File: mempos.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (830 lines) | stat: -rw-r--r-- 34,183 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
; Copyright (C) 2019, Regents of the University of Texas
; Written by Matt Kaufmann and J Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; Many thanks to ForrestHunt, Inc. for supporting the preponderance of this
; work, and for permission to include it here.

(in-package "ACL2")

(include-book "projects/apply/loop" :dir :system)

; This book rewrites
; (member-equal newvar lst)
; to
; (< (mempos newvar lst) (len lst))

; and provides lemmas about mempos comparable to those about member-equal in
; projects/apply/loop.lisp.

; More interestingly, perhaps, it deals with the so-called ``correspondence
; problem'' for loop$s involving multiple iteration variables.  Consider the
; special loop$ guard conjectures for something like

; (loop$ x1 in t1 as x2 in t2 as x3 in t3 ...)

; The special guard conjectures introduce the hypothesis

; (member-equal newvar (loop$-as (list t1 t2 t3 ...)))

; Newvar represents the values of the iteration variables, x1, x2, x3, ...,
; at an arbitrary point in the scan down the targets.  It is easy to show
; that the member-equal above implies:

; (member-equal (car newvar) t1)   ; x1 is in t1
; (member-equal (cadr newvar) t2)  ; x2 is in t2
; (member-equal (caddr newvar) t3) ; x3 is in t3
; ...

; These facts might be needed to prove guards or type specs on the iteration
; variables from guards on their respective targets.  They are proved
; in books/projects/apply/loop.lisp.

; But the user might need the stronger fact that the value of x1, x2, x3, ...,
; are in correspondence with the elements of t1, t2, t3, ...

; The following encapsulate exports a rewrite rule, named mempos-correspondence
; that rewrites the (member-equal newvar (loop$-as (list t1 ... ))) into the
; salient facts the components of newvar.  However, it only handles the first
; three cases, for (list t1), (list t1 t2), and (list t1 t2 t3).

; Note: Other cases can easily be proved from within the encapsulate, following
; the proof pattern shown by cases 1, 2, and 3.  But we thought they are not
; likely to be needed.  A comment just before mempos-correspondence explains
; how to handle the case for 4.

; The ``salient facts,'' say for the case of (list t1 t2), are
; (1) (< (mempos newvar (loop$-as (list t1 t2)))
;        (len (loop$-as (list t1 t2))))

; (2) (true-listp newvar)
; (3) (equal (len newvar) 2)

; (4) (<= (mempos newvar (loop$-as (list t1 t2))) (len t1))
; (5) (<= (mempos newvar (loop$-as (list t1 t2))) (len t2))

; (6) (equal (car newvar)
;            (nth (mempos newvar (loop$-as (list t1 t2))) t1))
; (7) (equal (cadr newvar)
;            (nth (mempos newvar (loop$-as (list t1 t2))) t2))

; To explain these facts, let m be the mempos expression,

; (mempos newvar (loop$-as (list t1 t2)))

; which is known to be a natp.

; Fact (1) is equivalent to the original member-equal and is here just to
; preserve that hypothesis -- albeit in a somewhat awkward form -- without
; sending the rewriter into a loop.  Facts (2) and (3) state the basic shape of
; newvar.  Facts (4) and (5) establish that m is a legal index into the two
; component targets, t1 and t2.  Finally, facts (6) and (7) show that the car
; and cadr of newvar are in fact corresponding elements of t1 and t2
; respectively.  In particular, they are both at position m in their respective
; component targets.

(encapsulate nil
  (local
   (defthm len-nth-cdr-loop$-as-tuple
     (implies (and (natp n)
                   (< n (len tuple))
                   (CONSP TUPLE)
                   (NOT (EMPTY-LOOP$-AS-TUPLEP TUPLE)))
              (< (LEN (NTH N (CDR-LOOP$-AS-TUPLE TUPLE)))
                 (len (nth n tuple))))
     :rule-classes :linear))

  (local
   (defthm len-loop$-as-v-len-component
     (implies (and (natp n)
                   (< n (len tuple)))
              (<= (len (loop$-as tuple)) (len (nth n tuple))))
     :rule-classes :linear))

  (local
   (defun nth-loop$-as (n tuple)
     (cond ((endp tuple) nil)
           ((empty-loop$-as-tuplep tuple) nil)
           ((zp n) (car-loop$-as-tuple tuple))
           (t (nth-loop$-as (- n 1) (cdr-loop$-as-tuple tuple))))))

