1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
; Copyright (C) 2017, Regents of the University of Texas
; Marijn Heule, Warren A. Hunt, Jr., and Matt Kaufmann
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; See cube.lisp.
; Originally, our development of verify-for-cube-soundness.lisp included some
; rather general lemmas. We initially created the present book by moving those
; lemmas, along with some supporting definitions, into this book, so that they
; could be reused in development of the book
; verify-for-cube-soundness-main.lisp.
(in-package "LRAT")
(include-book "cube")
(defun falsify-clause (clause assignment)
(cond ((atom clause) assignment)
((equal (evaluate-literal (car clause) assignment) 0)
(falsify-clause (cdr clause)
(cons (negate (car clause)) assignment)))
(t (falsify-clause (cdr clause) assignment))))
; Start proof of evaluate-clause-falsify-clause
(defthm falsify-clause-preserves-member
(implies (member-equal lit assignment)
(member-equal lit (falsify-clause clause assignment))))
(defthm member-falsify-clause
(implies (and (literalp lit)
(clause-or-assignment-p clause)
(member-equal lit clause)
(not (member-equal lit assignment)))
(member-equal (negate lit)
(falsify-clause clause assignment))))
(defthm not-member-falsify-clause-1-1
(implies (and (literalp lit)
(clause-or-assignment-p clause))
(implies (member-equal lit
(falsify-clause clause assignment))
(or (member-equal (- lit) clause)
(member-equal lit assignment))))
:rule-classes nil)
(defthm conflicting-literals-p-suff
(implies (and (not (conflicting-literalsp clause))
(literalp lit)
(member lit clause))
(not (member (negate lit) clause))))
(defthm not-member-falsify-clause-1
(implies (and (literalp lit)
(clause-or-assignment-p clause)
(member-equal lit clause))
(implies (member-equal lit
(falsify-clause clause assignment))
(member-equal lit assignment)))
:hints (("Goal"
:use not-member-falsify-clause-1-1
:do-not-induct t))
:rule-classes nil)
(defthm not-member-falsify-clause
(implies (and (literalp lit)
(clause-or-assignment-p clause)
(member-equal lit clause))
(iff (member-equal lit
(falsify-clause clause assignment))
(member-equal lit assignment)))
:hints (("Goal" :use (not-member-falsify-clause-1
falsify-clause-preserves-member))))
(defthm evaluate-clause-falsify-clause
(implies (and (subsetp-equal clause1 clause2)
(clause-or-assignment-p clause1)
(clause-or-assignment-p clause2)
(not (equal (evaluate-clause clause1 assignment)
t)))
(equal (evaluate-clause clause1 (falsify-clause clause2 assignment))
nil)))
(encapsulate
()
(local (include-book "../list-based/truth-monotone"))
(defthm truth-monotone
(implies (and (subsetp-equal a1 a2)
(equal (formula-truep formula a1) t))
(equal (formula-truep formula a2) t)))
(defthm truth-monotone-alt
(implies (and (formula-truep formula a1)
(subsetp-equal a1 a2))
(equal (formula-truep formula a2) t))))
; Start proof of cube-soundness-2.
(defthm literal-listp-falsify-clause
(implies (and (literal-listp clause)
(literal-listp assignment))
(literal-listp (falsify-clause clause assignment))))
(defthm unique-literalsp-falsify-clause
(implies (unique-literalsp assignment)
(unique-literalsp (falsify-clause clause assignment))))
(defthm not-conflicting-literalsp-falsify-clause
(implies (and (literal-listp clause)
(not (conflicting-literalsp assignment)))
(not (conflicting-literalsp (falsify-clause clause assignment)))))
(defthm cons-preserves-subsetp
(implies (subsetp-equal x y)
(subsetp-equal x (cons a y))))
(defthm subsetp-x-x
(subsetp-equal x x))
(defthm subset-equal-falsify-clause
(subsetp-equal assignment
(falsify-clause clause assignment)))
(defun cube-to-formula (cube next-index)
; This variant of extend-formula-with-cube1 is useful for reasoning, below.
