1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
; Copyright (C) 2020, Regents of the University of Texas
; Written by Matt Kaufmann and J Moore
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Many thanks to ForrestHunt, Inc. for supporting the preponderance of this
; work, and for permission to include it here.
; This book provides a preliminary attempt at the definductor utility, which
; attempts to create an inductive hint function to associate with a
; loop$-recursive function. At the moment we can only handle functions whose
; recursive loop$s all target a measured variable or cdr-nests of measured
; variables. We can handle AS loop$s over such variables. But we cannot
; handle functions containing recursive loop$s like
; (loop$ for e in (target x) collect ...)
; even when x is a measured variable. Nor can we handle ON loop$s or
; FROM/TO/BY loop$s because their targets are (TAILS ...) and (FROM-TO-BY ...)
; expressions. But it is a start!
(in-package "ACL2")
(program)
(defun car/cdr-nestp (cdr-only-flg term mvars)
; If term is a car/cdr nest around an element of mvars (which is a list of
; variable symbols), return the variable; else, nil. If cdr-only-flg is t we
; insist that term be a cdr-nest (no cars allowed).
(cond
((variablep term)
(if (member-eq term mvars)
term
nil))
((fquotep term) nil)
((or (and (not cdr-only-flg) (eq (ffn-symb term) 'car))
(eq (ffn-symb term) 'cdr))
(car/cdr-nestp cdr-only-flg (fargn term 1) mvars))
(t nil)))
(defun glue-terms (terms term)
(cond
((endp terms) term)
((or (member-equal (car terms) (cdr terms))
(equal (car terms) term))
(glue-terms (cdr terms) term))
(t `(return-last 'progn
,(mark-loop$-recursion-nugget (car terms))
,(glue-terms (cdr terms) term)))))
(defun nugget-fn-call-actuals1 (op targets)
; Op is either CAR, CDR, or NIL. Targets is a list of k resolved loop$
; targets, each being a car/cdr-nest around a variable. Let the ith element of
; targets be ti and let its variable be vi. We form the substitution ((v1
; . (op t1)) ... (vk . (op tk))), except when op is NIL (op ti) is just ti.
; Note that we have no guarantee that this is actually a substitution: some vi
; may be bound twice. But when treated as a substitution, only the first
; binding matters.
(cond
((endp targets) nil)
(t (cons (cons (car (all-vars (car targets)))
(if op
(list op (car targets))
(car targets)))
(nugget-fn-call-actuals1 op (cdr targets))))))
(defun nugget-fn-call-actuals (formals op targets)
; Suppose formals is '(A B X Y Z), op is CAR, and targets is ((CDR X) (CDR (CAR
; Z))). Then this function would return (A B (CAR (CDR X)) Y (CAR (CDR (CAR
; Z)))).
(sublis-var-lst (nugget-fn-call-actuals1 op targets)
formals))
(mutual-recursion
(defun car-cdr-cons-rewriter (term)
; Term is a term and we simplify it by applying (car (cons x y)) = x and (cdr
; (cons x y)) = y. We also apply (car atom) = (cdr atom) = nil. We apply no
; other rules. We do not anticipate term containing lambda applications
; (because they will have been expanded). So if term does contain lambda
; applications they're treated just like conventional function calls.