  (local
   (defthm nth-loop$-as-lemma
     (implies  (and (natp m)
                    (< m (len (loop$-as tuple))))
               (equal (nth m (loop$-as tuple))
                      (nth-loop$-as m tuple)))))

  (local
   (defthm nth-car-loop$-as-tuple
     (implies (and (natp n)
                   (< n (len tuple)))
              (equal (nth n (car-loop$-as-tuple tuple))
                     (car (nth n tuple))))))

  (local
   (defthm nth-cdr-loop$-as-tuple
     (implies (and (natp n)
                   (< n (len tuple)))
              (equal (nth n (cdr-loop$-as-tuple tuple))
                     (cdr (nth n tuple))))))

  (local
   (defthm nth-nth-loop$-as
     (implies (and (natp n)
                   (natp m)
                   (< n (len tuple))
                   (< m (len (loop$-as tuple))))
              (equal (nth n (nth m (loop$-as tuple)))
                     (nth m (nth n tuple))))
     :rule-classes nil))

  (local
   (defthm member-equal-is-<-mempos-len
     (iff (member-equal newvar target)
          (< (mempos newvar target) (len target))))
;     :rule-classes nil))
   )
  (local
   (defthm mempos-basic
     (implies (< (mempos newvar target) (len target))
              (equal (nth (mempos newvar target) target) newvar))))


  (local
   (defthm member-equal-loop$-as-1
     (iff (member-equal newvar (loop$-as (list t1)))
          (and (< (mempos newvar (loop$-as (list t1)))
                  (len (loop$-as (list t1))))
               (equal (car newvar)
                      (nth (mempos newvar (loop$-as (list t1))) t1))))
     :hints
     (("Goal"
       :use (;(:instance member-equal-is-<-mempos-len
             ;           (target (loop$-as (list t1))))
             (:instance nth-nth-loop$-as
                        (n 0)
                        (m (mempos newvar (loop$-as (list t1))))
                        (tuple (list t1))))))))
  (local
   (defthm member-equal-loop$-as-2
     (iff (member-equal newvar (loop$-as (list t1 t2)))
          (and (< (mempos newvar (loop$-as (list t1 t2)))
                  (len (loop$-as (list t1 t2))))
               (equal (car newvar)
                      (nth (mempos newvar (loop$-as (list t1 t2))) t1))
               (equal (cadr newvar)
                      (nth (mempos newvar (loop$-as (list t1 t2))) t2))))
     :hints
     (("Goal"
       :use (;(:instance member-equal-is-<-mempos-len
             ;           (target (loop$-as (list t1 t2))))
             (:instance nth-nth-loop$-as
                        (n 0)
                        (m (mempos newvar (loop$-as (list t1 t2))))
                        (tuple (list t1 t2)))
             (:instance nth-nth-loop$-as
                        (n 1)
                        (m (mempos newvar (loop$-as (list t1 t2))))
                        (tuple (list t1 t2))))))))

  (local
   (defthm member-equal-loop$-as-3
     (iff (member-equal newvar (loop$-as (list t1 t2 t3)))
          (and (< (mempos newvar (loop$-as (list t1 t2 t3)))
                  (len (loop$-as (list t1 t2 t3))))
               (equal (car newvar)
                      (nth (mempos newvar (loop$-as (list t1 t2 t3))) t1))
               (equal (cadr newvar)
                      (nth (mempos newvar (loop$-as (list t1 t2 t3))) t2))
               (equal (caddr newvar)
                      (nth (mempos newvar (loop$-as (list t1 t2 t3))) t3))))
     :hints
     (("Goal"
       :use (;(:instance member-equal-is-<-mempos-len
             ;           (target (loop$-as (list t1 t2 t3))))
             (:instance nth-nth-loop$-as
                        (n 0)
                        (m (mempos newvar (loop$-as (list t1 t2 t3))))
                        (tuple (list t1 t2 t3)))
             (:instance nth-nth-loop$-as
                        (n 1)
                        (m (mempos newvar (loop$-as (list t1 t2 t3))))
                        (tuple (list t1 t2 t3)))
             (:instance nth-nth-loop$-as
                        (n 2)
                        (m (mempos newvar (loop$-as (list t1 t2 t3))))
                        (tuple (list t1 t2 t3))))))))

