File: semi-concrete-do-inductions-input.lsp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (381 lines) | stat: -rw-r--r-- 12,935 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
; Copyright (C) 2022, Regents of the University of Texas
; Written by Matt Kaufmann and J Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(include-book "projects/apply/top" :dir :system)

(defun rev (x)
  (if (endp x)
      nil
      (append (rev (cdr x)) (list (car x)))))

(defthm assoc-of-append
  (equal (append (append a b) c)
         (append a (append b c))))

(thm
  (implies (true-listp lst)
           (equal (loop$ with ans = ans0
                         with lst = xxx
                         do
                         (if (consp lst)
                             (progn (setq ans (cons (car lst) ans))
                                    (setq lst (cdr lst)))
                             (return ans)))
                  (append (rev xxx) ans0))))

; Note that we (unnecessarily) pick up (true-listp lst) as a Q here, and prove
; the formula.
(thm
  (implies (true-listp lst)
           (equal (loop$ with ans = ans0
                         with lst = lst
                         do
                         (if (consp lst)
                             (progn (setq ans (cons (car lst) ans))
                                    (setq lst (cdr lst)))
                             (return ans)))
                  (append (rev lst) ans0)))
  :hints (("Goal" :in-theory (disable (:induction rev) (:induction true-listp)))))

; This works.  And we pick up (true-listp xxx) as Q.
(thm
  (implies (true-listp xxx)
           (equal (loop$ with ans = ans0
                         with lst = xxx
                         do
                         (if (consp lst)
                             (progn (setq ans (cons (car lst) ans))
                                    (setq lst (cdr lst)))
                             (return ans)))
                  (append (rev xxx) ans0)))
  :hints (("Goal" :in-theory (disable (:induction rev) (:induction true-listp)))))

; This proves.  We pick (natp iii) as Q.
(thm
  (implies (natp iii)
           (equal (loop$ with iii = iii
                         do
                         (if (equal iii 0)
                             (return 'silly)
                             (setq iii (- iii 1))))
                  'silly)))

; This works.  But we do not automatically choose Q when there is an induct hint.
; So we have to make sure the induct hint includes it, which means if the induct
; hint is a do loop$ we need to modify its body to include the q.

(thm
 (implies (natp iii)
          (equal (loop$ with iii = iii
                        do
                        (if (equal iii 0)
                            (return 'silly)
                            (setq iii (- iii 1))))
                 'silly))
 :hints (("Goal" :induct (loop$ with iii = iii
                                do
                                (if (natp iii)  ; <--- modified do loop as hint!
                                    (if (equal iii 0)
                                        (return 'silly)
                                        (setq iii (- iii 1)))
                                    (return 'dumb))))))

; This works.  We choose Q correctly.
(thm
 (implies (and (natp iii)
               (natp nnn))
          (equal (loop$ with i = iii
                        with n = nnn
                        do
                        :guard (and (natp i) (natp n))
                        :measure (nfix (- n i))
                        (if (< i n)
                            (setq i (+ i 1))
                            (return t)))
                 t))
 :otf-flg t)

; This works and we choose Q correctly.
(thm
 (implies (and (natp iii)
               (natp nnn))
          (equal (loop$ with i = iii
                        with n = nnn
                        do
                        :guard (and (natp i) (natp n))
                        :measure (nfix (- n i))
                        (if (< i n)
                            (setq i (+ i 1))
                            (return t)))
                 t))
 :hints (("Goal" :induct t)))

; This works.  We choose (natp iii) for Q.
(thm
 (implies (natp iii)
          (equal (loop$ with i = iii
                        with n = 10
                        do
                        :guard  (and (natp n) (natp i))
                        :measure (nfix (- n i))
                        (if (< i n)
                            (setq i (+ i 1))
                            (return t)))
                 t)))

; This works.  It tests the ability to do a true (:induction do$) induction
; rather than semi-concrete one.

(thm (implies (and (natp (cdr (assoc-eq-safe 'n alist)))
                   (natp (cdr (assoc-eq-safe 'm alist))))
              (equal
               (do$ (lambda$ (alist) (acl2-count (cdr (assoc-eq-safe 'n alist))))
                    alist
                    (lambda$ (alist)
                             (if (zp (cdr (assoc-eq-safe 'n alist)))
                                 (list :return (cdr (assoc-eq-safe 'm alist)) alist)
                                 (list nil nil
                                       (list (cons 'n (- (cdr (assoc-eq-safe 'n alist)) 1))
                                             (cons 'm (+ (cdr (assoc-eq-safe 'm alist)) 1))))))
                    (lambda$ (alist)
                             (list nil nil 
                                   (list (cons 'n (cdr (assoc-eq-safe 'n alist))))))
                    nil nil)
               (+ (cdr (assoc-eq-safe 'n alist))
                  (cdr (assoc-eq-safe 'm alist))))))


(defun rev1 (x ac)
  (if (endp x)
      ac
      (rev1 (cdr x) (cons (car x) ac))))

(thm
  (equal (loop$ with x = lst
                with ans = ans0
                do
                (if (consp x)
                    (progn (setq ans (cons (car x) ans))
                           (setq x (cdr x)))
                    (return ans)))
         (rev1 lst ans0)))

; Write a do loop$ that computes (member e lst) and prove it correct.

