File: link-joint.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (530 lines) | stat: -rw-r--r-- 15,471 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019

(in-package "ADE")

(include-book "de")
(include-book "store-n")

(include-book "std/lists/flatten" :dir :system)

;; ======================================================================

(defun fullp (link-st)
  (declare (xargs :guard t))
  (equal link-st '(t)))

(defun emptyp (link-st)
  (declare (xargs :guard t))
  (equal link-st '(nil)))

(defun validp (link-st)
  (declare (xargs :guard t))
  (or (fullp link-st) (emptyp link-st)))

;; Some utility functions that help print out a readable format of link states.

(defun 4v->link-st (x)
  (declare (xargs :guard t))
  (cond ((equal x T)
         'full)
        ((equal x NIL)
         'empty)
        ((consp x)
         (4v->link-st (car x)))
        (t nil)))

(defun map-to-links1 (x)
  (declare (xargs :guard (true-list-listp x)))
  (if (endp x)
      nil
    (cons
     (b* ((link (car x))
          (name (first link))
          (status (second link))
          (value (third link)))
       (list* name
              (if (fullp status)
                  (list (4v->link-st status)
                        (v-to-nat value))
                (list (4v->link-st status) '_))))
     (map-to-links1 (cdr x)))))

(defun map-to-links (x)
  (declare (xargs :guard (true-list-listp x)))
  (if (endp x)
      nil
    (cons
     (b* ((link (car x))
          (name (first link))
          (status (second link))
          (value (third link)))
       (list* name
              (if (fullp status)
                  (list (4v->link-st status)
                        (v-to-nat (acl2::flatten value)))
                (list (4v->link-st status) '_))))
     (map-to-links (cdr x)))))

(defun remove-dup-neighbors (x)
  (declare (xargs :guard t))
  (cond ((atom x)
         nil)
        ((atom (cdr x))
         x)
        ((equal (car x) (cadr x))
         (remove-dup-neighbors (cdr x)))
        (t (cons (car x)
                 (remove-dup-neighbors (cdr x))))))

(defun pretty-list (x count)
  (declare (xargs :guard (natp count)))
  (if (atom x)
      nil
    (cons (car x)
          (cons (string-append (str::nat-to-dec-string count)
                               "------------------------------")
                (pretty-list (cdr x) (1+ count))))))

;; SIGNAL-VALS-GEN randomly generates a sequence of signals' values.

(defun signal-vals-gen (num-signals n state signals-lst)
  (declare (xargs :guard (and (natp num-signals)
                              (natp n))
                  :guard-hints
                  (("Goal" :in-theory (enable random$)))
                  :stobjs state))
  (if (zp n)
      (mv signals-lst state)
    (b* (((mv oracle state) (random$ (expt 2 num-signals) state))
         (signals (nat-to-v oracle num-signals))
         (signals-lst (cons signals signals-lst)))
      (signal-vals-gen num-signals (1- n) state signals-lst))))

;; ======================================================================

;; Non-RTZ two-phase handshake

(defun n-rtz-fullp (req ack)
  (declare (xargs :guard t))
  (and (booleanp req)
       (booleanp ack)
       (not (equal req ack))))

(defun n-rtz-emptyp (req ack)
  (declare (xargs :guard t))
  (and (booleanp req)
       (booleanp ack)
       (equal req ack)))

(defthm n-rtz-fullp-of-b-not
  (implies (n-rtz-fullp req ack)
           (n-rtz-fullp (b-not req) (b-not ack)))
  :rule-classes (:rewrite :type-prescription))

(defthm n-rtz-emptyp-of-b-not
  (implies (n-rtz-emptyp req ack)
           (n-rtz-emptyp (b-not req) (b-not ack)))
  :rule-classes (:rewrite :type-prescription))

(defthm drain-n-rtz-full
  (implies (n-rtz-fullp req ack)
           (n-rtz-emptyp req (b-not ack)))
  :rule-classes (:rewrite :type-prescription))