  (local
   (defthm mempos-loop$-as-basics
     (implies (< (mempos newvar (loop$-as tuple))
                 (len (loop$-as tuple)))
              (and (true-listp newvar)
                   (equal (len newvar) (len tuple))))
     :hints (("Goal" :induct (loop$-as tuple)))))

  (local
   (defthm len-loop$-as-<-len-1
     (<= (len (loop$-as (list t1))) (len t1))
     :rule-classes :linear))

  (local
   (defthm len-loop$-as-<-len-2
     (and (<= (len (loop$-as (list t1 t2))) (len t1))
          (<= (len (loop$-as (list t1 t2))) (len t2)))
     :hints (("Goal" :induct (pairlis$ t1 t2)))
     :rule-classes :linear))

  (local
   (defthm len-loop$-as-<-len-3
     (and (<= (len (loop$-as (list t1 t2 t3))) (len t1))
          (<= (len (loop$-as (list t1 t2 t3))) (len t2))
          (<= (len (loop$-as (list t1 t2 t3))) (len t3)))
     :hints (("Goal" :induct (list (pairlis$ t1 t2)
                                   (pairlis$ t2 t3))))
     :rule-classes :linear))

; Note: To handle the case of (list t1 t2 t3 t4) you'll have to prove the
; ``4-version'' of member-equal-loop$-as-3, providing the 4-version of the
; hint, and you have to prove the 4-version of len-loop$-as-<-len-3, providing
; the 4-version of its hint.  Then :use the new member-equal-loop$-as-4 to
; prove the 4-version of the rewrite rule for (member-equal newvar (loop$-as
; ...)), as done below for the 1-, 2-, and 3-versions.

  (defthm mempos-correspondence ; for cases 0,1,2, and 3
    (and (implies (syntaxp (not (and (consp lst)
                                     (eq (car lst) 'LOOP$-AS))))
                  (iff (member-equal newvar lst)
                       (< (mempos newvar lst) (len lst))))
         (iff (member-equal newvar (loop$-as (list t1)))
              (and (< (mempos newvar (loop$-as (list t1)))
                      (len (loop$-as (list t1))))
                   (true-listp newvar)
                   (equal (len newvar) 1)
                   (<= (mempos newvar (loop$-as (list t1))) (len t1))
                   (equal (car newvar)
                          (nth (mempos newvar (loop$-as (list t1))) t1))))
         (iff (member-equal newvar (loop$-as (list t1 t2)))
              (and (< (mempos newvar (loop$-as (list t1 t2)))
                      (len (loop$-as (list t1 t2))))
                   (true-listp newvar)
                   (equal (len newvar) 2)
                   (<= (mempos newvar (loop$-as (list t1 t2))) (len t1))
                   (<= (mempos newvar (loop$-as (list t1 t2))) (len t2))
                   (equal (car newvar)
                          (nth (mempos newvar (loop$-as (list t1 t2))) t1))
                   (equal (cadr newvar)
                          (nth (mempos newvar (loop$-as (list t1 t2))) t2))))
         (iff (member-equal newvar (loop$-as (list t1 t2 t3)))
              (and (< (mempos newvar (loop$-as (list t1 t2 t3)))
                      (len (loop$-as (list t1 t2 t3))))
                   (true-listp newvar)
                   (equal (len newvar) 3)
                   (<= (mempos newvar (loop$-as (list t1 t2 t3))) (len t1))
                   (<= (mempos newvar (loop$-as (list t1 t2 t3))) (len t2))
                   (<= (mempos newvar (loop$-as (list t1 t2 t3))) (len t3))
                   (equal (car newvar)
                          (nth (mempos newvar (loop$-as (list t1 t2 t3))) t1))
                   (equal (cadr newvar)
                          (nth (mempos newvar (loop$-as (list t1 t2 t3))) t2))
                   (equal (caddr newvar)
                          (nth (mempos newvar (loop$-as (list t1 t2 t3))) t3))))))

  )

(defthm len-when$
  (<= (len (when$ p lst)) (len lst))
  :rule-classes :linear)

(defthm len-until$
  (<= (len (until$ q lst)) (len lst))
  :rule-classes :linear)

(defthm mempos-when$
  (iff (< (mempos e (when$ p lst))
          (len (when$ p lst)))
       (and (< (mempos e lst) (len lst))
            (apply$ p (list e)))))

(defthm mempos-until$
  (equal (mempos newv (until$ q lst))
         (if (< (mempos newv lst)
                (len (until$ q lst)))
             (mempos newv lst)
             (len (until$ q lst)))))

