIL NIL)
      ("stop" NIL NIL NIL)
      ("<init>" NIL NIL (ALOAD\_0)
       (INVOKESPECIAL "java.lang.Object" "<init>" 0)
       (RETURN)))
     (REF 2))
    ("java.lang.String"
     ("java.lang.Object")
     ("strcontents")
     NIL
     NIL
     (("<init>" NIL NIL
       (ALOAD\_0)
       (INVOKESPECIAL "java.lang.Object" "<init>" 0)
       (RETURN)))
     (REF 3))
    ("java.lang.Class"
     ("java.lang.Object")
     NIL
     NIL
     NIL
     (("<init>" NIL NIL
       (ALOAD\_0)
       (INVOKESPECIAL "java.lang.Object" "<init>" 0)
       (RETURN)))
     (REF 4))
    ("Cons"
     ("java.lang.Object")
     ("car" "cdr")
     nil
     nil
     (("<init>" NIL NIL
       (ALOAD\_0)
       (INVOKESPECIAL "java.lang.Object" "<init>" 0)
       (RETURN))
      ("cons" (int java.lang.Object) nil
       (NEW "Cons")
       (DUP)
       (INVOKESPECIAL "Cons" "<init>" 0)
       (ASTORE_2)
       (ALOAD_2)
       (ILOAD_0)
       (PUTFIELD "Cons" "car")
       (ALOAD_2)
       (ALOAD_1)
       (PUTFIELD "Cons" "cdr")
       (ALOAD_2)
       (ARETURN))))
    ("ListProc"
     ("Cons" "java.lang.Object")
     nil
     nil
     nil
     (("<init>" nil nil
       (ALOAD\_0)
       (INVOKESPECIAL "Cons" "<init>" 0)
       (RETURN))
      ("insert" (int java.lang.Object) nil
        (aload_1)
        (ifnonnull 9)
        (iload_0)
        (aload_1)
        (invokestatic "Cons" "cons" 2)
        (areturn)
        (iload_0)
        (aload_1)
                                  ;;; checkcast "Cons" ommitted
        (getfield "Cons" "car")
        (if_icmpgt 9)
        (iload_0)
        (aload_1)
        (invokestatic "Cons" "cons" 2)
        (areturn)
        (aload_1)
                                  ;;; checkcast "Cons" ommitted
        (getfield "Cons" "car")
        (iload_0)
        (aload_1)
                                  ;;; checkcast "Cons" ommitted
        (getfield "Cons" "cdr")
        (invokestatic "ListProc" "insert" 2)
        (invokestatic "Cons" "cons" 2)
        (areturn))
      ("isort" (java.lang.Object) nil
       (aload_0)
       (ifnonnull 5)
       (aload_0)
       (areturn)
       (aload_0)
                                  ;;; checkcast "Cons" ommitted
       (getfield "Cons" "car")
       (aload_0)
                                  ;;; checkcast "Cons" ommitted
       (getfield "Cons" "cdr")
       (invokestatic "ListProc" "isort" 1)
       (invokestatic "ListProc" "insert" 2)
       (areturn)))))))

; Now we will name some parts of the state for future use.

(defconst *Object-class*
  (bound? "java.lang.Object" (class-table *Isort-state*)))

(defconst *Cons-class*
  (bound? "Cons" (class-table *Isort-state*)))

(defconst *ListProc-class*
  (bound? "ListProc" (class-table *Isort-state*)))

(defconst *cons-def*
  (lookup-method "cons" "Cons" (class-table *Isort-state*)))

(defconst *insert-def*
  (lookup-method "insert" "ListProc" (class-table *Isort-state*)))

(defconst *isort-def*
  (lookup-method "isort" "ListProc" (class-table *Isort-state*)))

(defconst *Isort-heap0*
  (heap *Isort-state*))

(defconst *Isort-class-table*
  (class-table *Isort-state*))

(defun cons-sched (th)
  (repeat th 17))

(defun hcar (ref heap)
; Return the car field of a ref in the heap.
  (field-value "Cons" "car" (deref ref heap)))

(defun hcdr (ref heap)
; Return the cdr field of a ref in the heap.
  (field-value "Cons" "cdr" (deref ref heap)))

(defun cons-heap (x y heap)
; Construct the heap produced by consing x and y.
  (bind (len heap)
        (list (list "Cons" (cons "car" x) (cons "cdr" y))
              '("java.lang.Object"
                ("monitor" . 0)
                ("mcount" . 0)
                ("wait-set" . 0)))
        heap))

(defun ref-to-cons-obj (x y heap)
  (declare (ignore x y))
  (list 'REF (len heap)))

; It is trivial to prove that the cons method above implements
; cons-heap.  But we don't do that yet.  We're interested in our
; invariant.  The bulk of the invariant has nothing to do with the
; proof of cons and everything to do with chasing pointers.

