File: sat-drat-claim-2-3.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (505 lines) | stat: -rw-r--r-- 17,043 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
; Copyright (C) 2016, Regents of the University of Texas
; Marijn Heule, Warren A. Hunt, Jr., and Matt Kaufmann
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; See soundness.lisp.  Here we prove a key lemma in support of that book.

(in-package "LRAT")

(include-book "satisfiable-add-proof-clause-base")

; possible helpful lemmas:
(include-book "sat-drat-claim-1")

; Temporary, during development:
(local (include-book "tools/remove-hyps" :dir :system))

(defun drat-indices (j alist drat-hints)

; based on RATp1

  (if (endp alist)
      nil
    (let* ((index (caar alist))
           (clause (cdar alist)))
      (cond
       ((deleted-clause-p clause)
        (drat-indices j (cdr alist) drat-hints))
       ((eql index (caar drat-hints)) ; perform RAT
        (if (equal j index)
            (cdar drat-hints)
          (drat-indices j (cdr alist) (cdr drat-hints))))
       (t (drat-indices j (cdr alist) drat-hints))))))

(set-ignore-ok t)

(defun b-fn (x)
  `(let* ((a assignment)
          (fal formula)
          (d (cdr (hons-assoc-equal index fal)))
          (c (access add-step entry :clause))
          (lit (car c))
          (nlit (negate lit))
          (dp (remove-literal nlit d))
          (nc (negate-clause-or-assignment c))
          (rup-indices (access add-step entry :rup-indices))
          (nc-up (unit-propagation formula rup-indices nc))
          (rat-a (rat-assignment a nlit d))
          (rat-nc (rat-assignment nc-up nlit d))
          (entry-index (access add-step entry :index))
          (drat-hints (access add-step entry :drat-hints))
          (vc (verify-clause formula entry ncls ndel))
          (vc-success (car vc))
          (new-formula (mv-nth 2 vc))
          (drat-indices (drat-indices index new-formula drat-hints)))
     ,x))

(defmacro b (x)
  (b-fn x))

(defun b-lst-fn (lst)
  (cond ((endp lst) nil)
        (t (cons (b-fn (car lst))
                 (b-lst-fn (cdr lst))))))

(defmacro b-lst (lst)
  (b-lst-fn lst))

(defconst *all-hyps*

; Warning: Keep this in sync with sat-drat-claim-2-3.  Actually, never mind:
; this constant is no longer used, and some hypotheses have disappeared from
; sat-drat-claim-2-3.

  '((member nlit d)
    (not (equal (evaluate-clause dp a)
                t))
    vc-success
    (proof-entry-p entry)
    (not (proof-entry-deletion-p entry))
    (formula-p formula)
    (solution-p a formula)
    (not (equal nc-up t))
    (consp c)
    (not (satisfiable (add-proof-clause entry-index c new-formula)))
    (hons-assoc-equal index fal)
    (not (deleted-clause-p d))
    (not (equal (evaluate-clause d (flip-literal lit a))
                t))))

(defun make-claim-fn (hyps body)
  (let ((hyps (if (eq hyps :all)
                  *all-hyps*
                hyps)))
    `(implies
      (and ,@(b-lst-fn hyps))
      ,(b-fn body))))

; For interactive use:
(defmacro make-claim (hyps x)
  (make-claim-fn hyps x))

(defmacro verify-claim (hyps x)
  `(verify (make-claim ,hyps ,x)))

(defun defclaim-fn (n hyps body args)
  `(defthm ,(if n
                (intern$ (coerce (acl2::packn1 (list 'main '- n))
                                 'string)
                         "LRAT")
              'main)
     ,(make-claim-fn hyps body)
     ,@args
     ,@(and (not (assoc-keyword :rule-classes args))
            '(:rule-classes nil))))

(defmacro defclaim! (n hyps body &rest args)
  (defclaim-fn n hyps body args))

(defmacro defclaim (n hyps body &rest args)
  `(local ,(defclaim-fn n hyps body args)))

; Start proof of rat-assignment-not-t.