(defthm fill-n-rtz-empty
  (implies (n-rtz-emptyp req ack)
           (n-rtz-fullp (b-not req) ack))
  :rule-classes (:rewrite :type-prescription))

(in-theory (disable n-rtz-fullp n-rtz-emptyp))

;; RTZ two-phase handshake

(defun rtz-fullp (sw)
  (declare (xargs :guard t))
  (equal sw t))

(defun rtz-emptyp (sw)
  (declare (xargs :guard t))
  (equal sw nil))

;; ======================================================================

;; Joint control circuit

(defconst *joint-cntl*
  '((joint-cntl
     (fin fout go)
     (act)
     ()
     ((not-fout (fout~) b-not (fout))
      (g0 (ready) b-and (fin fout~))
      (g1 (b-go) b-bool (go))
      (jact (act) b-and (ready b-go))))))

(defund joint-cntl& (netlist)
  (declare (xargs :guard (alistp netlist)))
  (equal (assoc 'joint-cntl netlist)
         (car *joint-cntl*)))

(local
 (defthmd check-joint-cntl
   (and (net-syntax-okp *joint-cntl*)
        (net-arity-okp *joint-cntl*)
        (joint-cntl& *joint-cntl*))))

(defun joint-act (fin fout go)
  (declare (xargs :guard t))
  (f-and (f-and fin (f-not fout))
         (f-bool go)))

(defthm booleanp-joint-act
  (implies (and (booleanp fin)
                (booleanp fout))
           (booleanp (joint-act fin fout go)))
  :rule-classes :type-prescription)

(defthm joint-act-rewrite
  (and (not (joint-act nil fout go))
       (not (joint-act fin t go))
       (not (joint-act fin fout nil))
       (equal (joint-act t nil go)
              (f-bool go))))

(defthm joint-act-removes-f-buf
  (and (equal (f-buf (joint-act fin fout go))
              (joint-act fin fout go))
       (equal (joint-act (f-buf fin) fout go)
              (joint-act fin fout go))
       (equal (joint-act fin (f-buf fout) go)
              (joint-act fin fout go))
       (equal (joint-act fin fout (f-buf go))
              (joint-act fin fout go)))
  :hints (("Goal" :in-theory (enable f-buf-delete-lemmas-2))))

(defthm joint-cntl$value
  (implies (joint-cntl& netlist)
           (equal (se 'joint-cntl inputs st netlist)
                  (list (joint-act (car inputs) (cadr inputs) (caddr inputs)))))
  :hints (("Goal"
           :expand (se 'joint-cntl inputs st netlist)
           :in-theory (enable de-rules joint-cntl&))))

(in-theory (disable joint-act))

;; ======================================================================

;; Click link control circuit

(defconst *click-link*
  '((click-link
     (fi dr)
     (ls)
     (ff0 ff1)
     ((ff0 (req req~) ff (fi r))
      (ff1 (ack ack~) ff (dr a))
      (g0 (ls) b-xor (req ack))
      (g1 (r) b-not (req))
      (g2 (a) b-not (ack))))))

(defund click-link& (netlist)
  (declare (xargs :guard (alistp netlist)))
  (equal (assoc 'click-link netlist)
         (car *click-link*)))

(local
 (defthmd check-click-link
   (and (net-syntax-okp *click-link*)
        (net-arity-okp *click-link*)
        (click-link& *click-link*))))

(defthm click-link$value
  (implies (click-link& netlist)
           (equal (se 'click-link inputs st netlist)
                  (list (f-xor (caar st) (caadr st)))))
  :hints (("Goal"
           :expand (se 'click-link inputs st netlist)
           :in-theory (enable de-rules
                              click-link&
                              f-gates))))