(defun == (addr1 addr2)
  (equal (cadr addr1) (cadr addr2)))

(defthm hcar-cons-heap
  (equal (hcar addr (cons-heap x y heap))
         (if (== addr (ref-to-cons-obj x y heap))
             x
           (hcar addr heap))))

(defthm hcdr-cons-heap
  (equal (hcdr addr (cons-heap x y heap))
         (if (== addr (ref-to-cons-obj x y heap))
             y
           (hcdr addr heap))))

(defthm len-bind
  (implies (case-split (alistp alist))
           (equal (len (bind key val alist))
                  (if (bound? key alist)
                      (len alist)
                    (+ 1 (len alist))))))

(defthm alistp-bind
  (implies (alistp alist)
           (alistp (bind key val alist))))

; Conjunct (1) Alistp is the first conjunct of our heap invariant.
; Here we show that it is preserved by cons-heap.

(defthm alistp-cons-heap
  (implies (alistp heap)
           (alistp (cons-heap x y heap))))

; Conjunct (2): Every key bound in the heap is a natural number less
; than the length of the heap.

(defun all-smallp (heap max)
  (cond ((endp heap) t)
        (t (and (integerp (caar heap))
                (<= 0 (caar heap))
                (< (caar heap) max)
                (all-smallp (cdr heap) max)))))

(defthm len-cons-heap
  (implies (and (alistp heap)
                (all-smallp heap (len heap)))
           (equal (len (cons-heap x y heap))
                  (+ 1 (len heap)))))

(defthm all-smallp-bind
  (implies (and (all-smallp alist max1)
                (<= max1 max2))
           (equal (all-smallp (bind key val alist) max2)
                  (and (integerp key)
                       (<= 0 key)
                       (< key max2)))))

; So here is the lemma that shows that all-smallp is preserved by
; cons-heap.

(defthm all-smallp-cons-heap
  (implies (and (alistp heap)
                (all-smallp heap (- max 1)))
           (equal (all-smallp (cons-heap x y heap) max)
                  (< (len heap) max))))

; Conjunct (3) Every address less than the heap length is bound.

(defun all-bound? (heap n)
  (cond ((zp n) t)
        (t (and (bound? (- n 1) heap)
                (all-bound? heap (- n 1))))))

(defthm all-bound?-bind
  (implies (and (integerp n)
                (<= 0 n)
                (integerp k)
                (<= n k)
                (alistp alist))
           (equal (all-bound? (bind k val alist) n)
                  (all-bound? alist n))))

; This too is preserved by cons-heap.

(defthm all-bound?-cons-heap
  (implies (and (alistp heap)
                (all-bound? heap (len heap)))
           (all-bound? (cons-heap x y heap) (+ 1 (len heap)))))

; Conjunct (4) Every ref in a "cdr" field of a "cons" in the heap is
; either the null pointer or a ref to a lower address.

(defun refp (x)
  (and (consp x)
       (equal (car x) 'ref)
       (consp (cdr x))
       (integerp (cadr x))
       (equal (cddr x) nil)))

(defun all-refs-smallp (heap)
  (cond
   ((endp heap) t)
   ((not (bound? "Cons" (cdar heap)))
    (all-refs-smallp (cdr heap)))
   (t (let ((d (field-value "Cons" "cdr" (cdar heap))))
        (and (or (nullrefp d)
                 (and (refp d)
                      (<= 0 (cadr d))
                      (< (cadr d) (caar heap))))
             (all-refs-smallp (cdr heap)))))))

(defthm all-refs-smallp-bind
  (implies (and (alistp heap)
                (all-smallp heap max)
                (all-refs-smallp heap)
                (integerp key)
                (<= 0 key)
                (<= max key))
           (equal (all-refs-smallp (bind key val heap))
                  (or (not (bound? "Cons" val))
                      (let ((d (field-value "Cons" "cdr" val)))
                        (or (nullrefp d)
                            (and (refp d)
                                 (<= 0 (cadr d))
                                 (< (cadr d) key))))))))

(defun ok-refp (x heap)

; We check that x is a legal ref to occupy the cdr of some cons:
; it is either the null reference or a reference to a "Cons".