(defthm member-both-implies-evaluate-clause
  (implies (and (member lit c)
                (member lit a))
           (equal (evaluate-clause c a) t)))

(defthm evaluate-clause-subsetp
  (implies (and (equal (evaluate-clause c b) t)
                (subsetp b a))
           (equal (evaluate-clause c a) t)))

(defthm evaluate-clause-cons
  (implies (and (equal (evaluate-clause c (cons lit a))
                       t)
                (not (member lit c)))
           (equal (evaluate-clause c a)
                  t)))

(defthm rat-assignment-not-t
  (implies (and (clause-or-assignment-p a)
                (clause-or-assignment-p c)
                (not (equal (evaluate-clause (remove-literal nlit c)
                                             a)
                            t)))
           (not (equal (rat-assignment a nlit c) t)))
  :hints (("Goal"
           :in-theory (enable clause-or-assignment-p))))

(defclaim 1
  ((not (equal (evaluate-clause dp a) t))
   (formula-p formula)
   (solution-p a formula)
   (not (deleted-clause-p d)))
  (clause-or-assignment-p rat-a))

(defclaim 2
  ((formula-p formula)
   (solution-p a formula))
  (equal (unit-propagation formula rup-indices a)
         a)
  :rule-classes :rewrite)

(encapsulate
  ()
  (local (include-book "satisfiable-maybe-shrink-formula"))

  (defclaim 3-1-1
    (vc-success
     (proof-entry-p entry)
     (formula-p formula)
     (solution-p a formula)
     (not (satisfiable (add-proof-clause entry-index c new-formula))))
    (subsetp nc-up
             (unit-propagation formula rup-indices a))
    :hints (("Goal"
             :use main-1
             :in-theory (disable main-2 unit-propagation-identity))))

  (defclaim! 3-1
    (vc-success
     (proof-entry-p entry)
     (formula-p formula)
     (solution-p a formula)
     (not (satisfiable (add-proof-clause entry-index c new-formula))))
    (subsetp nc-up
             (unit-propagation formula rup-indices a))
    :hints (("Goal"
             :use main-1
             :in-theory (disable main-2 unit-propagation-identity)))))

(defclaim 3
  (vc-success
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (satisfiable (add-proof-clause entry-index c new-formula))))
  (subsetp nc-up a)
  :hints (("Goal" :use main-3-1)))

(defun rat-assignment-monotone-induction (a1 a2 nlit clause)

; This is based on rat-assignment, and is relevant when (subsetp a1 a2) and
; (rat-assignment a2 nlit c) is not t.

  (cond ((endp clause) (list a1 a2))
        ((or (eql (car clause) nlit)
             (member (negate (car clause)) a1))
         (rat-assignment-monotone-induction a1 a2 nlit (cdr clause)))
        ((member (negate (car clause)) a2)
         (rat-assignment-monotone-induction (cons (negate (car clause)) a1)
                                            a2
                                            nlit
                                            (cdr clause)))
        (t
         (rat-assignment-monotone-induction (cons (negate (car clause)) a1)
                                            (cons (negate (car clause)) a2)
                                            nlit
                                            (cdr clause)))))

(defthm rat-assignment-monotone
  (implies (and (subsetp a1 a2)
                (not (equal (rat-assignment a2 lit c)
                            t)))
           (subsetp (rat-assignment a1 lit c)
                    (rat-assignment a2 lit c)))
  :hints (("Goal" :induct (rat-assignment-monotone-induction a1 a2 lit c))))

(defthm clause-or-assignment-p-implies-literalp-car
  (implies (and (clause-or-assignment-p x)
                (consp x))
           (literalp (car x)))
  :hints (("Goal" :in-theory (enable clause-or-assignment-p)))
  :rule-classes :type-prescription)

(defthm rat-assignment-monotone-2
  (implies (and (subsetp a1 a2)
                (clause-or-assignment-p a1)
                (clause-or-assignment-p a2)
                (clause-or-assignment-p c)
                (not (equal (rat-assignment a2 lit c)
                            t)))
           (clause-or-assignment-p (rat-assignment a1 lit c)))
  :hints (("Goal" :induct (rat-assignment-monotone-induction a1 a2 lit c))))

