1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "core")
;; Simple tactics
;;
;; We now introduce some of the simple tactics which don't make use of any
;; theories. All of our tactics make only local changes to the skeleton. This
;; way, they are skipped when the already-certified books are being included.
(defun %tactic.skip-all-tac-wrapper (skelly)
(declare (xargs :mode :program))
(tactic.skip-all-tac skelly))
(defun %tactic.skip-first-tac-wrapper (skelly)
(declare (xargs :mode :program))
(tactic.skip-first-tac skelly))
(defmacro %skip (&rest args)
;; Pretend that you have proven some goals.
;;
;; Usage:
;; (%skip) Skip the current goal.
;; (%skip all) Skip all of the goals.
;;
;; Note: This is not a sound tactic to apply. It relies upon the special and
;; "skipping" mechanism only available in the ACL2 version of proofp, which is
;; not available in the core Milawa proof checker.
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(new-skelly (if ',(memberp 'all args)
(%tactic.skip-all-tac-wrapper skelly)
(%tactic.skip-first-tac-wrapper skelly))))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.cleanup-tac-wrapper (skelly warnp)
(declare (xargs :mode :program))
(tactic.cleanup-tac skelly warnp))
(defmacro %cleanup ()
;; Apply basic cleaning to all the goals. We try to:
;;
;; - Eliminate double negation from the tops of literals,
;; - Standardize all not-variants to (not x),
;; - Eliminate any clauses with "obvious" literals,
;; - Eliminate any clauses with complementary literals,
;; - Remove any "absurd" literals from each clause,
;; - Remove any duplicate literals within each clause, and
;; - Eliminate any "subsumed" clauses from the list.
;;
;; There are no configurable options.
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(warnp (tactic.harness->warnp ACL2::world))
(new-skelly (%tactic.cleanup-tac-wrapper skelly warnp)))
(or new-skelly skelly))))
(local (%print))))
(defun tactic.simple-world-change-wrapper (changes world)
(declare (xargs :mode :program))
(tactic.simple-world-change changes world))
(defun tactic.simple-change-world-tac-wrapper (skelly changes)
(declare (xargs :mode :program))
(tactic.simple-change-world-tac skelly changes))
(defun %simple-world-change-fn (changes)
(declare (xargs :mode :program))
`(ACL2::progn
(ACL2::table tactic-harness 'world
(tactic.simple-world-change-wrapper ',changes
(tactic.harness->world acl2::world)))
(ACL2::table tactic-harness 'skeleton
(let ((skelly (tactic.harness->skeleton ACL2::world)))
(and skelly
(tactic.simple-change-world-tac-wrapper skelly ',changes))))))
(defmacro %liftlimit (&optional (limit '0))
;; Change the lift limit (used by %split). Setting a low liftlimit may
;; help reduce case splitting by preventing "if" expressions from being
;; lifted out of other terms. Normally, terms like (foo (if x y z)) are
;; first "lifted" to (if x (foo y) (foo z)), and then case-split on x. A
;; liftlimit prevents this from happening after a certain depth.
;;
;; Usage:
;; (%liftlimit) Change the liftlimit to unlimited.
;; (%liftlimit 10) Change the liftlimit to 10.
;;
;; I have found that (%liftlimit 1) produces the smallest proofs during the
;; early stages of bootstrapping. However, after the split tactic is
;; verified in Level 7, a higher limit is better.
(%simple-world-change-fn (list (cons 'liftlimit limit))))
(defmacro %splitlimit (&optional (limit '0))
;; Change the split limit (used by %split). Setting a low splitlimit may
;; help control case-splitting by not looking for "if" expressions in the
;; later parts of the clause.
;;
;; Usage:
;; (%splitlimit) Change the splitlimit to unlimitd.
;; (%splitlimit 10) Change the splitlimit to 10.