  (or (nullrefp x)
      (and (refp x)
           (<= 0 (cadr x))
           (< (cadr x) (len heap))
           (bound? "Cons" (deref x heap)))))

(defthm all-refs-smallp-cons-heap
  (implies (and (alistp heap)
                (all-smallp heap (len heap))
                (all-refs-smallp heap)
                (ok-refp y heap))
           (all-refs-smallp (cons-heap x y heap))))

; Conjunct (5) Every "cdr" field of every "cons" is occupied by a nullref or
; a "cons" ref.

(defun cdr-type-correctnessp (alist heap)
  (cond ((endp alist) t)
        ((bound? "Cons" (cdar alist))
         (and (ok-refp (field-value "Cons" "cdr" (cdar alist)) heap)
              (cdr-type-correctnessp (cdr alist) heap)))
        (t (cdr-type-correctnessp (cdr alist) heap))))

(defthm cdr-type-correctnessp-bind
  (implies (cdr-type-correctnessp alist heap)
           (iff (cdr-type-correctnessp (bind key val alist) heap)
                (if (bound? "Cons" val)
                    (ok-refp (field-value "Cons" "cdr" val) heap)
                  t))))

(defun heap-extensionp (heap1 heap2)
  (cond ((endp heap1) t)
        ((endp heap2) nil)
        (t (and (equal (car heap1) (car heap2))
                (heap-extensionp (cdr heap1) (cdr heap2))))))

(defthm len-heap-extensionp
  (implies (heap-extensionp heap1 heap2)
           (<= (len heap1) (len heap2)))
  :rule-classes :linear)

(defthm cdr-type-correctnessp-heap-extensionp
  (implies (and (cdr-type-correctnessp alist heap1)
                (heap-extensionp heap1 heap2))
           (cdr-type-correctnessp alist heap2)))

(defthm assoc-equal-heap-extensionp
  (implies (and (assoc-equal key heap1)
                (heap-extensionp heap1 heap2))
           (equal (assoc-equal key heap1)
                  (assoc-equal key heap2))))

(defthm assoc-equal-implies-assoc-equal
  (implies (assoc-equal key1 (cdr (assoc-equal key2 alist)))
           (assoc-equal key2 alist)))

(defthm cdr-type-correctness-cons-heap-lemma
  (implies (and (cdr-type-correctnessp alist heap1)
                (ok-refp y heap1)
                (heap-extensionp heap1 heap2))
           (cdr-type-correctnessp (cons-heap x y alist)
                                  heap2))
  :rule-classes nil)

(in-theory (disable assoc-equal-heap-extensionp))

(defthm heap-extensionp-bind
  (implies (and (alistp heap)
                (not (assoc-equal key heap)))
           (heap-extensionp heap (bind key val heap))))

(defthm all-smallp-implies-unbound-len
  (implies (all-smallp heap max)
           (not (assoc-equal max heap))))

(defthm cdr-type-correctness-heap
  (implies (and (alistp heap)
                (all-smallp heap (len heap))
                (cdr-type-correctnessp heap heap)
                (ok-refp y heap))
           (cdr-type-correctnessp (cons-heap x y heap)
                                  (cons-heap x y heap)))
  :hints (("Goal" :use (:instance
                        cdr-type-correctness-cons-heap-lemma
                        (alist heap)
                        (heap1 heap)
                        (heap2 (cons-heap x y heap))))))

(defun heap-invariantp (heap)
  (and (alistp heap)
       (all-smallp heap (len heap))
       (all-bound? heap (len heap))
       (all-refs-smallp heap)
       (cdr-type-correctnessp heap heap)))


(defthm heap-invariantp-cons-heap
  (implies (and (heap-invariantp heap)
                (ok-refp y heap))
           (heap-invariantp (cons-heap x y heap))))


(in-theory (disable hcar hcdr cons-heap heap-invariantp ok-refp))

(defun ref-measure (x)
  (cond
   ((nullrefp x) 0)
   (t (+ 1 (acl2-count (cadr x))))))

(defthm all-bound?-is-a-quantifier
  (implies (and (all-bound? heap max)
                (integerp max)
                (integerp k)
                (<= 0 k)
                (< k max))
           (assoc-equal k heap)))

(defthm ref-addresses-are-bound
  (implies (and (heap-invariantp heap)
                (ok-refp y heap)
                (case-split (not (nullrefp y))))
           (assoc-equal (cadr y) heap))
  :hints (("Goal" :in-theory (enable heap-invariantp ok-refp))))

(defthm all-refs-smallp-is-a-quantifier
  (implies (and (all-refs-smallp heap)
                (assoc-equal k heap))
           (or (not (bound? "Cons" (cdr (assoc-equal k heap))))
               (let ((d (CDR
                         (ASSOC-EQUAL "cdr"
                                      (CDR (ASSOC-EQUAL
                                            "Cons"
                                            (cdr (assoc-equal k heap))))))))
                 (or (nullrefp d)
                     (and (refp d)
                          (<= 0 (cadr d))
                          (< (cadr d) k))))))
  :rule-classes nil)

; This is the measure theorem for our heap exploration functions.