(cond
((variablep term) term)
((fquotep term) term)
((eq (ffn-symb term) 'car)
(let ((arg (car-cdr-cons-rewriter (fargn term 1))))
(cond
((variablep arg) term)
((fquotep arg)
(let ((evg (unquote arg)))
(cond ((atom evg) *nil*)
(t (kwote (car evg))))))
((eq (ffn-symb arg) 'cons)
(fargn arg 1))
(t term))))
((eq (ffn-symb term) 'cdr)
(let ((arg (car-cdr-cons-rewriter (fargn term 1))))
(cond
((variablep arg) term)
((fquotep arg)
(let ((evg (unquote arg)))
(cond ((atom evg) *nil*)
(t (kwote (cdr evg))))))
((eq (ffn-symb arg) 'cons)
(fargn arg 2))
(t term))))
(t (fcons-term (ffn-symb term)
(car-cdr-cons-rewriter-list (fargs term))))))
(defun car-cdr-cons-rewriter-list (terms)
(cond
((endp terms) nil)
(t (cons (car-cdr-cons-rewriter (car terms))
(car-cdr-cons-rewriter-list (cdr terms)))))))
(defun car/cdr-nestsp (cdr-only-flg terms mvars)
(cond
((endp terms) t)
(t (and (car/cdr-nestp cdr-only-flg (car terms) mvars)
(car/cdr-nestsp cdr-only-flg (cdr terms) mvars)))))
(defun leftmost-innermost (term)
(cond
((variablep term) term)
((or (fquotep term)
(null (fargs term)))
term)
(t (leftmost-innermost (fargn term 1)))))
(defun leftmost-innermost-lst (terms)
(cond
((endp terms) nil)
(t (cons (leftmost-innermost (car terms))
(leftmost-innermost-lst (cdr terms))))))
(defun variablesp (lst)
(cond ((endp lst) t)
(t (and (variablep (car lst))
(variablesp (cdr lst))))))
(defun true-cons-nestp (term)
(cond
((variablep term) nil)
((fquotep term) (equal term *nil*))
(t (and (eq (ffn-symb term) 'CONS)
(true-cons-nestp (fargn term 2))))))
(defun strip-true-cons-nest (term)
(cond
((variablep term) nil) ; can't happen
((fquotep term) nil)
(t (cons (fargn term 1)
(strip-true-cons-nest (fargn term 2))))))
(defun conjoined-consps (terms)
(cond ((endp terms) *t*)
(t `(IF (CONSP ,(car terms))
,(conjoined-consps (cdr terms))
'NIL))))
(defun consed-cars (terms)
(cond ((endp terms) *nil*)
(t `(CONS (CAR ,(car terms))
,(consed-cars (cdr terms))))))
(defun variablep-lst (lst)
(cond ((endp lst) t)
(t (and (variablep (car lst))
(variablep-lst (cdr lst))))))
; Invariant about mvars and alist: In this code, mvars starts out as the list
; of measured formals when we start to analyze the body of a function, and
; alist is nil. As we dive into loop$s we extend mvars with the iterative
; variable(s) of the loop$, provided the target is a cdr-nest around an element
; of mvars. We also extend alist by pairing the iterative variable with the
; CAR of the target, except we first ``resolve'' the target by applying the
; alist to it. Thus, the alist always maps iterative variables in mvars to the
; car/cdr-nests denoting the first value the iterative variable takes on,
; expressed entirely in terms of the original formals. Thus, if at the
; top-level of a fn's body, where the (original) mvars is just the list (x),
; then we get to alpha in (loop$ for e in (cdr x) collect alpha), mvars is (e
; x) and alist is ((e . (car (cdr x)))). If alpha is (loop$ for d in (cdr (cdr
; e)) collect beta), then when we see beta mvars is (d e x) and alist is ((d
; . (car (cdr (cdr (car (cdr x)))))) (e . (car (cdr x)))).
(defun nugget (fn formals mvars alist term)
; We return (mv erp nugget), where erp is either a msg or nil. Nugget is
; relevant only when erp is nil and is nil or the nugget for term. When nugget
; is non-nil it means term is a recursive loop$ scion call satisfying various
; conditions on its target. When erp is non-nil it is a message that completes
; the sentence ``No inductor for fn can be generated because ''.
(let ((style (loop$-scion-style (ffn-symb term))))
; Style is :plain, :fancy, :do, or nil.
(cond
((eq style :plain)
(case-match term
((& ('quote ('lambda (e) body)) target) ; which scion doesn't matter!
