1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
;; ----- Basic Set Theory Stuff ----
#|
(certify-book "no-dup-set-facts" 0)
|#
;; Sun Dec 21 22:06:19 2003
;;
;; This books contains set of lemmas about set-differences.
;;
(in-package "ACL2")
(defconst *no-dup-set-facts-basic-functions*
'(mem notMem subset del app set-diff set-equal nodup-set))
;; This set of functions are defined in ACL2 package.
;; some function are used in typechecker.lisp
;----------------------------------------------------------
;----------------------------------------------------
(acl2::set-verify-guards-eagerness 2)
(defun mem (c cl)
(if (not (consp cl))
nil
(or (equal (car cl) c)
(mem c (cdr cl)))))
(defun notMem (c cl)
(not (mem c cl)))
(defun subset (s1 s2)
(if (not (consp s1))
t
(and (mem (car s1) s2)
(subset (cdr s1) s2))))
(defun del (a y)
(if (not (consp y))
nil
(if (equal (car y) a)
(cdr y)
(cons (car y) (del a (cdr y))))))
(defun app (a b)
(if (not (consp a))
b
(cons (car a) (app (cdr a) b))))
;------------------------------------------------------
(acl2::set-verify-guards-eagerness 1)
(defun set-diff (total seen) ;; *14*
(declare (xargs :guard (and (true-listp total)
(true-listp seen))))
(if (endp total)
nil
(if (mem (car total) seen)
(set-diff (cdr total) seen)
(cons (car total) (set-diff (cdr total) (cons (car total) seen))))))
;; *14* Note:
;; Set-Diff returns a non-duplicated list that represent
;; the set
;; some work Set Theory stuff
;; mainly about set-diff, nodup-set, the size of the nodup-set
;;
;; this is used for proving termination of class superclass resolution
;; Originally. I did somework with permuation.
;; Later found out Set-equal + Non-Dup suffice.
(defun set-equal (a b)
(declare (xargs :guard (and (true-listp a)
(true-listp b))))
(and (subset a b)
(subset b a)))
;(set-match-free-error nil)
(defthm subset-cons
(implies (subset a b)
(subset a (cons x b))))
(defthm subset-reflexive
(subset x x))
(defthm mem-subset
(implies (and (mem x a)
(subset a b))
(mem x b)))
(defthm subset-transitive
(implies (and (subset a b)
(subset b c))
(subset a c)))
(defthm set-equal-transitive
(implies (and (set-equal a b)
(set-equal b c))
(set-equal a c)))
(defequiv set-equal)
(defcong set-equal equal (mem x s) 2
:hints (("Subgoal *1/4" :cases ((mem x (cdr s))))
("Subgoal *1/4.2"
:use (:instance mem-subset (a acl2::s-equiv) (b s))
:in-theory (disable mem-subset))))
(defthm set-equal-cons
(implies (set-equal a b)
(set-equal (cons x a) (cons x b))))
(defthm set-equal-mem-cons-2
(implies (mem x l)
(set-equal (cons x l) l)))
(in-theory (disable set-equal))
(defun set-diff-cong-induct (s s-equiv total)
(if (endp total)
(cons s s-equiv)
(if (mem (car total) s)
(set-diff-cong-induct s s-equiv (cdr total))
(set-diff-cong-induct (cons (car total) s) (cons (car total) s-equiv) (cdr total)))))
(defthm set-equal-cons-f
(implies (not (set-equal (cons x a) (cons x b)))
(not (set-equal a b)))
:hints (("Goal" :in-theory (enable set-equal)))
:rule-classes :forward-chaining)
(defcong set-equal equal (set-diff total acl2::seen) 2
:hints (("Goal" :in-theory (disable set-equal-cons)
:induct (set-diff-cong-induct acl2::seen acl2::seen-equiv total))))
(defun subset-set-diff-induct (total a b)
(if (endp total)
(cons a b)
(subset-set-diff-induct (cdr total) (cons (car total) a) (cons (car total) b))))
(defthm subset-set-diff
(implies (subset a b)
(subset (set-diff total b) (set-diff total a)))
:hints (("Goal" :induct (subset-set-diff-induct total a b))))
;;--------------------------------------------------------------------
; ---- nodup-set -----
(defun nodup-set (s)
(declare (xargs :guard (true-listp s)))
(if (endp s)
t
(and (not (mem (car s) (cdr s)))
(nodup-set (cdr s)))))
(defthm mem-set-diff
(implies (mem a seen)
(not (mem a (set-diff total seen)))))
(defthm set-diff-is-a-nodup-set
(nodup-set (set-diff total seen))
:rule-classes :type-prescription)
(defun subset-nodup-set-size-induct (s1 s2)
(if (endp s1)
s2
(subset-nodup-set-size-induct (cdr s1) (del (car s1) s2))))
(defthm del-set-len
(implies (mem x s)
(equal (len s) (+ 1 (len (del x s))))))
(defthm mem-del
(implies (not (equal a b))
(equal (mem a (del b x))
(mem a x))))
(defthm del-nodups
(implies (nodup-set s)
(nodup-set (del x s))))
(defthm del-nodup-set-subset
(implies (and (subset (cons x s1) s2)
(nodup-set (cons x s1)))
(subset s1 (del x s2))))
; --- to talk about termination, we talk about the number of unseen
; --- classes decrease.
(defthm subset-nodup-set-size
(implies (and (subset s1 s2)
(nodup-set s1)
(nodup-set s2))
(<= (len s1) (len s2)))
:hints (("Goal" :induct (subset-nodup-set-size-induct s1 s2)))
:rule-classes :linear)
(defun len-set-equal-nodup-set-x-induct (s1 s2)
(if (endp s1)
s2
(len-set-equal-nodup-set-x-induct (cdr s1) (del (car s1) s2))))
(defthm len-set-equal-nodup-set-x
(implies (and (mem a s2)
(not (mem a s1))
(subset s1 s2)
(nodup-set s1)
(nodup-set s2))
(< (len s1) (len s2)))
:hints (("Goal" :induct (len-set-equal-nodup-set-x-induct s1 s2))))
(defthm mem-set-diff-x
(implies (and (mem a total)
(not (mem a seen)))
(mem a (set-diff total seen))))
(defthm len-set-diff-mem
(implies (and (not (mem a seen))
(mem a total))
(< (len (set-diff total (cons a seen)))
(len (set-diff total seen))))
:hints (("Goal" :do-not-induct t
:use ((:instance len-set-equal-nodup-set-x
(s1 (set-diff total (cons a seen)))
(s2 (set-diff total seen))))))
:rule-classes :linear)
;; ----------- Above enough rules about set-diff -----------
|