(defthm ref-measure-decreases
  (implies (and (force (not (nullrefp xref)))
                (heap-invariantp heap)
                (ok-refp xref heap))
           (< (ref-measure (hcdr xref heap))
              (ref-measure xref)))
  :rule-classes :linear
  :hints (("Goal"
           :in-theory (enable heap-invariantp ok-refp hcdr)
           :use
           ((:instance all-refs-smallp-is-a-quantifier
                       (heap heap)
                       (k (cadr xref)))))))

(in-theory (disable ref-measure))

(defun insert-sched (th e xref heap)
  (declare
   (xargs :measure (ref-measure xref)))
  (cond
   ((nullrefp xref)
    (append (repeat th 5)
            (cons-sched th)
            (repeat th 1)))
   ((not (and (heap-invariantp heap)
              (ok-refp xref heap)))
    nil)
   ((< (hcar xref heap) e)
    (append (repeat th 12)
            (insert-sched th
                          e
                          (hcdr xref heap)
                          heap)
            (cons-sched th)
            (repeat th 1)))
   (t (append (repeat th 9)
              (cons-sched th)
              (repeat th 1)))))

(defun insert-heap (e xref heap)
  (declare (xargs :measure (ref-measure xref)))
  (cond ((nullrefp xref)
         (cons-heap e xref heap))
        ((not (and (heap-invariantp heap)
                   (ok-refp xref heap)))
         heap)
        ((< (hcar xref heap) e)
         (let ((new-heap (insert-heap e
                                      (hcdr xref heap)
                                      heap)))
           (cons-heap (hcar xref heap)
                      (list 'ref (- (len new-heap) 1))
                      new-heap)))
        (t (cons-heap e xref heap))))

(defun ref-to-insert-obj (e x heap)
  (list 'REF (- (len (insert-heap e x heap)) 1)))

; I prove this just so I can show the definition without the ugly len
; inside it.  Note that using ref-to-insert-obj in the definition of
; insert-heap would make the two mutually recursive, which I wanted to
; avoid.

(defthm insert-heap-def
  (equal
   (insert-heap e xref heap)
   (cond ((nullrefp xref)
          (cons-heap e xref heap))
         ((not (and (heap-invariantp heap)
                    (ok-refp xref heap)))
          heap)
         ((< (hcar xref heap) e)
          (let ((new-heap (insert-heap e
                                       (hcdr xref heap)
                                       heap))
                (new-ref  (ref-to-insert-obj
                           e
                           (hcdr xref heap)
                           heap)))
            (cons-heap (hcar xref heap)
                       new-ref
                       new-heap)))
         (t (cons-heap e xref heap))))
  :rule-classes nil)

(defun isort-heap (xref heap)
  (declare
   (xargs :measure (ref-measure xref)))
  (cond
   ((nullrefp xref)
    heap)
   ((not (and (heap-invariantp heap)
              (ok-refp xref heap)))
    heap)
   (t
    (insert-heap (hcar xref heap)
                 (if (nullrefp (hcdr xref heap))
                     '(ref -1)
                   (list 'ref
                         (- (len (isort-heap (hcdr xref heap)
                                            heap))
                            1)))
                 (isort-heap (hcdr xref heap)
                            heap)))))

(defun ref-to-isort-obj (xref heap)
  (if (nullrefp xref)
      xref
    (list 'REF
          (- (len (isort-heap xref heap)) 1))))

(defthm isort-heap-def
  (equal
   (isort-heap xref heap)
   (cond
    ((nullrefp xref)
     heap)
    ((not (and (heap-invariantp heap)
               (ok-refp xref heap)))
     heap)
    (t
     (insert-heap (hcar xref heap)
                  (ref-to-isort-obj (hcdr xref heap)
                                    heap)
                  (isort-heap (hcdr xref heap)
                              heap)))))
  :rule-classes nil)

