File: universal.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (338 lines) | stat: -rw-r--r-- 9,998 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#|
The Universal Example

J Strother Moore, Jeff Golden, Hanbing Liu, and Sandip Ray

In this file, we establish that for any int-valued function f, and
any x, there exists an M5 schedule which induces computation of (f x) by a
"universal" M5 state.  The upshot is that if one is willing to accept
a bytecode specification employing non-constructive existential
quantification of the schedule component, then we have one very simple
program which computes an entire set of interesting functions.  Too
bad such a specification is not meaningful!

Here is the code array of the "universal" method:

(defconst *universal-program*
  '((iconst_0)
    (iconst_1)
    (iadd)
    (goto -2)))

Here is our specification of the "interesting set of functions":

(encapsulate (((f *) => *))

             (local
              (defun f (x)
                (declare (ignore x))
                0))

             (defthm f-is-jvm-int-valued
               (and (integerp (f x))
                    (>= (f x) (* -1 (expt 2 31)))
                    (<= (f x) (1- (expt 2 31))))))

It constrains f to be a function of one argument that returns a Java
int.

In the context of the encapsulation above, and definitions given below, we
proved:

(defthm universal-computes-f
  (equal (top
          (stack
           (top-frame 0
                      (run (universal-schedule x)
                           *universal-state*))))
         (f x)))

If you want to know the value of a particular such f at an n, you may
thus run the "universal program" according to the schedule generated
by the schedule-generator and then look at the top of thread zero's
active operand stack.

To recertify:

(include-book "utilities")

(certify-book "universal" 1)

Sun Jun 30 23:21:06 2002

|#

(in-package "M5")

(defconst *universal-state*
  '(((0 ((0 NIL NIL
            ((INVOKESTATIC "Universal" "universal" 0)
             (POP)
             (RETURN))
            JVM::UNLOCKED "Universal"))
        SCHEDULED NIL))
    ((0 ("java.lang.Class" ("<name>" . "java.lang.Object"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0)))
     (1 ("java.lang.Class" ("<name>" . "ARRAY"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0)))
     (2 ("java.lang.Class" ("<name>" . "java.lang.Thread"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0)))
     (3 ("java.lang.Class" ("<name>" . "java.lang.String"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0)))
     (4 ("java.lang.Class" ("<name>" . "java.lang.Class"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0)))
     (5 ("java.lang.Class" ("<name>" . "Universal"))
        ("java.lang.Object" ("monitor" . 0)
         ("mcount" . 0)
         ("wait-set" . 0))))
    (("java.lang.Object" NIL ("monitor" "mcount" "wait-set")
      NIL NIL (("<init>" NIL NIL (RETURN)))
      (REF 0))
     ("ARRAY" ("java.lang.Object")
      (("<array>" . *ARRAY*))
      NIL NIL NIL (REF 1))
     ("java.lang.Thread"
      ("java.lang.Object")
      NIL NIL NIL
      (("run" NIL NIL (RETURN))
       ("start" NIL NIL NIL)
       ("stop" NIL NIL NIL)
       ("<init>" NIL NIL (ALOAD_0)
        (INVOKESPECIAL "java.lang.Object" "<init>" 0)
        (RETURN)))
      (REF 2))
     ("java.lang.String"
      ("java.lang.Object")
      ("strcontents")
      NIL NIL
      (("<init>" NIL NIL (ALOAD_0)
        (INVOKESPECIAL "java.lang.Object" "<init>" 0)
        (RETURN)))
      (REF 3))
     ("java.lang.Class" ("java.lang.Object")
      NIL NIL NIL
      (("<init>" NIL NIL (ALOAD_0)
        (INVOKESPECIAL "java.lang.Object" "<init>" 0)
        (RETURN)))
      (REF 4))
     ("Universal" ("java.lang.Object")
      NIL NIL NIL
      (("<init>" NIL NIL (ALOAD_0)
        (INVOKESPECIAL "java.lang.Object" "<init>" 0)
        (RETURN))
       ("universal" NIL NIL
        (ICONST_0)
        (ICONST_1)
        (IADD)
        (GOTO -2))
       ("main" (|JAVA.LANG.STRING[]|)
        NIL
        (INVOKESTATIC "Universal" "universal" 0)
        (POP)
        (RETURN)))
      (REF 5)))))

; Here is the code array of the method "universal":

(defconst *universal-program*
  '((ICONST_0)    ;;; 0
    (ICONST_1)    ;;; 1
    (IADD)        ;;; 2
    (GOTO -2)))   ;;; 3

; Here is our specification of the "interesting set of functions":

(encapsulate (((f *) => *))

             (local
              (defun f (x)
                (declare (ignore x))
                0))

             (defthm f-is-jvm-int-valued
               (and (integerp (f x))
                    (>= (f x) (* -1 (expt 2 31)))
                    (<= (f x) (1- (expt 2 31))))
               :rule-classes nil))

; We provided the constraint above in terms of (expt 2 31) to make it
; understandable to outsiders.  But here is the more useful version of
; the constraint.