(defclaim 4
  (vc-success
   (not (equal (evaluate-clause dp a) t))
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula)))
   (not (deleted-clause-p d)))
  (and (clause-or-assignment-p rat-nc)
       (subsetp rat-nc rat-a))
  :hints (("Goal" :use (main-1 main-3))))

(defun tail-of (x1 x2)
  (cond ((equal x1 x2) t)
        (t (and (consp x2)
                (tail-of x1 (cdr x2))))))

(defthm tail-of-cdr
  (implies (and (true-listp x2)
                (tail-of x1 x2))
           (tail-of (cdr x1) x2)))

(defthm formula-p-tail

; This is a :forward-chaining rule so that we can continue chaining forward
; from formula-p to alistp, etc.

  (implies (and (tail-of x1 x2)
                (formula-p x2))
           (formula-p x1))
  :rule-classes :forward-chaining)

(defthm ratp1-implies-unit-propagation-t-lemma
  (implies (and (equal (RATp1 alist formula nlit drat-hints assignment)
                       t)
                (formula-p formula)
                (drat-hint-listp drat-hints)
                (clause-or-assignment-p assignment)
                (equal clause
                       (cdr (hons-assoc-equal index alist)))
                (equal new-assignment
                       (rat-assignment assignment nlit clause))
                (not (or (not (member nlit clause))
                         (deleted-clause-p
                          (cdr (hons-assoc-equal index formula)))))
                (not (equal new-assignment t))
                (tail-of alist formula))
           (equal (unit-propagation formula
                                    (drat-indices index alist drat-hints)
                                    new-assignment)
                  t))
  :hints (("Goal"
           :induct (RATp1 alist formula nlit drat-hints assignment)
           :in-theory (enable formula-p))))

(encapsulate
  ()
  (local (include-book "satisfiable-maybe-shrink-formula"))
  (local (in-theory (enable maybe-shrink-formula formula-p)))

  (defclaim 5-1
    ((member nlit d)
     (not (equal (evaluate-clause dp a) t))
     vc-success
     (proof-entry-p entry)
     (formula-p formula)
     (solution-p a formula)
     (not (equal nc-up t))
     (not (satisfiable (add-proof-clause entry-index c new-formula)))
     (not (deleted-clause-p d)))
    (equal (unit-propagation new-formula drat-indices rat-nc)
           t)
    :hints (("Goal"
             :in-theory (e/d (verify-clause)
                             (ratp1

; At one point, when the definition of RATp1 produced a Boolean
; type-prescription rule, it was necessary to disable that rule.  Although it's
; no longer necessary, we continue to do so in case RATp1 once again becomes
; Boolean-valued.

                              (:t ratp1)))
             :use main-4)))

  (defclaim! 5
    ((member nlit d)
     (not (equal (evaluate-clause dp a) t))
     vc-success
     (proof-entry-p entry)
     (formula-p formula)
     (solution-p a formula)
     (not (equal nc-up t))
     (not (satisfiable (add-proof-clause entry-index c new-formula)))
     (not (deleted-clause-p d)))
    (equal (unit-propagation formula drat-indices rat-nc)
           t)
    :hints (("Goal"
             :in-theory
             (union-theories '(verify-clause
                               unit-propagation-maybe-shrink-formula)
                             (theory 'minimal-theory))
             :use main-5-1))))

(defclaim 6
  ((member nlit d)
   (not (equal (evaluate-clause dp a) t))
   vc-success
   (proof-entry-p entry)
   (not (proof-entry-deletion-p entry))
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula))))
  (equal (unit-propagation formula drat-indices rat-a)
         t)
  :hints (("Goal" :use (main-1 main-4 main-5))))

(defthm negate-clause-or-assignment-self-inverts-lemma
  (implies (literal-listp a)
           (equal (negate-clause-or-assignment-rec
                   (negate-clause-or-assignment-rec a b)
                   c)
                  (negate-clause-or-assignment-rec b
                                                   (append a c)))))