(defthm click-link$state
  (implies (click-link& netlist)
           (equal (de 'click-link inputs st netlist)
                  (list (list (f-if (car inputs)
                                    (f-not (caar st))
                                    (caar st)))
                        (list (f-if (cadr inputs)
                                    (f-not (caadr st))
                                    (caadr st))))))
  :hints (("Goal"
           :expand (de 'click-link inputs st netlist)
           :in-theory (enable de-rules
                              click-link&
                              f-gates))))

;; ======================================================================

;; DE module of LINK1

(module-generator
 link1* ()
 'link1
 '(fill drain bit-in)
 '(status bit-out)
 '(s d)
 '((s (status) link-cntl (fill drain))
   (d (bit-out bit-out~) latch (fill bit-in)))
 (declare (xargs :guard t)))

(make-event
 `(progn
    ,@(state-accessors-gen 'link1 '(s d) 0)))

;; DE netlist containing LINK1

(defund link1$netlist ()
  (declare (xargs :guard t))
  (list (link1*)))

;; Recognizer for LINK1

(defund link1& (netlist)
  (declare (xargs :guard (alistp netlist)))
  (equal (assoc 'link1 netlist)
         (link1*)))

;; Sanity check

(local
 (defthmd check-link1$netlist
   (and (net-syntax-okp (link1$netlist))
        (net-arity-okp (link1$netlist))
        (link1& (link1$netlist)))))

;; Constraints on the state of LINK1

(defun link1$valid-st (st)
  (b* ((s (nth *link1$s* st))
       (d (nth *link1$d* st)))
    (and (validp s)
         (true-listp d)
         (equal (len d) 1)
         (or (emptyp s)
             (booleanp (car d))))))

;; The value lemma for LINK1

(defthm link1$value
  (b* ((fill$ (car inputs))
       (bit-in (caddr inputs))
       (s (nth *link1$s* st))
       (d (nth *link1$d* st)))
    (implies (link1& netlist)
             (equal (se 'link1 inputs st netlist)
                    (list (f-buf (car s))
                          (f-if fill$ bit-in (car d))))))
  :hints (("Goal"
           :expand (:free (inputs)
                          (se 'link1 inputs st netlist))
           :in-theory (e/d (de-rules
                            link1&
                            link1*$destructure)
                           ((link1*)
                            de-module-disabled-rules)))))

;; This function specifies the next state of LINK1.

(defun link1$step (inputs st)
  (b* ((fill$ (nth 0 inputs))
       (drain (nth 1 inputs))
       (bit-in (nth 2 inputs))

       (s (nth *link1$s* st))
       (d (nth *link1$d* st)))
    (list
     (list (f-sr fill$ drain (car s)))
     (list (f-if fill$ bit-in (car d))))))

;; The state lemma for LINK1

(defthm link1$state
  (implies (link1& netlist)
           (equal (de 'link1 inputs st netlist)
                  (link1$step inputs st)))
  :hints (("Goal"
           :expand (de 'link1 inputs st netlist)
           :in-theory (e/d (de-rules
                            link1&
                            link1*$destructure)
                           ((link1*)
                            de-module-disabled-rules)))))

;; (in-theory (disable link1$step))

;; ======================================================================

;; DE module generator of LINK

(defun link$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (mbe :logic (nfix data-size)
            :exec  data-size)))

(module-generator
 link* (data-size)
 (si 'link data-size)
 (list* 'fill 'drain (sis 'data-in 0 data-size))
 (list* 'status (sis 'data-out 0 data-size))
 ;; INTERNAL STATE
 ;; A link have two state-holding devices: one stores the link's full/empty
 ;; status and one stores the link data.
 '(s d)
 (list
  '(s (status) link-cntl (fill drain))
  (list 'd
        (sis 'data-out 0 data-size)
        (si 'latch-n data-size)
        (list* 'fill (sis 'data-in 0 data-size))))
 (declare (xargs :guard (natp data-size))))

(make-event
 `(progn
    ,@(state-accessors-gen 'link '(s d) 0)))

(defun extract-valid-data (st)
  ;;(declare (xargs :guard (true-listp st)))
  (if (atom st)
      nil
    (b* ((link (car st)))
      (if (fullp (nth *link$s* link))
          (cons (strip-cars (nth *link$d* link))
                (extract-valid-data (cdr st)))
        (extract-valid-data (cdr st))))))

;; DE netlist generator.  A generated netlist will contain an instance of
;; LINK.