(defun isort-sched (th xref heap)
  (declare
   (xargs :measure (ref-measure xref)))
  (cond
   ((nullrefp xref)
    (repeat th 5))
   ((not (and (heap-invariantp heap)
              (ok-refp xref heap)))
    nil)
   (t
    (append (repeat th 7)
            (isort-sched th (hcdr xref heap) heap)
            (insert-sched th
                          (hcar xref heap)
                          (if (nullrefp (hcdr xref heap))
                              '(ref -1)
                            (list 'ref
                                  (- (len (isort-heap
                                           (hcdr xref heap)
                                           heap))
                                     1)))
                          (isort-heap (hcdr xref heap) heap))
            (repeat th 1)))))

(defun deref* (xref heap)
  (declare (xargs :measure (ref-measure xref)))
  (cond
   ((nullrefp xref) nil)
   ((not (and (heap-invariantp heap)
              (ok-refp xref heap)))
    nil)
   (t (cons (hcar xref heap)
            (deref* (hcdr xref heap) heap)))))

; Here is an example execution of isort on the list (3 2 1) producing
; the list (1 2 3).  The isort call takes 188 steps.

(defthm isort-3-2-1
  (let* ((s0
          (make-state
           (list
            (cons 0
                  (make-thread
                   (push
                    (make-frame
                     0
                     '((REF -1))
                     nil
                     '((bipush 3)
                       (bipush 2)
                       (bipush 1)
                       (aload_0)
                       (invokestatic "Cons" "cons" 2)
                       (invokestatic "Cons" "cons" 2)
                       (invokestatic "Cons" "cons" 2)
                       (invokestatic "ListProc" "isort" 1)
                       (halt))
                     'UNLOCKED
                     "ListProc")
                    nil)
                   'SCHEDULED
                   nil)))
           *isort-heap0*
           *isort-class-table*))
         (s1
          (run (append (repeat 0 4)
                       (cons-sched 0)
                       (cons-sched 0)
                       (cons-sched 0))
               s0))
         (sched (isort-sched 0
                             (top (stack (top-frame 0 s1)))
                             (heap s1)))
         (s2 (run sched s1)))
    (and (equal (deref* (top (stack (top-frame 0 s1)))
                        (heap s1))
                '(3 2 1))
         (equal (len sched) 188)
         (heap-invariantp (heap s2))
         (equal (deref* (top (stack (top-frame 0 s2)))
                        (heap s2))
                '(1 2 3))
         (equal (next-inst 0 s2) '(HALT))))
  :rule-classes nil)


(defun standard-hyps (th s)
  (and (equal (status th s) 'SCHEDULED)
       (equal (assoc-equal "java.lang.Object" (class-table s))
              *Object-class*)
       (equal (assoc-equal "Cons" (class-table s))
              *Cons-class*)
       (equal (assoc-equal "ListProc" (class-table s))
              *ListProc-class*)
       (heap-invariantp (heap s))))



#|Test -- (i-am-here) get rid of this.  it is very confusing.
(thm
  (implies (and (standard-hyps 0 s0)
                (ok-refp y (heap s0)))
           (standard-hyps
            0
            (make-state
             (list (cons 0
                         (make-thread
                          (push (make-frame (+ 1 (pc (top-frame 0 s0)))
                                            (locals (top-frame 0 s0))
                                            (push (list 'ref (len (heap s0)))
                                                  (pop (pop (stack (top-frame 0 s0)))))
                                            (program (top-frame 0 s0))
                                            'unlocked
                                            class)
                                (pop (call-stack 0 s0)))
                          'SCHEDULED
                          nil)))
             (cons-heap x y (heap s0))
             (class-table s0)))))|#


; We will need this to maintain the ok-refp hyp through inductions.

(defthm cdr-type-correctness-is-a-quantifier
  (implies (and (alistp alist)
                (cdr-type-correctnessp alist heap)
                (assoc-equal k alist))
           (or (not (bound? "Cons" (cdr (assoc-equal k alist))))
               (nullrefp (field-value "Cons" "cdr" (cdr (assoc-equal k alist))))
               (bound? "Cons" (deref (field-value "Cons" "cdr" (cdr (assoc-equal k alist))) heap))))
  :hints (("Goal" :in-theory (enable ok-refp)))
  :rule-classes nil)

(defthm ok-ref-hcdr
  (implies (and (heap-invariantp heap)
                (not (nullrefp xref))
                (ok-refp xref heap))
           (ok-refp (hcdr xref heap) heap))
  :hints
  (("Goal" :in-theory (enable heap-invariantp
                              ok-refp
                              hcdr)
    :use ((:instance all-refs-smallp-is-a-quantifier
                     (heap heap)
                     (k (cadr xref)))
          (:instance cdr-type-correctness-is-a-quantifier
                     (alist heap)
                     (k (cadr xref)))))))

; I am not really sure if I need the type conditions on the two
; stack items or not.

