1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
|
structure Import :> Import =
struct
open HolKernel boolLib bossLib
open state_transformerTheory bitstringLib stringLib machine_ieeeSyntax
open intSyntax integer_wordSyntax bitstringSyntax state_transformerSyntax
val ERR = mk_HOL_ERR "Import"
(* ------------------------------------------------------------------------ *)
local
val boolify_vals = ref (Redblackset.empty Int.compare)
val type_names = ref []
val const_names = ref []
fun decl s = "val " ^ s
val typ = "{Thy: string, T: string list, C: string list, N: int list}"
in
fun log_boolify n = boolify_vals := Redblackset.add (!boolify_vals, n)
fun log_type s = type_names := s :: !type_names
fun log_constant s = const_names := (s ^ "_def") :: !const_names
fun start thy =
(type_names := []
; const_names := []
; Theory.new_theory thy)
fun open_monad_syntax () =
Theory.adjoin_to_theory
{sig_ps = NONE,
struct_ps =
SOME (fn ppstrm => PP.add_string ppstrm "open monadsyntax")}
fun finish i =
(Theory.adjoin_to_theory {
sig_ps =
SOME (fn ppstrm =>
(PP.add_string ppstrm (decl "inventory:")
; PP.add_break ppstrm (1, 2)
; PP.add_string ppstrm typ)),
struct_ps =
SOME (fn ppstrm =>
let
val name = Lib.quote (Theory.current_theory ())
fun bl f s l =
( PP.add_break ppstrm (1, 0)
; PP.add_string ppstrm (s ^ " [")
; PP.begin_block ppstrm PP.INCONSISTENT 0
; Portable.pr_list
(PP.add_string ppstrm o f)
(fn () => PP.add_string ppstrm ",")
(fn () => PP.add_break ppstrm (1, 0)) l
; PP.add_string ppstrm "]"
; PP.end_block ppstrm)
in
PP.add_string ppstrm (decl "inventory = {")
; PP.add_break ppstrm (0, 2)
; PP.begin_block ppstrm PP.CONSISTENT 0
; PP.add_string ppstrm ("Thy = " ^ name ^ ",")
; bl Lib.quote "T =" (!type_names)
; PP.add_string ppstrm (",")
; bl Lib.quote "C =" (!const_names)
; PP.add_string ppstrm (",")
; bl Int.toString "N ="
(Redblackset.listItems (!boolify_vals))
; PP.add_string ppstrm "}"
; PP.end_block ppstrm
; PP.add_newline ppstrm
end)}
; Feedback.set_trace "TheoryPP.include_docs" i
; Theory.export_theory ()
; type_names := []
; const_names := [])
end
(* ------------------------------------------------------------------------ *)
val Ty = ParseDatatype.pretypeToType
fun typeName ty = String.extract (Parse.type_to_string ty, 1, NONE)
(* Constant type *)
local
fun mkTy (t, n) = ParseDatatype.dTyop {Thy = t, Tyop = n, Args = []}
fun mkListTy a =
ParseDatatype.dTyop {Thy = SOME "list", Tyop = "list", Args = [a]}
val charTy = mkTy (SOME "string", "char")
in
val uTy = mkTy (SOME "one", "one")
val iTy = mkTy (SOME "integer", "int")
val nTy = mkTy (SOME "num", "num")
val bTy = mkTy (SOME "min", "bool")
val rTy = mkTy (SOME "binary_ieee", "rounding")
val sTy = mkListTy charTy
val vTy = mkListTy bTy
fun CTy n = mkTy (NONE, n)
end
(* Variable type *)
fun VTy s = ParseDatatype.dVartype ("'" ^ s)
(* Fixed-width bit-vector type *)
val FTy = ParseDatatype.dAQ o wordsSyntax.mk_int_word_type
val F1 = FTy 1
val F4 = FTy 4
val F8 = FTy 8
val F16 = FTy 16
val F32 = FTy 32
val F64 = FTy 64
(* N-bit type *)
fun typevar s = Type.mk_vartype ("'" ^ s)
fun BTy s = ParseDatatype.dAQ (wordsSyntax.mk_word_type (typevar s))