(cond
((not (loop$-recursion-ffnnamep fn body))
(mv nil nil))
(t (let ((resolved-target (sublis-var alist target)))
(cond
((car/cdr-nestp t target mvars)
; Target is a cdr-nest of an mvar, and alist maps mvars to car/cdr-nests of
; measured formals, so resolved-target is a car/cdr-nest around a measured
; formal and below we call that formal the resolved-var.
(let* ((resolved-var (leftmost-innermost resolved-target)))
(mv nil
`(if (consp ,resolved-var)
,(glue-terms
`(,(if (ffnnamep fn body)
(car-cdr-cons-rewriter
(expand-all-lambdas
`((lambda (,e) ,body)
(car ,resolved-var))))
`(,fn ,@(nugget-fn-call-actuals
formals
'car
(list resolved-var))))
; add the short-cut instance if req'd
,@(if (variablep resolved-target)
nil
`((,fn ,@(nugget-fn-call-actuals
formals
nil
(list resolved-target))))))
`(,fn ,@(nugget-fn-call-actuals
formals
'cdr
(list resolved-var))))
'nil))))
(t (mv (msg "it contains a loop$ over the non-inductible target ~
~x0."
target)
nil)))))))
(& (mv nil nil))))
((eq style :fancy)
(case-match term
((scion ('QUOTE ('LAMBDA (gvars ivars) body)) gactuals target)
(cond
((not (loop$-recursion-ffnnamep fn body))
(mv nil nil))
((not (and (nvariablep target)
(not (fquotep target))
(eq (ffn-symb target) 'LOOP$-AS)
(true-cons-nestp (fargn target 1))))
(mv (msg "it uses the fancy loop$ scion ~x0 to map over a target, ~
~x1, that we cannot destructure. We expect the target ~
to be (LOOP$-AS (LIST t1 ... tn))."
scion
target)
nil))
(t
(let* ((targets (strip-true-cons-nest (fargn target 1)))
(resolved-targets (sublis-var-lst alist targets)))
(cond
((car/cdr-nestsp t targets mvars)
; Targets is list of cdr-nests, each on an mvar, and alist maps mvars to
; car/cdr-nests of measured formals, so resolved-targets is a list of
; car/cdr-nest around a measured formal and below we call those formals the
; resolved-vars. They must all be distinct.
(let* ((resolved-vars (leftmost-innermost-lst resolved-targets)))
(cond
((not (no-duplicatesp resolved-vars))
(mv (msg "it calls the fancy loop$ scion ~x0 on a list of ~
targets that share measured formals ~x1."
scion
target)
nil))
(t
(mv nil
`(if ,(conjoined-consps resolved-vars)
,(glue-terms
`(,(if (ffnnamep fn body)
(car-cdr-cons-rewriter
(expand-all-lambdas
`((lambda (,gvars ,ivars) ,body)
,gactuals
,(consed-cars resolved-vars))))
`(,fn ,@(nugget-fn-call-actuals
formals
'car
resolved-vars)))
; add the short-cut instance if req'd
,@(if (variablep-lst resolved-targets)
nil
`((,fn ,@(nugget-fn-call-actuals
formals
nil
resolved-targets)))))
`(,fn ,@(nugget-fn-call-actuals
formals
'cdr
resolved-vars)))
'nil))))))
(t (mv (msg "it contains a loop$ over the non-inductible target ~
~x0."