(defun poised-to-invoke-cons (th s)
  (and (standard-hyps th s)
       (equal (next-inst th s) '(INVOKESTATIC "Cons" "cons" 2))
;      (intp (top (pop (stack (top-frame th s)))))
;      (ok-refp (top (stack (top-frame th s))) (heap s))
       ))

(defthm cons-is-correct
  (implies (poised-to-invoke-cons th s)
           (equal
            (run (cons-sched th) s)
            (let ((x (top (pop (stack (top-frame th s)))))
                  (y (top (stack (top-frame th s)))))
              (modify th s
                      :pc (+ 3 (pc (top-frame th s)))
                      :stack (push (ref-to-cons-obj x y (heap s))
                                   (pop (pop (stack (top-frame th s)))))
                      :heap (cons-heap x y (heap s))))))
  :hints
  (("Goal" :in-theory (enable cons-heap))))

(in-theory (disable cons-sched))

(defun insert-heap-hint (th s e x)
  (declare (xargs :measure (ref-measure x)))
  (cond
   ((nullrefp x)
    (list th s e x))
   ((not (and (heap-invariantp (heap s))
              (ok-refp x (heap s))))
    (list th s e x))
   ((< (hcar x (heap s)) e)
    (insert-heap-hint
     th
     (make-state
      (bind
       th
       (make-thread
        (push
         (make-frame 33
                     (list e x)
                     (push (hcdr x (heap s))
                           (push e
                                 (push (hcar x (heap s))
                                       nil)))
                     (method-program *insert-def*)
                     'UNLOCKED
                     "ListProc")
         (push
          (make-frame (+ 3 (pc (top-frame th s)))
                      (locals (top-frame th s))
                      (pop (pop (stack (top-frame th s))))
                      (program (top-frame th s))
                      (sync-flg (top (call-stack th s)))
                      (cur-class (top (call-stack th s))))
          (pop (call-stack th s))))
        'SCHEDULED
        (rref th s))
       (thread-table s))
      (heap s)
      (class-table s))
     e
     (hcdr x (heap s))))
   (t (list th s e x))))

; I have arranged to keep hcar and hcdr disabled.  I have
; lemmas about them.  But run introduces them in their expanded
; forms.  So I close them up.  If you enable hcar, be sure to
; disable this; likewise for hcdr!

(defthm hcar-folder
  (equal
   (CDR
    (ASSOC-EQUAL
     "car"
     (CDR (ASSOC-EQUAL
           "Cons"
           (CDR (ASSOC-EQUAL (CADR xref)
                             heap))))))
   (hcar xref heap))
  :hints (("Goal" :in-theory (enable hcar))))

(defthm hcdr-folder
  (equal
   (CDR
    (ASSOC-EQUAL
     "cdr"
     (CDR (ASSOC-EQUAL
           "Cons"
           (CDR (ASSOC-EQUAL (CADR xref)
                             heap))))))
   (hcdr xref heap))
  :hints (("Goal" :in-theory (enable hcdr))))

(defthm weak-len-cons-heap
  (implies (alistp heap)
           (<= (len heap) (len (cons-heap x y heap))))
  :rule-classes :linear
  :hints (("Goal" :in-theory (enable cons-heap))))


(defthm alistp-insert-heap
  (implies (alistp heap)
           (alistp (insert-heap e xref heap))))

(defthm ok-refp-insert-heap
  (implies (and (heap-invariantp heap)
                (ok-refp xref heap))
          (ok-refp (list 'ref (- (len (insert-heap e xref heap)) 1))
                   (insert-heap e xref heap)))
  :hints (("Goal" :in-theory (enable heap-invariantp ok-refp
                                     cons-heap))))

(defthm heap-invariantp-insert-heap
  (implies (and (heap-invariantp heap)
                (ok-refp xref heap))
           (heap-invariantp (insert-heap e xref heap))))

(defthm len-cons-heap-lifted
  (implies (heap-invariantp heap)
           (equal (len (cons-heap x y heap))
                  (+ 1 (len heap))))
  :hints (("Goal" :in-theory (enable heap-invariantp))))

; Note that heap is an additional argument to this predicate.  The
; reason is that we use heap, instead of (heap s) in the insert-sched
; function.