; For fancy loop$s

(defthm len-when$+
  (<= (len (when$+ p pglob lst)) (len lst))
  :rule-classes :linear)

(defthm len-until$+
  (<= (len (until$+ q qglob lst)) (len lst))
  :rule-classes :linear)

(defthm len-loop$-as-car
  (implies (consp tuple)
           (<= (len (loop$-as tuple))
               (len (car tuple))))
  :rule-classes :linear)

(defthm len-loop$-as-cadr
  (implies (consp (cdr tuple))
           (<= (len (loop$-as tuple))
               (len (cadr tuple))))
  :rule-classes :linear)

(defthm mempos-when$+
  (iff (< (mempos e (when$+ p pglob lst)) (len (when$+ p pglob lst)))
       (and
        (< (mempos e lst) (len lst))
        (apply$ p (list pglob e)))))

(defthm mempos-until$+
  (equal (mempos newv (until$+ q qglob lst))
         (if (< (mempos newv lst)
                (len (until$+ q qglob lst)))
             (mempos newv lst)
             (len (until$+ q qglob lst)))))

; -----------------------------------------------------------------

; Universal Quantifier Instantiation Machinery 
;  -- Deducing Properties of Elements from Properties of Lists

; A crucial part of reasoning about loop$ guards is deducing properties of the
; elements of a list from properties of the list, e.g., if newv is an element
; of lst and lst is a list of numbers, then newv is a number.  For want of a
; better name we call this ``universal quantifier instantiation'' or ``uqi''.
; In general we tackle uqi by looking at (always$ fn lst) and deducing (fn
; newv).  Rather than setting up backchaining rules (which are too fragile
; because a property may have many rewritable parts and each would need a
; rule), or forward chaining rules (which suffer from leaving the deductions
; invisible to the user and to the rewriter) we actually will insert the
; deduction into the conjecture with a rewrite that ``eliminates'' the
; quantifier but hides it to maintain equality.

; There are some commonly used legacy ``implicit always$ loops'' expressed with
; recursion.  We build them into our handling of extraction.

; integer-listp --> integerp
; rational-listp --> rationalp
; acl2-number-listp --> acl2-numberp
; symbol-listp --> symbolp
; true-list-listp --> true-listp

; We need to formalize these basic facts:

; integer-listp --> integerp
(defthm mempos-integer-listp-implies-integerp
  (implies (and (< (mempos newv lst) (len lst))
                (integer-listp lst))
           (integerp newv)))

; rational-listp --> rationalp
(defthm mempos-rational-listp-implies-rationalp
  (implies (and (< (mempos newv lst) (len lst))
                (rational-listp lst))
           (rationalp newv)))

; acl2-number-listp --> acl2-numberp
(defthm mempos-acl2-number-listp-implies-acl2-numberp
  (implies (and (< (mempos newv lst) (len lst))
                (acl2-number-listp lst))
           (acl2-numberp newv)))

; symbol-listp --> symbolp
(defthm mempos-symbol-listp-implies-symbolp
  (implies (and (< (mempos newv lst) (len lst))
                (symbol-listp lst))
           (symbolp newv)))

; true-list-listp --> true-listp
(defthm mempos-true-list-listp-implies-true-listp
  (implies (and (< (mempos newv lst) (len lst))
                (true-list-listp lst))
           (true-listp newv)))

; And the general rule:

(defthm mempos-always$-p-lst-implies-p-element
  (implies (and (always$ fnp lst)
                (< (mempos newv lst) (len lst)))
           (apply$ fnp (list newv))))

; NOTE: These rules will have to be disabled after we've set up the rest of this
; machinery!  See the

; (in-theory (disable integerp-listp-implies-integerp
;                     ...))

; below!


; We don't want the plain-uqi lemmas firing on (mempos newv (LOOP$-AS ...)) so
; we intall a syntaxp hyp on each.