(%simple-world-change-fn (list (cons 'splitlimit limit))))
(defun %tactic.split-first-tac-wrapper (liftp liftlimit splitlimit skelly)
(declare (xargs :mode :program))
(tactic.split-first-tac liftp liftlimit splitlimit skelly))
(defun %tactic.split-all-tac-wrapper (liftp liftlimit splitlimit skelly warnp)
(declare (xargs :mode :program))
(tactic.split-all-tac liftp liftlimit splitlimit skelly warnp))
(defmacro %split (&key (what 'all) liftlimit splitlimit (liftp 't))
;; Case-split goals which have terms of the form (if a b c).
;;
;; WHAT controls what gets split. The default, :what all, means all the
;; clauses should be split. Alternately, :what first can be used to limit
;; splitting to the first clause.
;;
;; LIFTP controls whether or not the clauses will be if-lifted. Lifting is
;; permitted by default and is generally desirable, and typically produces
;; larger numbers of simpler clauses. However, sometimes it can be too
;; expensive, so you can turn it off with :liftp nil, or limit it using the
;; :limit keyword (described below).
;;
;; The LIFTLIMIT and SPLITLIMITED are inherited from %liftlimit and
;; %splitlimit by default, but can be overridden using your own keys.
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(warnp (tactic.harness->warnp ACL2::world))
(world (tactic.harness->world ACL2::world))
(liftlimit (if ,liftlimit
,liftlimit
(tactic.world->liftlimit world)))
(splitlimit (if ,splitlimit
,splitlimit
(tactic.world->splitlimit world)))
(new-skelly (if ,(equal what 'first)
(%tactic.split-first-tac-wrapper ,liftp liftlimit splitlimit skelly)
(%tactic.split-all-tac-wrapper ,liftp liftlimit splitlimit skelly warnp))))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.generalize-first-tac-wrapper (skelly expr var)
(declare (xargs :mode :program :guard (and (logic.termp expr) (logic.variablep var))))
(tactic.generalize-first-tac skelly expr var))
(defun %tactic.generalize-all-tac-wrapper (skelly expr var)
(declare (xargs :mode :program :guard (and (logic.termp expr) (logic.variablep var))))
(tactic.generalize-all-tac skelly expr var))
(defmacro %generalize (&rest args)
;; Replace any occurrences of some expression with a new variable.
;;
;; Usage:
;; (%generalize expr var) Try to generalize every goal.
;; (%generalize first expr var) Only try to generalize the first goal.
;;
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((firstp (memberp 'first ',args))
(others (remove-all 'first ',args))
(skelly (tactic.harness->skeleton ACL2::world))
(expr (first others))
(var (second others))
(new-skelly (if firstp
(%tactic.generalize-first-tac-wrapper skelly expr var)
(%tactic.generalize-all-tac-wrapper skelly expr var))))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.conditional-eqsubst-tac-wrapper (skelly hyp old new)
(declare (xargs :mode :program
:guard (and (logic.termp hyp)
(logic.termp old)
(logic.termp new))))
(tactic.conditional-eqsubst-tac skelly hyp old new))
(defun %tactic.conditional-eqsubst-all-tac-wrapper (skelly hyp old new warnp)
(declare (xargs :mode :program
:guard (and (logic.termp hyp)
(logic.termp old)
(logic.termp new))))
(tactic.conditional-eqsubst-all-tac skelly hyp old new warnp))
(defmacro %eqsubst (hyp old new &rest args)
;; Use a conditional equality to simplify the goals.
;;
;; Suppose the first goal has the form (implies (and h1 ... hN) concl).
;; Then, we create three new subgoals:
;;
;; (1) (implies hyp (equal old new)) "subst correctness"
;;
;; (2) (implies (and (not hyp) "subst applicability"
;; h1 ... hn)
;; concl)
;;
;; (3) (implies (and h1/[old<-new] "post substitution"
;; ...
;; hn/[old<-new])
;; concl/[old<-new])
;;
;; Usage:
;; (%eqsubst hyp old new) Perform the substitution on every goal.
