1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
(in-package "ACL2")
(local (include-book "arithmetic-5/top" :dir :system))
(include-book "integrable-functions")
(include-book "continuous-function")
(include-book "equivalence-integrals")
(include-book "nonstd/nsa/equivalence-continuity" :dir :system)
(defun map-rcfn-hyper (p)
(if (consp p)
(cons (rcfn-hyper (car p))
(map-rcfn-hyper (cdr p)))
nil))
(defthm real-listp-map-rcfn-hyper
(implies (partitionp p)
(real-listp (map-rcfn-hyper p))))
(defun riemann-rcfn-hyper (p)
(dotprod (deltas p)
(map-rcfn-hyper (cdr p))))
(defthm real-riemann-rcfn-hyper
(implies (partitionp p)
(realp (riemann-rcfn-hyper p))))
(defthm limited-riemann-rcfn-hyper-small-partition
(implies (and (realp a) (standardp a)
(realp b) (standardp b)
(inside-interval-p a (rcfn-hyper-domain))
(inside-interval-p b (rcfn-hyper-domain))
(< a b))
(i-limited (riemann-rcfn-hyper (make-small-partition a b))))
:hints (("Goal"
:by (:functional-instance limited-riemann-rcfn-small-partition
(rcfn rcfn-hyper)
(rcfn-domain rcfn-hyper-domain)
(map-rcfn map-rcfn-hyper)
(riemann-rcfn riemann-rcfn-hyper)))
("Subgoal 3"
:use ((:instance rcfn-hyper-is-continuous-using-nonstandard-criterion
(x0 x)
(x y))))
("Subgoal 2"
:use ((:instance rcfn-hyper-domain-non-trivial)))
))
(encapsulate
nil
(local (in-theory (disable riemann-rcfn-hyper)))
(defun-std strict-int-rcfn-hyper (a b)
(if (and (realp a)
(realp b)
(inside-interval-p a (rcfn-hyper-domain))
(inside-interval-p b (rcfn-hyper-domain))
(< a b))
(standard-part (riemann-rcfn-hyper (make-small-partition a b)))
0))
)
(defthm-std realp-strict-int-rcfn-hyper
(implies (and (realp a)
(realp b))
(realp (strict-int-rcfn-hyper a b)))
:hints (("Goal"
:use ((:instance real-riemann-rcfn-hyper
(p (make-small-partition a b))))
:in-theory (disable riemann-rcfn-hyper
real-riemann-rcfn-hyper))))
(defun int-rcfn-hyper (a b)
(if (<= a b)
(strict-int-rcfn-hyper a b)
(- (strict-int-rcfn-hyper b a))))
(defthm realp-int-rcfn-nyper
(implies (and (realp a)
(realp b))
(realp (int-rcfn-hyper a b))))
(defthm strict-int-rcfn-hyper-is-integral-of-rcfn-hyper
(implies (and (standardp a)
(standardp b)
(<= a b)
(inside-interval-p a (rcfn-hyper-domain))
(inside-interval-p b (rcfn-hyper-domain))
(partitionp p)
(equal (car p) a)
(equal (car (last p)) b)
(i-small (mesh p)))
(i-close (riemann-rcfn-hyper p)
(strict-int-rcfn-hyper a b)))
:hints (("Goal"
:do-not-induct t
:by (:functional-instance strict-int-rcfn-is-integral-of-rcfn
(rcfn rcfn-hyper)
(rcfn-domain rcfn-hyper-domain)
(map-rcfn map-rcfn-hyper)
(riemann-rcfn riemann-rcfn-hyper)
(strict-int-rcfn strict-int-rcfn-hyper)))
))
(defun-sk forall-partitions-riemann-sum-is-close-to-int-rcfn-hyper (a b eps delta)
(forall (p)
(implies (and (<= a b)
(partitionp p)
(equal (car p) a)
(equal (car (last p)) b)
(< (mesh p) delta))
(< (abs (- (riemann-rcfn-hyper p)
(strict-int-rcfn-hyper a b)))
eps)))
:rewrite :direct)
(defun-sk exists-delta-so-that-riemann-sum-is-close-to-int-rcfn-hyper (a b eps)
(exists (delta)
(implies (and (inside-interval-p a (rcfn-hyper-domain))
(inside-interval-p b (rcfn-hyper-domain))
(<= a b)
(realp eps)
(< 0 eps))
(and (realp delta)
(< 0 delta)
(forall-partitions-riemann-sum-is-close-to-int-rcfn-hyper a b eps delta)))))
(defthm rcfn-hyper-is-integrable-hyperreal
(implies (and (inside-interval-p a (rcfn-hyper-domain))
(inside-interval-p b (rcfn-hyper-domain))
(<= a b)
(realp eps)
(< 0 eps))
(exists-delta-so-that-riemann-sum-is-close-to-int-rcfn-hyper a b eps))
:hints (("Goal"
:by (:functional-instance rifn-is-integrable-hyperreal
(rifn rcfn-hyper)
(domain-rifn rcfn-hyper-domain)
(map-rifn map-rcfn-hyper)
(riemann-rifn riemann-rcfn-hyper)
(strict-int-rifn strict-int-rcfn-hyper)
(exists-delta-so-that-riemann-sum-is-close-to-int-rifn
exists-delta-so-that-riemann-sum-is-close-to-int-rcfn-hyper)
(exists-delta-so-that-riemann-sum-is-close-to-int-rifn-witness
exists-delta-so-that-riemann-sum-is-close-to-int-rcfn-hyper-witness)
(forall-partitions-riemann-sum-is-close-to-int-rifn
forall-partitions-riemann-sum-is-close-to-int-rcfn-hyper)
(forall-partitions-riemann-sum-is-close-to-int-rifn-witness
forall-partitions-riemann-sum-is-close-to-int-rcfn-hyper-witness)
))
("Subgoal 8"
:use ((:instance EXISTS-DELTA-SO-THAT-RIEMANN-SUM-IS-CLOSE-TO-INT-RCFN-HYPER-suff)))
("Subgoal 6"
:use ((:instance FORALL-PARTITIONS-RIEMANN-SUM-IS-CLOSE-TO-INT-RCFN-HYPER-necc)))
("Subgoal 4"
:use ((:instance strict-int-rcfn-hyper-is-integral-of-rcfn-hyper)))
("Subgoal 3"
:use ((:instance rcfn-hyper-domain-non-trivial)))
))
|