1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "definitions")
(%interactive)
(%autoadmit flag-generic-evaluator)
(%autoadmit generic-evaluator)
(%autoadmit generic-evaluator-list)
(%autoprove definition-of-generic-evaluator
(%enable default generic-evaluator generic-evaluator-list)
(%restrict default flag-generic-evaluator (equal x 'x)))
(%autoprove definition-of-generic-evaluator-list
(%enable default generic-evaluator generic-evaluator-list)
(%restrict default flag-generic-evaluator (equal x 'x)))
(%autoprove flag-generic-evaluator-when-term
(%enable default generic-evaluator))
(%autoprove flag-generic-evaluator-when-list
(%enable default generic-evaluator-list))
(%autoprove generic-evaluator-list-when-not-consp
(%restrict default definition-of-generic-evaluator-list (equal x 'x)))
(%autoprove generic-evaluator-list-of-cons
(%restrict default definition-of-generic-evaluator-list (equal x '(cons a x))))
(%autoprove true-listp-of-generic-evaluator-list
(%cdr-induction x))
(%autoprove forcing-len-of-cdr-of-generic-evaluator-list
(%cdr-induction x))
(%autoprove consp-of-generic-evaluator-list
(%cdr-induction x))
(defmacro %flag-generic-evaluator-induction (flag x defs n)
`(%induct (two-nats-measure ,n (rank ,x))
((and (equal ,flag 'term)
(zp ,n))
nil)
((and (equal ,flag 'term)
(not (zp ,n))
(logic.functionp ,x)
(equal (logic.function-name ,x) 'if)
(equal (len (logic.function-args ,x)) '3))
(((,flag 'term) (,x (first (logic.function-args ,x))))
((,flag 'term) (,x (second (logic.function-args ,x))))
((,flag 'term) (,x (third (logic.function-args ,x))))))
((and (equal ,flag 'term)
(not (zp ,n))
(logic.functionp ,x)
(not (and (equal (logic.function-name ,x) 'if)
(equal (len (logic.function-args ,x)) '3))))
(((,flag 'list) (,x (logic.function-args ,x)))
((,flag 'term)
(x
(logic.substitute
(logic.=rhs (definition-list-lookup (logic.function-name ,x) ,defs))
(pair-lists
(logic.function-args
(logic.=lhs (definition-list-lookup (logic.function-name ,x) ,defs)))
(cdr (flag-generic-evaluator 'list
(logic.function-args ,x)
,defs ,n)))))
(,n (- ,n '1)))))
((and (equal ,flag 'term)
(not (zp ,n))
(logic.lambdap ,x))
(((,flag 'list) (,x (logic.lambda-actuals ,x)))
((,flag 'term)
(,x (logic.substitute
(logic.lambda-body ,x)
(pair-lists (logic.lambda-formals ,x)
(cdr (flag-generic-evaluator 'list
(logic.lambda-actuals ,x)
,defs ,n)))))
(,n (- ,n '1)))))
((and (equal ,flag 'term)
(not (zp ,n))
(not (logic.functionp ,x))
(not (logic.lambdap ,x)))
nil)
((and (not (equal ,flag 'term))
(consp ,x))
(((,flag 'term) (,x (car ,x)))
((,flag 'list) (,x (cdr ,x)))))
((and (not (equal ,flag 'term))
(not (consp ,x)))
nil)))
;; (defmacro %flag-generic-evaluator-induction (flag x defs n)
;; `(%induct (two-nats-measure ,n (rank ,x))
;; ((and (equal ,flag 'term)
;; (zp ,n))
;; nil)
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (logic.constantp ,x))
;; nil)
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (logic.variablep ,x))
;; nil)
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (logic.functionp ,x)
;; (equal (logic.function-name ,x) 'if)
;; (equal (len (logic.function-args ,x)) '3))
;; (((,flag 'term) (,x (first (logic.function-args ,x))))
;; ((,flag 'term) (,x (second (logic.function-args ,x))))
;; ((,flag 'term) (,x (third (logic.function-args ,x))))))
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (logic.functionp ,x)
;; (not (and (equal (logic.function-name ,x) 'if)
;; (equal (len (logic.function-args ,x)) '3))))
;; (((,flag 'list) (,x (logic.function-args ,x)))
;; ((,flag 'term)
;; (x
;; (logic.substitute
;; (logic.=rhs (definition-list-lookup (logic.function-name ,x) ,defs))
;; (pair-lists
;; (logic.function-args
;; (logic.=lhs (definition-list-lookup (logic.function-name ,x) ,defs)))
;; (cdr (flag-generic-evaluator 'list
;; (logic.function-args ,x)
;; ,defs ,n)))))
;; (,n (- ,n '1)))))
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (logic.lambdap ,x))
;; (((,flag 'list) (,x (logic.lambda-actuals ,x)))
;; ((,flag 'term)
;; (,x (logic.substitute
;; (logic.lambda-body ,x)
;; (pair-lists (logic.lambda-formals ,x)
;; (cdr (flag-generic-evaluator 'list
;; (logic.lambda-actuals ,x)
;; ,defs ,n)))))
;; (,n (- ,n '1)))))
;; ((and (equal ,flag 'term)
;; (not (zp ,n))
;; (not (logic.constantp ,x))