;; (%eqsubst hyp old new first) Perform the substition on only the first goal.
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(new-skelly ,(if (memberp 'first args)
`(%tactic.conditional-eqsubst-tac-wrapper skelly ',hyp ',old ',new)
`(%tactic.conditional-eqsubst-all-tac-wrapper skelly ',hyp ',old ',new
(tactic.harness->warnp ACL2::world)))))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.elim-first-tac-wrapper (x names)
(declare (xargs :mode :program))
(tactic.elim-first-tac x names))
(defun %tactic.elim-all-tac-wrapper (x names warnp)
(declare (xargs :mode :program))
(tactic.elim-all-tac x names warnp))
(defun tactic.harness->create-names (root n acc)
(declare (xargs :mode :program))
(if (zp n)
acc
(tactic.harness->create-names root
(- n 1)
(cons (ACL2::intern-in-package-of-symbol
(STR::ncat root n)
'foo)
acc))))
(defconst *tactic.harness-unpreferred-names*
(tactic.harness->create-names "ELIM" 100 nil))
(defun tactic.harness->infer-preferred-names (vars acc)
(declare (xargs :mode :program))
(if (consp vars)
(tactic.harness->infer-preferred-names
(cdr vars)
(cons (cons (car vars) (tactic.harness->create-names (ACL2::symbol-name (car vars)) 2 nil))
acc))
acc))
(defun tactic.harness->create-elim-names (goals)
(declare (xargs :mode :program))
(let ((all-clause-vars (remove-duplicates (logic.fast-term-list-list-vars goals nil))))
(tactic.harness->infer-preferred-names all-clause-vars
(list (cons 'unpreferred *tactic.harness-unpreferred-names*)))))
(defun %tactic.harness->create-elim-names-wrapper (goals)
(declare (xargs :mode :program))
(tactic.harness->create-elim-names goals))
(defmacro %car-cdr-elim (&rest args)
;; Perform car/cdr elimination.
;;
;; Usage:
;; (%car-cdr-elim) Auto-eliminate in every goal.
;; (%car-cdr-elim first) Auto-eliminate in the first goal.
;; (%car-cdr-elim x) Manual-eliminate x in every goal.
;; (%car-cdr-elim x first) Manual-eliminate x in the first goal.
(let* ((firstp (memberp 'first args))
(args-prime (remove-all 'first args)))
(if (consp args-prime)
;; Manual elimination.
(let ((var (first args-prime)))
(if firstp
`(%eqsubst (consp ,var) ,var (cons (car ,var) (cdr ,var)) first)
`(%eqsubst (consp ,var) ,var (cons (car ,var) (cdr ,var)))))
;; Automatic elimination.
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(warnp (tactic.harness->warnp ACL2::world))
(names (%tactic.harness->create-elim-names-wrapper (tactic.skeleton->goals skelly)))
(new-skelly (if ,firstp
(%tactic.elim-first-tac-wrapper skelly names)
(%tactic.elim-all-tac-wrapper skelly names warnp))))
(or new-skelly skelly))))
(local (%print))))))
(defun %tactic.distribute-all-tac-wrapper (skelly warnp)
(declare (xargs :mode :program))
(tactic.distribute-all-tac skelly warnp))
(defmacro %distribute ()
;; Distribute trivial equivalences throughout the clauses. Eventually we should add a
;; single-clause version of this, but for now we only do all clauses.
;;
;; Usage:
;; (%distribute)
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(warnp (tactic.harness->warnp ACL2::world))
(new-skelly (%tactic.distribute-all-tac-wrapper skelly warnp)))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.fertilize-tac-wrapper (skelly target replacement)
(declare (xargs :mode :program
:guard (and (logic.termp target)
(logic.termp replacement))))
(tactic.fertilize-tac skelly target replacement))
(defmacro %fertilize (target replacement)
;; Replace all instances of one term with an equal term.