(defun poised-to-invoke-insert (th s e x heap)
  (and (standard-hyps th s)
       (equal heap (heap s))
       (equal (next-inst th s) '(INVOKESTATIC "ListProc" "insert" 2))
       (equal e (top (pop (stack (top-frame th s)))))
       (equal x (top (stack (top-frame th s))))
;      (intp e)
       (ok-refp x (heap s))
       ))

(defun ref-to-insert-obj (e x heap)
  (list 'REF (- (len (insert-heap e x heap)) 1)))

(defthm insert-is-correct
  (implies (poised-to-invoke-insert th s e x heap)
           (equal
            (run (insert-sched th e x heap) s)
            (modify th s
                    :pc (+ 3 (pc (top-frame th s)))
                    :stack (push (ref-to-insert-obj e x (heap s))
                                 (pop (pop (stack (top-frame th s)))))
                    :heap (insert-heap e x (heap s)))))
  :hints (("Goal" :induct (insert-heap-hint th s e x)
           :do-not '(acl2::generalize acl2::eliminate-destructors))))

(defun insert (e x)
  (cond ((endp x) (cons e x))
        ((<= e (car x)) (cons e x))
        (t (cons (car x) (insert e (cdr x))))))

(defthm ok-refp-cons-heap
  (implies (and (HEAP-INVARIANTP HEAP)
                (ok-refp xref heap))
           (ok-refp xref (cons-heap e xref1 heap)))
  :hints
  (("Goal" :in-theory (enable heap-invariantp ok-refp cons-heap))))

(defthm foo1
  (IMPLIES (AND (HEAP-INVARIANTP HEAP)
                (OK-REFP XREF HEAP))
           (equal (EQUAL (CADR XREF) (LEN HEAP))
                  nil))
  :hints (("Goal" :in-theory (enable heap-invariantp ok-refp))))


(defthm foo2
  (IMPLIES (AND (HEAP-INVARIANTP HEAP)
                (OK-REFP XREF1 HEAP)
                (OK-REFP XREF HEAP))
           (EQUAL (DEREF* xref1
                          (cons-heap E XREF HEAP))
                  (DEREF* xref1 HEAP))))

(defthm foo3
  (IMPLIES (HEAP-INVARIANTP HEAP)
           (OK-REFP (LIST 'REF (LEN HEAP))
                    (cons-heap E XREF HEAP)))
  :hints (("Goal" :in-theory (enable heap-invariantp ok-refp
                                     cons-heap))))

(defthm deref*-insert-heap
  (implies (and (heap-invariantp heap)
                (ok-refp xref heap))
           (equal (deref* (ref-to-insert-obj e xref heap)
                          (insert-heap e xref heap))
                  (insert e (deref* xref heap))))
  :rule-classes
  ((:rewrite
    :corollary
    (implies (and (heap-invariantp heap)
                  (ok-refp xref heap))
             (equal (deref* (list 'ref (- (len (insert-heap e xref heap)) 1))
                            (insert-heap e xref heap))
                    (insert e (deref* xref heap)))))))

(defun isort-heap-hint (th s x)
  (declare (xargs :measure (ref-measure x)))
  (cond
   ((nullrefp x)
    (list th s x))
   ((not (and (heap-invariantp (heap s))
              (ok-refp x (heap s))))
    (list th s x))
   (t
    (isort-heap-hint
     th
     (make-state
      (bind
       th
       (make-thread
        (push
         (make-frame 14
                     (list x)
                     (push (hcdr x (heap s))
                           (push (hcar x (heap s))
                                 nil))
                     (method-program *isort-def*)
                     'UNLOCKED
                     "ListProc")
         (push
          (make-frame (+ 3 (pc (top-frame th s)))
                      (locals (top-frame th s))
                      (pop (stack (top-frame th s)))
                      (program (top-frame th s))
                      (sync-flg (top (call-stack th s)))
                      (cur-class (top (call-stack th s))))
          (pop (call-stack th s))))
        'SCHEDULED
        (rref th s))
       (thread-table s))
      (heap s)
      (class-table s))
     (hcdr x (heap s))))))

(defthm alistp-isort-heap
  (implies (alistp heap)
           (alistp (isort-heap xref heap))))

(defthm weak-len-insert-heap
  (implies (alistp heap)
           (<= (len heap) (len (insert-heap x y heap))))
  :rule-classes :linear
  :hints (("Goal" :in-theory (enable cons-heap))))