target)
nil)))))))
(& (mv nil nil))))
(t (mv nil nil)))))
(mutual-recursion
(defun generate-loop$-scion-nuggets (fn formals mvars alist term)
; We explore the fn-recursive loop$ scion calls in term and generate nugget for
; each one that we can. We return (mv erp nuggets), where erp is a msg or nil and
; nuggets (relevant only if erp is nil) is the list of nuggets, which may be nil even
; if there are loop$ recursive calls because we can't see a way to generate a
; nugget. Mvars is initially a list of the formals of fn that are somehow
; measured but is extended as we dive into certain loop$ scion calls that
; target car/cdr-nests of mvars. We have no guarantee that the measure of fn
; decreases under a car/cdr nest! But at least we can hope! Admitting the
; inductor function will prove that the measure decreases. Alist is an alist
; pairing iteration variables with their actual targets, where targets are
; expressed entirely in terms of formals of fn. So, for example, if v is an
; mvar and alist is initially nil and term is
; (sum$ '(lambda (e) (sum$ '(lambda (d) (fn d)) (cddr e))) (car v))
; then when we see (fn d), d is bound in alist to (cddr (car v)), which means d
; is taking on values over that target.
(cond
((variablep term)
(mv nil nil))
((fquotep term)
(mv nil nil))
((lambda-applicationp term)
(generate-loop$-scion-nuggets
fn formals mvars
alist
(sublis-var (pairlis$ (lambda-formals (ffn-symb term))
(fargs term))
(lambda-body (ffn-symb term)))))
(t (mv-let (erp nugget)
(nugget fn formals mvars alist term)
(cond
(erp (mv erp nil))
(nugget
; Term is a recursive loop$ scion call (because we only generate nuggets for
; such terms). We have generated a nugget for term, which means its target was
; a (possibly empty) car/cdr nest around an mvar. But that might included
; targets like (cdr (cdr evar)) where evar is not among mvars but is the
; iteration variable of a superior loop$ and is being iterated over a cdr-nest
; of an mvar. E.g., evar may be mapped to (cdr (cdr x)) in alist, where x is
; an mvar. We need to try to generate nuggets from term's body and for term's
; fargs. (Right now, term is guaranteed to be a :plain scion call so there are
; no non-quoted fargs other than the target itself.) During these recursions
; we consider evar (the variable in target) to be an mvar.
; But we need to re-consider when term can be :fancy.
(let* ((obj (unquote (fargn term 1)))
(target (fargn term 2))
(ivar (car (lambda-object-formals obj)))
; Whenever we add a var to mvars we must also bind that var in alist to the CAR
; of the target/alist. Thus, alist always maps mvars (except the original
; formals) to car/cdr-nests around original formals, and every element of mvars
; is measured or a car/cdr component of a measured var.
(mvars1 (add-to-set-eq ivar mvars))
(alist1 (cons (cons ivar `(car ,(sublis-var alist target)))
alist))
(body (lambda-object-body obj)))
(mv-let (erp nuggets-from-body)
(generate-loop$-scion-nuggets fn formals mvars1 alist1 body)
(cond
(erp (mv erp nil))
(t (mv-let (erp nuggets-from-target)
(generate-loop$-scion-nuggets
fn formals mvars alist target)
(cond
(erp (mv erp nil))
(t
(mv nil
(add-to-set-equal
nugget
(union-equal nuggets-from-body
nuggets-from-target)))))))))))
(t (generate-loop$-scion-nuggets-list fn formals mvars alist
(fargs term))))))))
(defun generate-loop$-scion-nuggets-list (fn formals mvars alist terms)
(cond
((endp terms) (mv nil nil))
(t (mv-let (erp nuggets1)
(generate-loop$-scion-nuggets
fn formals mvars alist (car terms))
(cond
(erp (mv erp nil))
(t (mv-let (erp nuggets2)
(generate-loop$-scion-nuggets-list
fn formals mvars alist (cdr terms))
(cond
(erp (mv erp nil))
(t (mv nil
(union-equal nuggets1 nuggets2)))))))))))
)
(defun get-loop$-scion-default-quoted-lambda-object (scion alist)
; Alist is a cdr of *for-loop$-keyword-info*.
(cond
((endp alist) *nil*)
((eq scion (cadr (car alist)))
; A :plain loop$ scion call.