(* Arrow type *)
fun ATy (t1, t2) =
ParseDatatype.dTyop {Thy = SOME "min", Tyop = "fun", Args = [t1, t2]}
(* Product type *)
fun PTy (t1, t2) =
ParseDatatype.dTyop {Thy = SOME "pair", Tyop = "prod", Args = [t1, t2]}
(* Set type *)
fun STy t = ATy (t, bTy)
(* List type *)
fun LTy t =
ParseDatatype.dTyop {Thy = SOME "list", Tyop = "list", Args = [t]}
(* Option type *)
fun OTy t =
ParseDatatype.dTyop {Thy = SOME "option", Tyop = "option", Args = [t]}
(* ------------------------------------------------------------------------ *)
val myDatatype =
let
val w = String.size "Defined type: \""
in
(Lib.with_flag
(Feedback.MESG_to_string,
fn s => (log_type
(String.extract (s, w, SOME (String.size s - w - 1)))
; s ^ "\n")) o
Feedback.trace ("Theory.save_thm_reporting", 0) o
Lib.with_flag (Datatype.big_record_size, 25))
Datatype.astHol_datatype
end
(* Record type *)
fun Record (n, l) = myDatatype [(n, ParseDatatype.Record l)]
(* Algebraic type *)
val Construct = myDatatype o List.map (I ## ParseDatatype.Constructors)
(* ------------------------------------------------------------------------ *)
fun mk_local_const (n, ty) =
Term.mk_thy_const {Ty = ty, Thy = Theory.current_theory (), Name = n}
(* Literals *)
(* Unit *)
val LU = oneSyntax.one_tm
(* Bool *)
val LT = boolSyntax.T
val LF = boolSyntax.F
(* Integer *)
fun LI i = intSyntax.term_of_int (Arbint.fromInt i)
(* Natural *)
fun LN n = numSyntax.term_of_int n
(* String *)
fun LS s = stringSyntax.fromMLstring s
(* Bitstring *)
fun LV v = bitstringSyntax.bitstring_of_binstring v
(* Fixed-width *)
fun LW (i, w) = wordsSyntax.mk_wordii (i, w)
(* N-bit *)
fun LY (i, n) = wordsSyntax.mk_n2w (LN i, typevar n)
(* Enumerated *)
fun LC (c, ty) = mk_local_const (c, Ty ty)
(* NONE *)
fun LO ty = optionSyntax.mk_none (Ty ty)
(* Empty set *)
fun LE ty = pred_setSyntax.mk_empty (Ty ty)
(* Empty list (Nil) *)
fun LNL ty = listSyntax.mk_nil (Ty ty)
(* UNKNOWN *)
fun LX ty = boolSyntax.mk_arb (Ty ty)
(* ------------------------------------------------------------------------ *)
(* Function call *)
fun Call (f, ty, tm) =
let
val typ = Type.--> (Term.type_of tm, Ty ty)
val vc = mk_local_const (f, typ)
handle HOL_ERR {origin_function = "mk_thy_const", ...} =>
Term.mk_var (f, typ) (* for recursion *)
in
Term.mk_comb (vc, tm)
end
(* Constants *)
fun Const (c, ty) =
let
val typ = Ty ty
in
mk_local_const (c, typ)
handle HOL_ERR {origin_function = "mk_thy_const", ...} =>
Term.mk_var (c, typ) (* for recursion *)
end
(* Variables *)
local
val anon = ref 0
fun anonSuffix () = (if !anon = 0 then "" else Int.toString (!anon))
before anon := !anon + 1
in
fun resetAnon () = anon := 0
fun AVar ty = Term.mk_var ("_" ^ anonSuffix(), Ty ty)
end
fun Var (v, ty) = Term.mk_var (v, Ty ty)
fun uVar v = Term.mk_var (v, oneSyntax.one_ty)
fun bVar v = Term.mk_var (v, Type.bool)
fun nVar v = Term.mk_var (v, numSyntax.num)
fun iVar v = Term.mk_var (v, intSyntax.int_ty)
fun sVar v = Term.mk_var (v, stringSyntax.string_ty)
fun vVar v = Term.mk_var (v, bitstringSyntax.bitstring_ty)
(* Closure *)
val Close = pairSyntax.mk_pabs
(* Application *)
val Apply = Term.mk_comb
(* Tuple *)
fun TP l =
let
val (f, lst) = Lib.front_last l