(defthm ok-refp-nullrefp
  (ok-refp '(ref -1) heap)
  :hints (("Goal" :in-theory (enable ok-refp))))

(defthm ok-refp-heap-invariantp
  (implies (and (heap-invariantp heap)
                (force
                 (bound? "Cons"
                         (deref (list 'ref (+ -1 (len heap)))
                                heap))))
           (ok-refp (list 'ref (+ -1 (len heap))) heap))
  :hints (("Goal" :in-theory (enable heap-invariantp
                                     ok-refp))))

; The lemma above will force the bound? question for
; cons-heap and insert-heap on nonnull refs.  Let's do it.
; The bound? question is really an assoc-equal.

(defthm consp-cons-heap
  (assoc-equal "Cons"
               (cdr (assoc-equal (len heap)
                                 (cons-heap x y heap))))
  :hints (("Goal" :in-theory (enable heap-invariantp cons-heap))))

; The general form of the assoc-equal heap address in the lemma above
; is shown below, (+ -1 (len <heap-function>)).  But in the special
; case of cons-heap, that simplifies to (len heap) as used above.

(defthm consp-insert-heap
  (implies (and (heap-invariantp heap)
                (ok-refp x heap))
           (assoc-equal "Cons"
                        (cdr (assoc-equal (+ -1 (len (insert-heap e x heap)))
                                          (insert-heap e x heap))))))
(encapsulate
 nil
 (local
  (defthm strong-lemma
    (implies (and (heap-invariantp heap)
                  (not (nullrefp x))
                  (ok-refp x heap))
             (and (assoc-equal "Cons"
                               (cdr (assoc-equal
                                     (+ -1 (len (isort-heap x heap)))
                                     (isort-heap x heap))))
                  (heap-invariantp (isort-heap x heap))))))
 (defthm consp-isort-heap
   (implies (and (heap-invariantp heap)
                 (not (nullrefp x))
                 (ok-refp x heap))
            (assoc-equal "Cons"
                         (cdr (assoc-equal
                               (+ -1 (len (isort-heap x heap)))
                               (isort-heap x heap))))))
 (defthm heap-invariantp-isort-heap
   (implies (and (heap-invariantp heap)
                 (not (nullrefp x))
                 (ok-refp x heap))
            (heap-invariantp (isort-heap x heap)))))

(defun poised-to-invoke-isort (th s x heap)
  (and (standard-hyps th s)
       (equal heap (heap s))
       (equal (next-inst th s) '(INVOKESTATIC "ListProc" "isort" 1))
       (equal x (top (stack (top-frame th s))))
       (ok-refp x (heap s))))

(defthm isort-is-correct
  (implies (poised-to-invoke-isort th s x heap)
           (equal
            (run (isort-sched th x heap) s)
            (modify th s
                    :pc (+ 3 (pc (top-frame th s)))
                    :stack (push (ref-to-isort-obj x (heap s))
                                 (pop (stack (top-frame th s))))
                    :heap (isort-heap x (heap s)))))
  :hints (("Goal" :induct (isort-heap-hint th s x)
           :do-not '(acl2::generalize acl2::eliminate-destructors))))

(defun isort (x)
  (if (endp x)
      nil
    (insert (car x)
            (isort (cdr x)))))

(defthm deref*-isort-heap
  (implies (and (heap-invariantp heap)
                (ok-refp xref heap))
           (equal (deref* (ref-to-isort-obj xref heap)
                          (isort-heap xref heap))
                  (isort (deref* xref heap)))))

(defun ordered (x)
  (cond ((endp x) t)
        ((endp (cdr x)) t)
        (t (and (<= (car x) (car (cdr x)))
                (ordered (cdr x))))))

(include-book "perm")

(defun perm (x y) (acl2::perm x y))

(defthm ordered-isort
  (ordered (isort x)))

(defthm perm-isort
  (perm (isort x) x))

(in-theory (disable perm))

(in-theory (disable ref-to-isort-obj))

(defthm main-isort-theorem
 (implies (poised-to-invoke-isort th s x0 h0)
          (let* ((sched (isort-sched th x0 h0))
                 (s1 (run sched s))
                 (x1 (top (stack (top-frame th s1))))
                 (h1 (heap s1)))
            (let ((list0 (deref* x0 h0))
                  (list1 (deref* x1 h1)))
              (and (ordered list1)
                   (perm list1 list0)))))
  :rule-classes nil)