;;
;; Usage:
;; (%fertilize target replacement) Replace target with replacement in the first goal
;;
;; Note:
;; (equal target replacement) must be among the current hyps for this to be a valid
;; transformation. Equivalently, (not (equal target replacement)) can be the conclusion.
;;
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(new-skelly (%tactic.fertilize-tac-wrapper skelly ',target ',replacement)))
(or new-skelly skelly))))
(local (%print))))
(defun %tactic.use-tac-wrapper (skelly proof)
(declare (xargs :mode :program
:guard (logic.appealp proof)))
(tactic.use-tac skelly proof))
(defmacro %use (proof)
;; Add a fact into the first goal.
;;
;; Proof is an arbitrary proof of any formula. We compile the formula and
;; add its negation into the clause. This is a useful way to bring some
;; relevant but perhaps disabled fact to the attention of the rewriter, etc.
;;
;; The argument to %use is evaluated and should result in a proof. By far
;; the most common way to generate such proofs is with the %instance and
;; %thm macros below. For example:
;;
;; (%use (%instance (%thm {name-of-theorem})
;; ({var} {replacement})
;; ...
;; ({var} {replacement})))
;;
;; But advanced users can use explicit proof builders here, e.g.,
;;
;; (%use (build.cut ...))
;;
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(new-skelly (%tactic.use-tac-wrapper skelly ,proof)))
(or new-skelly skelly))))
(local (%print))))
(defmacro %thm (name)
`(build.theorem
(clause.clause-formula
(rw.rule-clause (tactic.find-rule ',name (tactic.harness->world ACL2::world))))))
(defun %instance-fn (thm untranslated-sigma)
(declare (xargs :mode :program))
(let ((translated-sigma+ (logic.translate-sigma untranslated-sigma)))
(and translated-sigma+
`(build.instantiation ,thm ',(cdr translated-sigma+)))))
(defmacro %instance (thm &rest pairs)
(%instance-fn thm pairs))
(defun tactic.induct-casep (x)
(declare (xargs :mode :program))
(and (tuplep 2 x)
(logic.translate (first x))
(logic.translate-sigma-list (second x))))
(defun tactic.induct-case-listp (x)
(declare (xargs :mode :program))
(if (consp x)
(and (tactic.induct-casep (car x))
(tactic.induct-case-listp (cdr x)))
t))
(defun %tactic.induct-tac-wrapper (skelly m qs all-sigmas)
(declare (xargs :mode :program
:guard (and (logic.termp m)
(logic.term-listp qs)
(logic.sigma-list-listp all-sigmas)
(same-lengthp qs all-sigmas))))
(tactic.induct-tac skelly m qs all-sigmas))
(defmacro %induct (m &rest cases)
;; Low level manual induction.
;;
;; You have to give a measure and then a list of cases of the form
;; (<tests governing this case> <list of sigmas that form the inductive hypotheses>)
;;
;; (%induct (rank x)
;; ((not (consp x))
;; nil) ;; no inductions for the base case
;; ((consp x)
;; (((x (cdr x)) (y (cdr x))) ;; IH1: P( cdr(x), cdr(y) )
;; ((x (cdr x)) (y (car x)))) ;; IH2: P( cdr(x), car(y) )
`(ACL2::progn
(local (ACL2::table tactic-harness 'skeleton
(let* ((skelly (tactic.harness->skeleton ACL2::world))
(cases (if (tactic.induct-case-listp ',cases)
',cases
(ACL2::er hard '%induct "The proposed cases are invalid.~%")))
(m (if (logic.termp ',m)
',m
(ACL2::er hard '%induct "The proposed measure is invalid.~%")))
(qs (cdr (logic.translate-list (strip-firsts cases))))
(sigmas (cdr (logic.translate-sigma-list-list (strip-seconds cases))))
(new-skelly (%tactic.induct-tac-wrapper skelly m qs sigmas)))
(or new-skelly skelly))))
(local (%print))))
|