in
List.foldr pairSyntax.mk_pair lst f
end
(* Map update *)
fun Fupd (m, i, e) = Term.mk_comb (combinSyntax.mk_update (i, e), m)
(* Cases *)
(* val CS = TypeBase.mk_case *)
fun CS (x, cs) =
Term.beta_conv (Term.mk_comb
(Lib.with_flag (Feedback.emit_MESG, false)
(Lib.with_flag (Globals.priming, SOME "_")
TypeBase.mk_pattern_fn) cs, x))
before resetAnon ()
(* Let-expression *)
fun Let (v,e,b) =
boolSyntax.mk_let (Close (v, b), e)
handle HOL_ERR {origin_function = "mk_pabs", ...} => CS (e, [(v, b)])
(* Set of list *)
val SL =
fn [] => raise ERR "SL" "empty"
| l as (h::_) => pred_setSyntax.prim_mk_set (l, Term.type_of h)
(* List of list *)
val LL =
fn [] => raise ERR "LL" "empty"
| l as (h::_) => listSyntax.mk_list (l, Term.type_of h)
local
fun gen_mk_list (l, tm) = List.foldr listSyntax.mk_cons tm l
in
val LLC =
fn ([], tm) =>
let
val ty = fst (pairSyntax.dest_prod (Term.type_of tm))
val cons = Term.inst [Type.alpha |-> ty] listSyntax.cons_tm
in
pairSyntax.mk_uncurry (cons, tm)
end
| ltm => gen_mk_list ltm
end
(* Record constructor (may not work for really big records) *)
local
fun strip_fun_type ty =
let
fun strip (a, ty) =
case Lib.total Type.dom_rng ty of
SOME (ty1, ty2) => strip (ty1::a, ty2)
| NONE => (List.rev a, ty)
in
strip ([], ty)
end
fun get_cons ty =
let
val tm = Lib.singleton_of_list (TypeBase.constructors_of ty)
in
(fst (strip_fun_type (Term.type_of tm)), tm)
end
fun split l = Lib.split_after (List.length l)
in
fun Rec (ty, l) =
let
val (tys, tm) = get_cons (Ty ty)
in
if List.length l = List.length tys
then Term.list_mk_comb (tm, l)
else let
val cs = List.map get_cons tys
val (tms, rst) =
List.foldl
(fn ((tys, f), (a, r)) =>
let
val (args, rst) = split tys r
in
(Term.list_mk_comb (f, args) :: a, rst)
end) ([], l) cs
in
List.null rst orelse raise ERR "Rec" "too many arguments";
Term.list_mk_comb (tm, List.rev tms)
end
end
end
(* Record destructor *)
fun Dest (f, ty, tm) = Call (typeName (Term.type_of tm) ^ "_" ^ f, ty, tm)
(* Record update *)
fun smart_dest_pair tm =
case Lib.total pairSyntax.dest_pair tm of
SOME p => p
| NONE => (pairSyntax.mk_fst tm, pairSyntax.mk_snd tm)
fun Rupd (f, tm) =
let
val (rty, fty) = pairSyntax.dest_prod (Term.type_of tm)
val typ = Type.--> (Type.--> (fty, fty), Type.--> (rty, rty))
val fupd = mk_local_const (typeName rty ^ "_" ^ f ^ "_fupd", typ)
val (x, d) = smart_dest_pair tm
in
Term.list_mk_comb (fupd, [combinSyntax.mk_K_1 (d, Term.type_of d), x])
end
(* Boolify constructor *)
val bit_bool =
Feedback.trace ("Theory.save_thm_reporting", 0) bitstringLib.bitify_boolify
fun BL (i, tm) =
let
val () = log_boolify i
val { mk_boolify, ... } = bit_bool i
in
mk_boolify tm
end
(* If-then-else *)
fun ITE (i, t, e) = boolSyntax.mk_cond (i, t, e)
fun ITB (l, e) = List.foldr (fn ((b, t), e) => ITE (b, t, e)) e l
(* Sub-word extract *)
fun EX (x, h, l, ty) =
let
val typ = Ty ty
in
if typ = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_field (h, l, x)
else wordsSyntax.mk_word_extract (h, l, x, wordsSyntax.dest_word_type typ)
end
(* Bit-field insert *)
fun BFI (t as (_, _, x, _)) =
if Term.type_of x = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_field_insert t