(case (car (car alist))
(sum ''(LAMBDA (E) (DECLARE (IGNORE E)) '0))
(always ''(LAMBDA (E) (DECLARE (IGNORE E)) 'T))
(thereis ''(LAMBDA (E) (DECLARE (IGNORE E)) 'NIL))
(collect ''(LAMBDA (E) (DECLARE (IGNORE E)) 'NIL))
(append ''(LAMBDA (E) (DECLARE (IGNORE E)) 'NIL))
; If it is not one of the above then it is an until$ or when$ and we just pick
; *nil* as the default.
(otherwise ''(LAMBDA (E) (DECLARE (IGNORE E)) 'NIL))))
((eq scion (caddr (car alist)))
; A :fancy loop$ scion call.
(case (car (car alist))
(sum ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'0))
(always ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'T))
(thereis ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'NIL))
(collect ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'NIL))
(append ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'NIL))
(otherwise ''(LAMBDA (LOOP$-GVARS LOOP$-IVARS)
(DECLARE (IGNORE LOOP$-GVARS LOOP$-IVARS))
'NIL))))
(t (get-loop$-scion-default-quoted-lambda-object scion (cdr alist)))))
(mutual-recursion
(defun rename-fn-and-replace-for-loop$-lambda-objs (new-fn old-fn term)
(cond
((variablep term) term)
((fquotep term) term)
((lambda-applicationp term)
(cons-term (make-lambda (lambda-formals (ffn-symb term))
(rename-fn-and-replace-for-loop$-lambda-objs
new-fn
old-fn
(lambda-body (ffn-symb term))))
(rename-fn-and-replace-for-loop$-lambda-objs-list
new-fn old-fn
(fargs term))))
((eq (ffn-symb term) old-fn)
(cons-term new-fn
(rename-fn-and-replace-for-loop$-lambda-objs-list
new-fn old-fn
(fargs term))))
((and (member-eq (loop$-scion-style (ffn-symb term))
'(:plain :fancy))
(quotep (fargn term 1))
(consp (unquote (fargn term 1)))
(eq (car (unquote (fargn term 1))) 'lambda))
; We don't actually know whether this loop$ scion call is :plain or :fancy or
; even whether its lambda object contains a recursive call. We don't care! We
; just replace the lambda object by a non-recursive one of the ``right'' type
; and signature. This way we preserve the other arguments, which might involve
; clear recursive calls (not ones buried inside of quoted lambdas). Of course,
; it could happen that the lambda object we're replacing has clear recursive
; calls. But they wouldn't contribute to a subsequent induction analysis since
; the current induction machine machinery does not look into quoted objects.
(cons-term (ffn-symb term)
(cons (get-loop$-scion-default-quoted-lambda-object
(ffn-symb term)
*for-loop$-keyword-info*)
(rename-fn-and-replace-for-loop$-lambda-objs-list
new-fn old-fn
(cdr (fargs term))))))
(t (cons-term (ffn-symb term)
(rename-fn-and-replace-for-loop$-lambda-objs-list
new-fn old-fn
(fargs term))))))
(defun rename-fn-and-replace-for-loop$-lambda-objs-list (new-fn old-fn terms)
(cond
((endp terms) nil)
(t (cons (rename-fn-and-replace-for-loop$-lambda-objs new-fn old-fn
(car terms))
(rename-fn-and-replace-for-loop$-lambda-objs-list new-fn old-fn
(cdr terms))))))
)
(defun make-inductor-defun-and-rule
(fn inductor-fn measure rel ruler-extenders hints wrld)
; Fn is the name of an already admitted loop$-recursive function, inductor-fn
; is nil or the name we are to use for the generated loop$ recursive induction
; function (aka the ``inductor'') for fn. Measure, rel, ruler-extenders, and
; hints are user-supplied xargs settings of the inductor's defun. We assume fn
; is a loop$-recursive function symbol, inductor-fn is a symbol (possibly nil),
; and measure is a fully translated term. We don't inspect rel,
; ruler-extenders, or hints and just paste them into the defun we generate, so
; they are error-checked by the execution of that defun. We return an
; encapsulate event defining the inductor and the associated rule linking it to
; fn, or else nil, meaning no inductor function can be generated by current
; heuristics.