;; (not (logic.variablep ,x))
;; (not (logic.functionp ,x))
;; (not (logic.lambdap ,x)))
;; nil)
;; ((and (not (equal ,flag 'term))
;; (consp ,x))
;; (((,flag 'term) (,x (car ,x)))
;; ((,flag 'list) (,x (cdr ,x)))))
;; ((and (not (equal ,flag 'term))
;; (not (consp ,x)))
;; nil)))
;; (defthmd open-generic-evaluator-when-zp
;; (implies (and (syntaxp (equal x 'x))
;; (zp n))
;; (equal (generic-evaluator x defs n)
;; nil))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (enable definition-of-generic-evaluator))))
;; (defthmd open-generic-evaluator-when-logic.constantp
;; (implies (and (syntaxp (equal x 'x))
;; (not (zp n))
;; (logic.constantp x))
;; (equal (generic-evaluator x defs n)
;; x))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (enable definition-of-generic-evaluator))))
;; (defthmd open-generic-evaluator-when-logic.variablep
;; (implies (and (syntaxp (equal x 'x))
;; (logic.variablep x))
;; (equal (generic-evaluator x defs n)
;; nil))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (enable definition-of-generic-evaluator))))
;; (defthmd open-generic-evaluator-when-if
;; (implies (and (syntaxp (equal x 'x))
;; (not (zp n))
;; (logic.functionp x)
;; (equal (logic.function-name x) 'if)
;; (equal (len (logic.function-args x)) 3))
;; (equal (generic-evaluator x defs n)
;; (let* ((args (logic.function-args x))
;; (eval-test (generic-evaluator (first args) defs n)))
;; (and eval-test
;; (if (logic.unquote eval-test)
;; (generic-evaluator (second args) defs n)
;; (generic-evaluator (third args) defs n))))))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (e/d (definition-of-generic-evaluator)
;; ((:executable-counterpart ACL2::force))))))
;; (defthmd open-generic-evaluator-when-not-if
;; (implies (and (syntaxp (equal x 'x))
;; (not (zp n))
;; (logic.functionp x)
;; (not (equal (logic.function-name x) 'if)))
;; (equal (generic-evaluator x defs n)
;; (let* ((name (logic.function-name x))
;; (args (logic.function-args x))
;; (eval-args (generic-evaluator-list args defs n)))
;; (and eval-args
;; (let ((values (cdr eval-args)))
;; (if (memberp name (domain (logic.initial-arity-table)))
;; (and (equal (cdr (lookup name (logic.initial-arity-table))) (len values))
;; (logic.base-evaluator (logic.function name values)))
;; (let* ((def (definition-list-lookup name defs)))
;; (and def
;; (let ((formals (logic.function-args (logic.=lhs def)))
;; (body (logic.=rhs def)))
;; (and (equal (len formals) (len values))
;; (generic-evaluator (logic.substitute body (pair-lists formals values))
;; defs (- n 1))))))))))))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (e/d (definition-of-generic-evaluator)
;; ((:executable-counterpart ACL2::force))))))
;; (defthmd open-generic-evaluator-when-not-length-three
;; (implies (and (syntaxp (equal x 'x))
;; (not (zp n))
;; (logic.functionp x)
;; (not (equal (len (logic.function-args x)) 3)))
;; (equal (generic-evaluator x defs n)
;; (let* ((name (logic.function-name x))
;; (args (logic.function-args x))
;; (eval-args (generic-evaluator-list args defs n)))
;; (and eval-args
;; (let ((values (cdr eval-args)))
;; (if (memberp name (domain (logic.initial-arity-table)))
;; (and (equal (cdr (lookup name (logic.initial-arity-table))) (len values))
;; (logic.base-evaluator (logic.function name values)))
;; (let* ((def (definition-list-lookup name defs)))
;; (and def
;; (let ((formals (logic.function-args (logic.=lhs def)))
;; (body (logic.=rhs def)))
;; (and (equal (len formals) (len values))
;; (generic-evaluator (logic.substitute body (pair-lists formals values))
;; defs (- n 1))))))))))))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal"
;; :expand (generic-evaluator x defs n)
;; :in-theory (e/d (definition-of-generic-evaluator)
;; ((:executable-counterpart ACL2::force))))))
;; (defthmd open-generic-evaluator-when-logic.lambdap
;; (implies (and (syntaxp (equal x 'x))
;; (not (zp n))
;; (logic.lambdap x))
;; (equal (generic-evaluator x defs n)
;; (let ((formals (logic.lambda-formals x))
;; (body (logic.lambda-body x))
;; (actuals (logic.lambda-actuals x)))
;; (let ((eval-actuals (generic-evaluator-list actuals defs n)))
;; (and eval-actuals
;; (let ((values (cdr eval-actuals)))
;; (generic-evaluator (logic.substitute body (pair-lists formals values))