(defund link$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (link* data-size)
        (union$ (latch-n$netlist data-size)
                :test 'equal)))

;; Recognizer for LINK

(defund link& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'link data-size) netlist)))
    (and (equal (assoc (si 'link data-size) netlist)
                (link* data-size))
         (latch-n& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-link$netlist-64
   (and (net-syntax-okp (link$netlist 64))
        (net-arity-okp (link$netlist 64))
        (link& (link$netlist 64) 64))))

;; Constraints on the state of LINK

(defun link$st-format (st data-size)
  (b* ((d (nth *link$d* st)))
    (and (len-1-true-listp d)
         (equal (len d) data-size))))

(defthm link$st-format=>constraint
  (implies (link$st-format st data-size)
           (natp data-size))
  :hints (("Goal" :in-theory (enable link$st-format)))
  :rule-classes :forward-chaining)

(defun link$valid-st (st data-size)
  (b* ((s (nth *link$s* st))
       (d (nth *link$d* st)))
    (and (link$st-format st data-size)

         (validp s) ;; The link status is either full or empty.
         (or (emptyp s)               ;; When the link is full,
             (bvp (strip-cars d)))))) ;; its data must be a bit vector.

(defthmd link$valid-st=>constraint
  (implies (link$valid-st st data-size)
           (natp data-size))
  :rule-classes :forward-chaining)

;; The value lemma for LINK

(defthm link$value
  (b* ((fill$ (car inputs))
       (data-in (cddr inputs))
       (s (nth *link$s* st))
       (d (nth *link$d* st)))
    (implies (and (link& netlist data-size)
                  (true-listp data-in)
                  (equal (len data-in) data-size)
                  (link$st-format st data-size))
             (equal (se (si 'link data-size) inputs st netlist)
                    (list* (f-buf (car s))
                           (fv-if fill$ data-in (strip-cars d))))))
  :hints (("Goal"
           :expand (:free (inputs data-size)
                          (se (si 'link data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            link&
                            link*$destructure)
                           (de-module-disabled-rules)))))

;; This function specifies the next state of LINK.

(defun link$step (inputs st data-size)
  (b* ((fill$ (nth 0 inputs))
       (drain (nth 1 inputs))
       (data-in (take (nfix data-size)
                      (nthcdr 2 inputs)))

       (s (nth *link$s* st))
       (d (nth *link$d* st)))
    (list
     (list (f-sr fill$ drain (car s)))
     (pairlis$ (fv-if fill$ data-in (strip-cars d))
               nil))))

;; The state lemma for LINK

(defthm link$state
  (implies (and (link& netlist data-size)
                (true-listp inputs)
                (equal (len inputs) (link$ins-len data-size))
                (link$st-format st data-size))
           (equal (de (si 'link data-size) inputs st netlist)
                  (link$step inputs st data-size)))
  :hints (("Goal"
           :expand (:free (data-size)
                          (de (si 'link data-size) inputs st netlist))
           :in-theory (e/d (de-rules
                            link&
                            link*$destructure)
                           (de-module-disabled-rules)))))

(defthm link$valid-st-preserved
  (implies (and (booleanp (nth 0 inputs))
                (booleanp (nth 1 inputs))
                (not (and (nth 0 inputs) (nth 1 inputs)))
                (or (not (nth 0 inputs))
                    (bvp (nthcdr 2 inputs)))
                (link$valid-st st data-size))
           (link$valid-st (link$step inputs st data-size)
                          data-size))
  :hints (("Goal" :in-theory (enable f-sr))))

;; (in-theory (disable link$step))