(let* ((inductor-fn1 (or inductor-fn
(packn (list fn '-inductor))))
(formals (formals fn wrld))
(body (possibly-clean-up-dirty-lambda-objects
:ALL
(remove-guard-holders (body fn nil wrld) wrld)
wrld
(remove-guard-holders-lamp)))
(jst (getpropc fn 'justification nil wrld))
(measure1 (or measure
(access justification jst :measure)))
(rel1 (or rel
(access justification jst :rel)))
(ruler-extenders1 (or ruler-extenders
(access justification jst :ruler-extenders)))
(mvars (all-vars measure1)))
(mv-let (erp nuggets)
(generate-loop$-scion-nuggets fn formals mvars nil body)
(cond
(erp (mv erp nil))
(t (let* ((body1
(if nuggets
(rename-fn-and-replace-for-loop$-lambda-objs-list
inductor-fn1 fn
(glue-terms nuggets body))
*nil*))
(ignores (set-difference-eq formals (all-vars body1)))
(rule-name (packn (list fn '-induction-rule))))
(cond
(nuggets
(mv nil
`(encapsulate
nil
(defun$ ,inductor-fn1 ,formals
(declare (xargs :mode :logic
:measure ,measure1
:well-founded-relation ,rel1
:ruler-extenders ,ruler-extenders1
,@(if hints
`(:hints ,hints)
nil))
,@(if ignores
`(ignore ,@ignores)
nil))
,body1)
(defthm ,rule-name t
:rule-classes ((:induction
:pattern (,fn ,@formals)
:scheme (,inductor-fn1 ,@formals)))))))
(t (mv (msg "there are no recursive loop$s in it.")
nil)))))))))
(set-state-ok t)
(defun definductor-fn1 (fn inductor-fn measure well-founded-relation
ruler-extenders hints state)
(let ((wrld (w state)))
(cond
((or (not (symbolp fn))
(not (getpropc fn 'loop$-recursion nil wrld)))
(er soft 'definductor
"The first argument to definductor must be the name of a previously ~
defined loop$-recursive function and ~x0 is not."
fn))
((not (symbolp inductor-fn))
(er soft 'definductor
"The second argument to definductor must be nil or the name you ~
choose to give to the inductor function generated for ~x0 but ~x1 is ~
not a symbol."
fn inductor-fn))
(t (er-let*
((measures (if measure
(translate-measures (list measure) t 'definductor
wrld state)
(value '(nil)))))
(let* ((tmeasure (car measures))) ; translated measure
(mv-let (erp encap)
(make-inductor-defun-and-rule
fn inductor-fn tmeasure well-founded-relation ruler-extenders
hints wrld)
(cond
(erp (er soft 'definductor
"We cannot construct an inductor for ~x0 because ~@1"
fn erp))
(t (value encap))))))))))
(defun definductor-fn (fn inductor-fn measure well-founded-relation
ruler-extenders hints)
(declare (xargs :mode :logic :guard t)) ; for execution speed in safe-mode
`(definductor-fn1 ',fn
',inductor-fn
',measure
',well-founded-relation
',ruler-extenders
',hints
state))
(defmacro definductor (fn &key inductor-fn measure well-founded-relation
ruler-extenders hints)
`(with-output
:off
; *valid-output-names* except for error
(warning warning! observation prove proof-builder event history summary
proof-tree)
:stack :push
:gag-mode nil
(make-event
(with-output
:stack :pop
,(definductor-fn fn inductor-fn measure well-founded-relation
ruler-extenders hints))
:on-behalf-of :quiet!
; See note below.
:check-expansion t)))
|