(cond ((endp cube) nil)
(t (acons next-index
(list (car cube))
(cube-to-formula
(cdr cube)
(1+ next-index))))))
(defthm extend-formula-with-cube1-rewrite
(implies (and (clause-or-assignment-p cube)
(posp next-index))
(equal (extend-formula-with-cube1 formula cube next-index)
(revappend (cube-to-formula cube next-index) formula))))
(defthm hons-assoc-equal-revappend-1-1
(implies (and (consp pair)
(not (member-equal (car pair) (strip-cars x1)))
(not (member-equal (car pair) (strip-cars x2))))
(equal (hons-assoc-equal (car pair)
(revappend x1 (append x2 (cons pair y))))
pair))
:hints (("Goal" :induct (revappend x1 x2)))
:rule-classes nil)
(defthm hons-assoc-equal-revappend-1
(implies (and (consp pair)
(not (member-equal (car pair) (strip-cars x))))
(equal (hons-assoc-equal (car pair)
(revappend x (cons pair y)))
pair))
:hints (("Goal" :use (:instance hons-assoc-equal-revappend-1-1
(x1 x) (x2 nil)))))
(defthm hons-assoc-equal-revappend
(implies (no-duplicatesp (strip-cars x))
(equal (hons-assoc-equal i (revappend x y))
(or (hons-assoc-equal i x)
(hons-assoc-equal i y)))))
(defthm hons-assoc-equal-cube-to-formula-implies-large-index
(implies (and (natp next-index)
(hons-assoc-equal i (cube-to-formula cube next-index)))
(and (natp i)
(>= i next-index)))
:rule-classes nil)
(defthm hons-assoc-equal-formula-implies-small-index
(implies (and (ordered-formula-p formula)
(hons-assoc-equal i formula))
(and (natp i)
(<= i (formula-max-index formula))))
:hints (("Goal" :in-theory (enable ordered-formula-p)))
:rule-classes nil)
(defthm hons-assoc-equal-formula-implies-not-hons-assoc-equal-cube-to-formula
(implies (and (ordered-formula-p formula)
(hons-assoc-equal i formula))
(not (hons-assoc-equal
i
(cube-to-formula cube
(+ 1 (formula-max-index formula))))))
:otf-flg t
:hints (("Goal"
:do-not-induct t
:in-theory (disable ordered-formula-p-implies-formula-p)
:use
((:instance hons-assoc-equal-cube-to-formula-implies-large-index
(next-index (+ 1 (formula-max-index formula))))
hons-assoc-equal-formula-implies-small-index
ordered-formula-p-implies-formula-p))))
(defthm no-duplicatesp-strip-cars-cube-to-formula-1
(implies (< i j)
(not (member-equal i (strip-cars (cube-to-formula cube j))))))
(defthm no-duplicatesp-strip-cars-cube-to-formula
(implies (natp j)
(no-duplicatesp-equal
(strip-cars (cube-to-formula cube j)))))
(local (defthm ordered-formula-p-implies-formula-p-forward
(implies (ordered-formula-p formula)
(formula-p formula))
:rule-classes :forward-chaining))
(local (in-theory (disable ordered-formula-p-implies-formula-p)))
(in-theory (disable formula-max-index))
(defthm hons-assoc-equal-extend-formula-with-cube-1
(implies (and (ordered-formula-p formula)
(clause-or-assignment-p cube)
(hons-assoc-equal i formula))
(equal (hons-assoc-equal i
(extend-formula-with-cube formula cube))
(hons-assoc-equal i formula)))
:hints (("Goal" :in-theory (enable extend-formula-with-cube)))
:rule-classes nil)
(defthm hons-assoc-equal-cube-to-formula-implies-member-equal
(implies (and (literal-listp cube)
(hons-assoc-equal i
(cube-to-formula cube j)))
(member-equal
(cadr (hons-assoc-equal i (cube-to-formula cube j)))
cube)))
(defthm not-cddr-hons-assoc-equal-cube-to-formula
(not (cddr (hons-assoc-equal i (cube-to-formula cube j)))))
(defthm consp-cdr-hons-assoc-equal-cube-to-formula
(implies (hons-assoc-equal i (cube-to-formula cube j))
(consp (cdr (hons-assoc-equal i (cube-to-formula cube j))))))
(defthm hons-assoc-equal-extend-formula-with-cube-2
(let ((pair (hons-assoc-equal i
(extend-formula-with-cube formula cube))))
(implies (and (formula-p formula)
(clause-or-assignment-p cube)
pair
(not (hons-assoc-equal i formula)))
(let ((clause (cdr pair)))
(and (consp clause)
(null (cdr clause))
(member-equal (car clause) cube)))))
:hints (("Goal"
:do-not-induct t
:in-theory (enable extend-formula-with-cube)))
:otf-flg t
:rule-classes nil)
(defthm literal-listp-negate-cube
(implies (literal-listp x)
(literal-listp (negate-cube x))))
(defthm member-equal-negate-cube
(implies (literal-listp x)
(iff (member-equal lit (negate-cube x))
(member-equal (negate lit) x))))
(defthm conflicting-literalsp-negate-cube
(implies (literal-listp x)
(iff (conflicting-literalsp (negate-cube x))
(conflicting-literalsp x))))
(defthm unique-literalsp-negate-cube
(implies (literal-listp x)
(equal (unique-literalsp (negate-cube x))
(unique-literalsp x))))
(defthm member-negate-implies-member-assignment
(implies (and (equal (evaluate-clause clause assignment)
nil)
(clause-or-assignment-p clause)
(force (literalp lit))
(member-equal (negate lit) clause))
(member-equal lit assignment)))
(defthm formula-truep-extend-formula-with-cube
; There is lots of induction under forcing rounds; maybe a little work could
; eliminate that.
(implies
(and (ordered-formula-p formula)
(clause-or-assignment-p clause)
(clause-or-assignment-p assignment))
(implies (and (formula-truep formula assignment)
(equal (evaluate-clause clause assignment)
nil))
(formula-truep (extend-formula-with-cube formula
(negate-cube clause))
assignment)))
:hints (("Goal"
:use
((:instance
hons-assoc-equal-extend-formula-with-cube-1
(i (formula-truep-witness
(extend-formula-with-cube formula (negate-cube clause))
assignment))
(cube (negate-cube clause)))
(:instance
hons-assoc-equal-extend-formula-with-cube-2
(i (formula-truep-witness
(extend-formula-with-cube formula (negate-cube clause))
assignment))
(cube (negate-cube clause))))
:expand ((formula-truep
(extend-formula-with-cube formula (negate-cube clause))
assignment))
:restrict ((formula-truep-necc
((index
(formula-truep-witness
(extend-formula-with-cube formula (negate-cube clause))
assignment))))
(member-negate-implies-member-assignment
((clause clause)))))))
|