;; defs (- n 1))))))))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (e/d (definition-of-generic-evaluator)
;; ((:executable-counterpart ACL2::force))))))
;; (defthmd open-generic-evaluator-when-degenerate
;; (implies (and (syntaxp (equal x 'x))
;; (not (logic.constantp x))
;; (not (logic.variablep x))
;; (not (logic.functionp x))
;; (not (logic.lambdap x)))
;; (equal (generic-evaluator x defs n)
;; nil))
;; :rule-classes ((:rewrite :backchain-limit-lst 0))
;; :hints(("Goal" :in-theory (enable definition-of-generic-evaluator))))
;; (deftheory open-generic-evaluator-theory
;; '(open-generic-evaluator-when-zp
;; open-generic-evaluator-when-logic.constantp
;; open-generic-evaluator-when-logic.variablep
;; open-generic-evaluator-when-if
;; open-generic-evaluator-when-not-if
;; open-generic-evaluator-when-not-length-three
;; open-generic-evaluator-when-logic.lambdap
;; open-generic-evaluator-when-degenerate))
;; (%autoprove open-generic-evaluator-when-zp
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-logic.constantp
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-logic.variablep
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-if
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-not-if
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-not-length-three
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-logic.lambdap
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%autoprove open-generic-evaluator-when-degenerate
;; (%restrict default definition-of-generic-evaluator (equal x 'x)))
;; (%create-theory open-generic-evaluator-theory)
;; (%enable open-generic-evaluator-theory
;; open-generic-evaluator-when-zp
;; open-generic-evaluator-when-logic.constantp
;; open-generic-evaluator-when-logic.variablep
;; open-generic-evaluator-when-if
;; open-generic-evaluator-when-not-if
;; open-generic-evaluator-when-not-length-three
;; open-generic-evaluator-when-logic.lambdap
;; open-generic-evaluator-when-degenerate)
;; But I think it may be relevant to note that there wasn't much of a savings at all by
;; using the opener theory instead of the definitions themselves. With the original
;; induction scheme, we're looking at 338K with openers versus 346K with restrict.
;;
;; - also consider consolidated induction schemes, and see if they are any use.
;; (they might work using the restrict style, even if they aren't suited for openers.)
;; -- Wow! That reduced the proof to 110M conses. And, the compiling time was only
;; a minute. (of course building the skeleton took longer than that).
;;
;; - also try opening the functions right away, not waiting for one pass of auto
;; to go first. eeeeh, this seems bad.
;;
;; - how about not forcing until we've issued the restrict hints? hrmn, that seems to
;; be very slow during rewriting. i got bored and didn't let it finish.
;; 338K conses, 1306 seconds to compile. damn.
;; (%autoprove lemma-for-forcing-logic.constantp-of-cdr-of-generic-evaluator
;; (%flag-generic-evaluator-induction flag x defs n)
;; (%auto :strategy (cleanup split urewrite))
;; (%disable default ;; speed hint
;; logic.termp-when-logic.formulap
;; logic.constantp-when-logic.variablep
;; logic.variablep-when-logic.constantp
;; logic.constantp-when-logic.functionp
;; same-length-prefixes-equal-cheap
;; not-equal-when-less
;; not-equal-when-less-two)
;; (%crewrite default)
;; (%enable default open-generic-evaluator-theory))
;; trying new induction scheme.
;; orig scheme: 346k conses this way. bleh. but only 1134 seconds to compile.
;; new scheme: way fewer initial goals (4500 vs 50k)
;; also, consider not forcing until we open up the definitions?
(%autoprove lemma-for-forcing-logic.constantp-of-cdr-of-generic-evaluator
(%flag-generic-evaluator-induction flag x defs n)
(%auto)
(%restrict default definition-of-generic-evaluator (equal x 'x))
(%restrict default definition-of-generic-evaluator-list (equal x 'x))
(%auto :steps 90))
(%autoprove forcing-logic.constantp-of-cdr-of-generic-evaluator
(%use (%instance (%thm lemma-for-forcing-logic.constantp-of-cdr-of-generic-evaluator)
(flag 'term))))
(%autoprove forcing-logic.constant-listp-of-cdr-of-generic-evaluator-list
(%use (%instance (%thm lemma-for-forcing-logic.constantp-of-cdr-of-generic-evaluator)
(flag 'list))))
|