(defthm intp-f
  (intp (f x))
  :hints (("Goal" :in-theory (enable intp)
           :use f-is-jvm-int-valued)))

; Here is the notion of being poised at the top of the loop in the
; universal program.

(defun poised-at-universal-loop (th s i)
  (and (equal (status th s) 'SCHEDULED)
       (equal (pc (top-frame th s)) 1)
       (equal (program (top-frame th s)) *universal-program*)
       (intp (top (stack (top-frame th s))))
       (integerp i)
       (<= 0 i)))

; Here is a schedule that will drive us from the top of the loop
; sufficiently to increment the top of the stack by i.

(defun universal-loop-sched (th i)
  (if (zp i)
      nil
    (append (repeat th 3)
            (universal-loop-sched th (- i 1)))))

(defun universal-loop-hint (th s i)
  (if (zp i)
      (list th s i)
    (universal-loop-hint
     th
     (modify th s
      :stack
      (push
       (int-fix (+ 1 (top (stack (top-frame th s)))))
       (pop (stack (top-frame th s)))))
     (- i 1))))

; These ought to be in utilities.lisp

(defthm universal-loop-behavior
  (implies (poised-at-universal-loop th s i)
           (equal (run (universal-loop-sched th i) s)
                  (if (zp i)
                      s
                    (modify
                     th s
                     :stack
                     (push (int-fix (+ i (top (stack (top-frame th s)))))
                           (pop (stack (top-frame th s))))))))
  :hints (("Goal"
           :induct (universal-loop-hint th s i)
           :in-theory (enable zp))))

(defun poised-to-invoke-universal (th s i)
  (and (equal (status th s) 'SCHEDULED)
       (equal (next-inst th s) '(INVOKESTATIC "Universal" "universal" 0))
       (equal (lookup-method "universal" "Universal" (class-table s))
              '("universal" NIL NIL
                (ICONST_0)
                (ICONST_1)
                (IADD)
                (GOTO -2)))
       (integerp i)
       (<= 0 i)))

(defun universal-sched (th i)
  (append (repeat th 2)
          (universal-loop-sched th i)))

(defthm universal-is-correct
  (implies (poised-to-invoke-universal th s i)
           (equal (top
                   (stack
                    (top-frame th
                               (run (universal-sched th i) s))))
                  (int-fix i))))

(in-theory (disable universal-sched))

; So now I want to prove that if k is an int, then k = (int-fix i),
; for some natural number i.  First I define the corresponding
; natural number:

(defun int-fix-nat (k)
  (cond ((< k 0)
         (+ (expt 2 32) k))
        (t k)))

; Here I prove it is a natural.

(defthm natp-int-fix-nat
  (implies (intp k)
           (and (integerp (int-fix-nat k))
                (<= 0 (int-fix-nat k))))
  :hints (("Goal" :in-theory (enable intp))))

; Here I prove it does the job.

(defthm every-int-is-int-fix-nat
  (implies (intp k)
           (equal (int-fix (int-fix-nat k)) k))
  :hints (("Goal" :in-theory (enable int-fix intp))))

(in-theory (disable int-fix-nat))

; Consequently, we can now prove that with a suitable schedule,
; universal computes our arbitrary int-valued function f.

(defun universal-schedule (x)
  (universal-sched 0 (int-fix-nat (f x))))

(defthm universal-computes-f
  (equal (top
          (stack
           (top-frame 0
                      (run (universal-schedule x)
                           *universal-state*))))
         (f x))
  :rule-classes nil
  :hints (("Goal" :in-theory (disable top-frame))))

; Now I demonstrate that we can use it.  Here is a concrete example of
; how universal can compute the int-fix of factorial.  That value is
; what we proved of our true Java fact program.

(defun factorial (n)
  (if (zp n)
      1
    (* n (factorial (- n 1)))))

(defthm integerp-factorial
  (integerp (factorial n))
  :rule-classes :type-prescription)

(defun universal-factorial-schedule (n)
  (universal-sched 0 (int-fix-nat (int-fix (factorial n)))))

; Here I prove that (int-fix (factorial n)) satisfies the constraints
; on (f n).

(defthm relieve-the-contraints
  (and (integerp (int-fix (factorial n)))
       (>= (int-fix (factorial n)) (* -1 (expt 2 31)))
       (<= (int-fix (factorial n)) (1- (expt 2 31))))
  :rule-classes
  ((:linear :corollary
            (>= (int-fix (factorial n)) (* -1 (expt 2 31))))
   (:linear :corollary
            (<= (int-fix (factorial n)) (1- (expt 2 31)))))
  :hints (("Goal" :in-theory (enable int-fix))))

; And so now I can functionally instantiate our universal correctness
; theorem.

(defthm universal-computes-factorial
  (equal (top
          (stack
           (top-frame 0
                      (run (universal-factorial-schedule n)
                           *universal-state*))))
         (int-fix (factorial n)))
  :hints (("Goal"
           :use (:instance (:functional-instance
                            universal-computes-f
                            (f (lambda (n) (int-fix (factorial n))))
                            (universal-schedule universal-factorial-schedule))
                           (x n)))))