(thm
  (equal (loop$ with x = lst
                do
                (if (consp x)
                    (if (equal (car x) e)
                        (return x)
                        (setq x (cdr x)))
                    (return nil)))
         (member e lst)))

(thm
  (implies (natp ans0)
           (equal (loop$ with x = lst
                         with ans = ans0
                         do
                         (if (consp x)
                             (progn (setq ans (+ 1 ans))
                                    (setq x (cdr x)))
                             (return ans)))
                  (+ ans0 (len lst)))))

(thm
  (implies (natp n)
           (equal (loop$ with x = lst
                         with i = n
                         do
                         (cond ((endp x) (return nil))
                               ((equal i 0) (return (car x)))
                               (t (progn (setq i (- i 1))
                                         (setq x (cdr x))))))
                  (nth n lst))))

(thm
  (implies (and (true-listp ans0)
                (true-listp lst))
           (equal (loop$ with x = lst
                         with ans = ans0
                         do
                         (if (consp x)
                             (progn (setq ans (append ans (list (car x))))
                                    (setq x (cdr x)))
                             (return ans)))
                  (append ans0 lst)))
  :hints (("Goal" :in-theory (disable (:induction binary-append)))))


(thm
  (implies (and (natp m)
                (natp n))
           (equal (loop$ with i = m
                         with j = n
                         do
                         (if (integerp i)
                             (if (< 0 i)
                                 (progn (setq i (- i 1))
                                        (setq j (+ 1 j)))
                                 (return j))
                             (return j)))
                  (+ m n))))

(defun fact (n)
  (if (zp n)
      1
      (* n (fact (- n 1)))))

(defthm commutivity-2-of-*
  (equal (* a (* b c)) (* b (* a c)))
  :hints
  (("Goal" :use ((:instance commutativity-of-*
                            (x a)(y (* b c)))))))

(thm
 (implies (and (natp n)
               (natp ans0))
          (equal (loop$ with i = n
                        with ans = ans0
                        do
                        (if (integerp i)
                            (if (< 0 i)
                                (progn (setq ans (* i ans))
                                       (setq i (- i 1)))
                                (return ans))
                            (return ans)))
                 (* ans0 (fact n)))))

(defun sq (x) (* x x))
(defwarrant sq)

(thm
  (implies (and (warrant sq)
                (integer-listp lst0)
                (integerp u0)
                (integerp v0))
           (equal (loop$ with lst = lst0
                         with u = u0
                         with v = v0
                         do
                         (cond ((consp lst)
                                (progn (setq u (+ u (car lst)))
                                       (setq v (+ v (* (car lst) (car lst))))
                                       (setq lst (cdr lst))))
                               (t (return (cons u v)))))
                  (cons (+ u0 (loop$ for e in lst0 sum e))
                        (+ v0 (loop$ for e in lst0 sum (sq e)))))))

(thm
  (equal (loop$ with lst = lst
                with syms = syms
                with non-syms = non-syms
                do
                (cond ((consp lst)
                       (cond
                        ((symbolp (car lst))
                         (progn (setq syms (cons (car lst) syms))
                                (setq lst (cdr lst))))
                        (t
                         (progn (setq non-syms (cons (car lst) non-syms))
                                (setq lst (cdr lst))))))
                      (t (return (cons syms non-syms)))))
         (cons (append (rev (loop$ for e in lst when (symbolp e) collect e))
                       syms)
               (append (rev (loop$ for e in lst when (not (symbolp e)) collect e))
                       non-syms))))

(defun nats-ac-up (i n ans)
  (declare (xargs :measure (nfix (- (+ 1 (nfix n)) (nfix i)))))
  (let ((i (nfix i))
        (n (nfix n)))
    (if (> i n)
        ans
        (nats-ac-up (+ i 1) n (cons i ans)))))

(thm
 (implies (and (natp n)
               (natp i0))
          (equal 
           (loop$ with i = i0
                  with ans = ans0
                  do
                  :measure (nfix (+ 1 (- i) n))
		  (if (< n i)
                      (return ans)
                      (progn (setq ans (cons i ans))
                             (setq i (+ 1 i)))))
           (nats-ac-up i0 n ans0))))

(defun make-pair (i j)
  (declare (xargs :guard t))
  (cons i j))

(defwarrant make-pair)

(defun apdh2 (i j ans)
  (cond
   ((natp j)
    (cond ((< j 1) ans)
          (t (apdh2 i (- j 1) (cons (make-pair i j) ans)))))
   (t nil)))

(defun apdh1 (i jmax ans)
  (cond
   ((natp i)
    (cond ((< i 1) ans)
          (t (apdh1 (- i 1) jmax (apdh2 i jmax ans)))))
   (t nil)))

(defthm lemma1
  (implies (natp jmax)                              ; <--- no warrant req'd
           (equal                                   ;      because no make-
            (loop$ with j = jmax                    ;      pair anymore
                   with ans = ans0
                   do
                   :guard (natp j)
                   (cond
                    ((< j 1)
                     (return ans))
                    (t (progn
                         (setq ans (cons (cons i j) ; <--- make-pair opened
                                         ans))
                         (setq j (- j 1))))))
            (apdh2 i jmax ans0))))

; Prove that the generalized outer loop$ is apdh1.
(thm
  (implies
   (and (warrant do$)                             ; <--- no warrant make-pair
        (natp imax)
        (natp jmax))
   (equal
    (loop$ with i = imax
           with ans = ans0                        ; <--- ans0 instead of nil
           do
           :guard (and (natp i) (natp jmax))
           (cond
            ((< i 1)
             (return ans))
            (t (progn
                 (setq ans (loop$ with j = jmax   ; <--- normalized inner
                                  with ans = ans  ;      loop$
                                  do
                                  :guard (natp j)
                                  (cond
                                   ((< j 1)
                                    (return ans))
                                   (t (progn
                                        (setq ans (cons (cons i j) ans))
                                        (setq j (- j 1)))))))
                 (setq i (- i 1))))))
    (apdh1 imax jmax ans0))))