(defthm negate-clause-or-assignment-self-inverts
  (implies (clause-or-assignment-p a) ; probably (literal-listp a) suffices
           (equal (negate-clause-or-assignment
                   (negate-clause-or-assignment a))
                  a))
  :hints (("Goal" :in-theory (enable negate-clause-or-assignment))))

(defclaim 7
  ((member nlit d)
   (not (equal (evaluate-clause dp a) t))
   vc-success
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula)))
   (not (deleted-clause-p d)))
  (equal (evaluate-clause (negate-clause-or-assignment rat-a) a)
         t)
  :hints (("Goal"
           :use main-6
           :restrict
           ((unit-propagation-correct
             ((indices
               (drat-indices
                index
                (mv-nth 2 (maybe-shrink-formula ncls ndel formula 1/3))
                (cddr entry)))
              (formula formula)))))))

(defthm negate-rat-assignment-key-base-lemma
  (implies (and (clause-or-assignment-p a)
                (subsetp b a)
                (not (intersectp-equal acc a)))
           (not (equal (evaluate-clause (negate-clause-or-assignment-rec b acc)
                                        a)
                       t))))

(defthm negate-rat-assignment-key-base
  (implies (clause-or-assignment-p a)
           (not (equal (evaluate-clause (negate-clause-or-assignment a)
                                        a)
                       t)))
  :hints (("Goal" :in-theory (enable negate-clause-or-assignment))))

(defthm clause-or-assignment-p-implies-negate-car-not-member-cdr
  (implies (and (clause-or-assignment-p c)
                (consp c))
           (not (member (negate (car c)) (cdr c))))
  :hints (("Goal" :in-theory (enable clause-or-assignment-p)))
  :rule-classes :forward-chaining)

(defthm negate-rat-assignment-key
  (implies (and (clause-or-assignment-p a)
                (clause-or-assignment-p d)
                (equal (evaluate-clause (negate-clause-or-assignment
                                         (rat-assignment a x d))
                                        a)
                       t))
           (equal (evaluate-clause (remove-literal x d) a)
                  t)))

(defclaim 8
  ((member nlit d)
   vc-success
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula)))
   (not (deleted-clause-p d)))
  (equal (evaluate-clause dp a) t)
  :hints (("Goal" :use main-7)))

(defclaim 9
  ((member nlit d)
   (not (equal (evaluate-clause dp a) t))
   vc-success
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula))))
  (equal (evaluate-clause dp b) t)
  :hints (("Goal" :use main-8)))

(defclaim nil
  ((member nlit d)
   (not (equal (evaluate-clause dp a) t))
   vc-success
   (proof-entry-p entry)
   (formula-p formula)
   (solution-p a formula)
   (not (equal nc-up t))
   (not (satisfiable (add-proof-clause entry-index c new-formula))))
  nil
  :hints (("Goal" :use (main-8 main-9))))

(defthm sat-drat-claim-2-3
  (mv-let (ncls ndel new-formula)
    (verify-clause formula entry ncls ndel)
    (declare (ignore ndel))
    (implies (and (member (negate (car (access add-step entry :clause)))
                          (cdr (hons-assoc-equal index formula)))
                  (not (equal (evaluate-clause
                               (remove-literal
                                (negate (car (access add-step entry :clause)))
                                (cdr (hons-assoc-equal index formula)))
                               assignment)
                              t))
                  ncls
                  (proof-entry-p entry)
                  (not (proof-entry-deletion-p entry))
                  (formula-p formula)
                  (solution-p assignment formula)
                  (not (equal (unit-propagation formula
                                                (access add-step entry
                                                        :rup-indices)
                                                (negate-clause-or-assignment
                                                 (access add-step entry
                                                         :clause)))
                              t))
                  (not (satisfiable (add-proof-clause
                                     (access add-step entry :index)
                                     (access add-step entry :clause)
                                     new-formula))))
             (equal (evaluate-clause
                     (cdr (hons-assoc-equal index formula))
                     (flip-literal (car (access add-step entry :clause))
                                   assignment))
                    t)))
  :hints (("Goal" :use main))
  :rule-classes nil)