(defthm mempos-plain-uqi-always$
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ fnp lst)
                (<= xxx (len lst))
                (not (apply$ fnp (list newv))))
           (not (< (mempos newv lst) xxx))))

; (defthm integer-listp-implies-always$-integerp
;   (implies (integer-listp lst)
;            (always$ 'integerp lst)))

(defthm mempos-plain-uqi-integer-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'integerp lst)
                (<= xxx (len lst))
                (not (apply$ 'integerp (list newv))))
           (not (< (mempos newv lst) xxx))))

; (defthm rational-listp-implies-always$-rationalp
;   (implies (rational-listp lst)
;            (always$ 'rationalp lst)))

(defthm mempos-plain-uqi-rational-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'rationalp lst)
                (<= xxx (len lst))
                (not (apply$ 'rationalp (list newv))))
           (not (< (mempos newv lst) xxx))))

; (defthm acl2-number-listp-implies-always$-acl2-numberp
;   (implies (acl2-number-listp lst)
;            (always$ 'acl2-numberp lst)))

(defthm mempos-plain-uqi-acl2-number-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'acl2-numberp lst)
                (<= xxx (len lst))
                (not (apply$ 'acl2-numberp (list newv))))
           (not (< (mempos newv lst) xxx))))

; (defthm symbol-listp-implies-always$-symbolp
;   (implies (symbol-listp lst)
;            (always$ 'symbolp lst)))

(defthm mempos-plain-uqi-symbol-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'symbolp lst)
                (<= xxx (len lst))
                (not (apply$ 'symbolp (list newv))))
           (not (< (mempos newv lst) xxx))))

; (defthm true-list-listp-implies-always$-true-listp
;   (implies (true-list-listp lst)
;            (always$ 'true-listp lst)))

(defthm mempos-plain-uqi-true-list-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'true-listp lst)
                (<= xxx (len lst))
                (not (apply$ 'true-listp (list newv))))
           (not (< (mempos newv lst) xxx))))

(defthm mempos-plain-uqi-rational-list-listp
  (implies (and (syntaxp (not (and (consp lst)
                                   (eq (car lst) 'LOOP$-AS))))
                (always$ 'rational-listp lst)
                (<= xxx (len lst))
                (not (apply$ 'rational-listp (list newv))))
           (not (< (mempos newv lst) xxx))))


; That takes care of all the plain cases.  Now we work on LOOP$-AS

(encapsulate
  nil
  (local (defthm mempos-nth-car-loop$-as-tuple
           (implies (and (CONSP TUPLE)
                         (NOT (EMPTY-LOOP$-AS-TUPLEP TUPLE))
                         (natp n)
                         (< n (len tuple)))
                    (< (mempos (NTH N (CAR-LOOP$-AS-TUPLE TUPLE))
                               (NTH N TUPLE))
                       (len (NTH N TUPLE))))))

  (local (defthm mempos-nth-cdr-loop$-as-tuple
           (implies (and (CONSP TUPLE)
                         (NOT (EMPTY-LOOP$-AS-TUPLEP TUPLE))
                         (< (mempos (NTH N NEWV)
                                    (NTH N (CDR-LOOP$-AS-TUPLE TUPLE)))
                            (len (NTH N (CDR-LOOP$-AS-TUPLE TUPLE)))))
                    (< (mempos (nth n newv) (nth n tuple))
                       (len (nth n tuple))))))

  (local (defthm mempos-loop$-as-implies-mempos-nth
           (implies (and (< (mempos newv (loop$-as tuple))
                            (len (loop$-as tuple)))
                         (natp n)
                         (< n (len tuple)))
                    (< (mempos (nth n newv) (nth n tuple))
                       (len (nth n tuple))))))

  (defthm mempos-general-always$-nth-loop$-as-tuple
    (implies (and (always$ fnp (nth n tuple))
                  (not (apply$ fnp (list (nth n newv))))
                  (natp n)
                  (< n (len tuple)))
             (not (< (mempos newv (loop$-as tuple))
                     (len (loop$-as tuple)))))
    :rule-classes nil))

(defthm mempos-fancy-uqi-always$-1
  (implies (and (always$ fnp lst1)
                (not (apply$ fnp (list (car newv)))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-always$-2
  (implies (and (always$ fnp lst2)
                (not (apply$ fnp (list (cadr newv)))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-always-3
  (implies (and (always$ fnp lst3)
                (not (apply$ fnp (list (caddr newv)))))
           (not (< (mempos newv (loop$-as
                                 (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as
                         (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                                  (n 2)))))

(defthm mempos-fancy-uqi-integer-1
  (implies (and (integer-listp lst1)
                (not (integerp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'integerp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-integer-2
  (implies (and (integer-listp lst2)
                (not (integerp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'integerp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-integer-3
  (implies (and (integer-listp lst3)
                (not (integerp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'integerp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-fancy-uqi-rational-1
  (implies (and (rational-listp lst1)
                (not (rationalp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'rationalp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-rational-2
  (implies (and (rational-listp lst2)
                (not (rationalp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'rationalp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-rational-3
  (implies (and (rational-listp lst3)
                (not (rationalp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'rationalp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-fancy-uqi-acl2-number-1
  (implies (and (acl2-number-listp lst1)
                (not (acl2-numberp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'acl2-numberp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-acl2-number-2
  (implies (and (acl2-number-listp lst2)
                (not (acl2-numberp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'acl2-numberp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-acl2-number-3
  (implies (and (acl2-number-listp lst3)
                (not (acl2-numberp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'acl2-numberp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-fancy-uqi-symbol-1
  (implies (and (symbol-listp lst1)
                (not (symbolp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'symbolp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-symbol-2
  (implies (and (symbol-listp lst2)
                (not (symbolp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'symbolp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-symbol-3
  (implies (and (symbol-listp lst3)
                (not (symbolp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'symbolp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-fancy-uqi-true-list-1
  (implies (and (true-list-listp lst1)
                (not (true-listp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'true-listp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-true-list-2
  (implies (and (true-list-listp lst2)
                (not (true-listp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'true-listp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-true-list-3
  (implies (and (true-list-listp lst3)
                (not (true-listp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'true-listp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-structure-of-loop$-as-elements
  (implies (< (mempos newv (loop$-as tuple))
              (len (loop$-as tuple)))
           (and (true-listp newv)
                (equal (len newv) (len tuple))))
  :hints (("Goal" :induct (loop$-as tuple)))
  :rule-classes nil)

(defthm mempos-structure-of-loop$-as-elements-bridge
  (and (implies (not (true-listp newv))
                (not (< (mempos newv (loop$-as tuple))
                        (len (loop$-as tuple)))))
       (implies (not (equal (len newv) (len tuple)))
                (not (< (mempos newv (loop$-as tuple))
                        (len (loop$-as tuple))))))
  :hints (("Goal" :use mempos-structure-of-loop$-as-elements)))

(defthm mempos-fancy-uqi-rational-listp-1
  (implies (and (always$ 'rational-listp lst1)
                (not (rational-listp (car newv))))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'rational-listp)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-rational-listp-2
  (implies (and (always$ 'rational-listp lst2)
                (not (rational-listp (cadr newv))))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'rational-listp)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-rational-listp-3
  (implies (and (always$ 'rational-listp lst3)
                (not (rational-listp (caddr newv))))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'rational-listp)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

(defthm mempos-fancy-uqi-identity-1
  (implies (and (always$ 'identity lst1)
                (not (car newv)))
           (not (< (mempos newv (loop$-as (cons lst1 rest)))
                   (len (loop$-as (cons lst1 rest))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'identity)
                                  (tuple (cons lst1 rest))
                                  (n 0)))))

(defthm mempos-fancy-uqi-identity-2
  (implies (and (always$ 'identity lst2)
                (not (cadr newv)))
           (not (< (mempos newv (loop$-as (cons lst1 (cons lst2 rest))))
                   (len (loop$-as (cons lst1 (cons lst2 rest)))))))
  :hints (("Goal" :use (:instance mempos-general-always$-nth-loop$-as-tuple
                                  (fnp 'identity)
                                  (tuple (cons lst1 (cons lst2 rest)))
                                  (n 1)))))

(defthm mempos-fancy-uqi-identity-3
  (implies (and (always$ 'identity lst3)
                (not (caddr newv)))
           (not (< (mempos newv
                           (loop$-as (cons lst1 (cons lst2 (cons lst3 rest)))))
                   (len (loop$-as (cons lst1 (cons lst2 (cons lst3 rest))))))))
  :hints (("Goal" :use (:instance
                        mempos-general-always$-nth-loop$-as-tuple
                        (fnp 'identity)
                        (tuple (cons lst1 (cons lst2 (cons lst3 rest))))
                        (n 2)))))

; These plain-uqi lemmas were left out above...

(defthm mempos-general-plain-uqi-integer-listp-tails
  (implies (and (integer-listp lst)
                (not (integer-listp newv)))
           (not (< (mempos newv (tails lst))
                   (len (tails lst)))))
  :rule-classes nil)

(defthm mempos-plain-uqi-integer-listp-tails
  (implies (and (integer-listp lst)
                (not (integer-listp newv)))
           (not (< (mempos newv (tails lst))
                   (len (tails lst)))))
  :hints (("Goal" :use mempos-general-plain-uqi-integer-listp-tails)))