else wordsSyntax.mk_bit_field_insert t
(* Concatenation *)
fun CC [] = raise ERR "CC" "empty"
| CC l =
let
val (f, lst) = Lib.front_last l
val ty = Term.type_of lst
val mk = if ty = stringSyntax.string_ty
then stringSyntax.mk_strcat
else if ty = bitstringSyntax.bitstring_ty
then listSyntax.mk_append
else wordsSyntax.mk_word_concat
in
List.foldr mk lst f
end
(* Equality *)
fun EQ (x, y) = boolSyntax.mk_eq (x, y)
(* Monad operations *)
(* Return/Unit *)
val MU = state_transformerSyntax.mk_unit o (I ## Ty)
(* Bind *)
val MB = state_transformerSyntax.mk_bind
(* Read *)
val MR = state_transformerSyntax.mk_read
(* Write *)
val MW = state_transformerSyntax.mk_write
(* Narrow *)
val MN = state_transformerSyntax.mk_narrow
(* Widen *)
val MD = state_transformerSyntax.mk_widen o (I ## Ty)
(* For-loop *)
val For = HolKernel.mk_monop state_transformerSyntax.for_tm
(* ------------------------------------------------------------------------ *)
(* Primitive binary and unary operations *)
datatype monop =
Abs
| BNot
| Cast of ParseDatatype.pretype
| Fst
| Head
| IsSome
| K1 of ParseDatatype.pretype
| Length
| Log
| Max
| Min
| Msb
| Neg
| Not
| Rev
| SE of ParseDatatype.pretype
| Size
| Smax
| Smin
| Snd
| SofL
| Some
| Tail
| ValOf
| fpAdd32
| fpAdd64
| fpMul32
| fpMul64
| fpNeg32
| fpNeg64
| fpSub32
| fpSub64
datatype binop =
Add
| And
| Asr
| BAnd
| BOr
| BXor
| Bit
| Div
| Exp
| Ge
| Gt
| In
| Insert
| Le
| Lsl
| Lsr
| Lt
| Mdfy
| Mod
| Mul
| Or
| Quot
| Rem
| Rep
| Rol
| Ror
| Sub
| Uge
| Ugt
| Ule
| Ult
local
val m =
ref (Redblackmap.mkDict String.compare : (string, term) Redblackmap.dict)
in
fun string2enum ty =
let
val name = fst (Type.dest_type ty)
in
case Redblackmap.peek (!m, name) of
SOME tm => tm
| NONE =>
let
val tm = ty
|> stringLib.Define_string2enum
|> Thm.concl
|> boolSyntax.dest_forall
|> snd
|> boolSyntax.lhs
|> boolSyntax.rator
in
m := Redblackmap.insert (!m, name, tm)
; tm
end
end
end
local
val m =
ref (Redblackmap.mkDict String.compare : (string, term) Redblackmap.dict)
in
fun enum2string ty =
let
val name = fst (Type.dest_type ty)
in
case Redblackmap.peek (!m, name) of
SOME tm => tm
| NONE =>
let
val tm = ty
|> stringLib.Define_enum2string
|> Thm.concl
|> boolSyntax.strip_conj
|> hd
|> boolSyntax.lhs
|> boolSyntax.rator
in
m := Redblackmap.insert (!m, name, tm)
; tm
end
end
end
local
val one_tm = numSyntax.mk_numeral Arbnum.one
fun mk_w tm ty = wordsSyntax.mk_n2w (tm, wordsSyntax.dest_word_type ty)
val mk_word0 = mk_w numSyntax.zero_tm
val mk_word1 = mk_w one_tm
fun enum2num ty =
Lib.with_exn mk_local_const
(typeName ty ^ "2num", Type.--> (ty, numLib.num))
(ERR "pickCast" "enum2num not found")
fun num2enum ty =
Lib.with_exn mk_local_const
("num2" ^ typeName ty, Type.--> (numLib.num, ty))
(ERR "pickCast" "num2enum not found")
fun mk_test a b c d = boolSyntax.mk_cond (boolSyntax.mk_eq (a, b), c, d)
val string2bool =
let
val v = Term.mk_var ("s", stringSyntax.string_ty)
in
Term.mk_abs (v,
mk_test v (stringSyntax.fromMLstring "true") boolSyntax.T
(mk_test v (stringSyntax.fromMLstring "false") boolSyntax.F
(boolSyntax.mk_arb Type.bool)))
end
val fstTy = fst o pairSyntax.dest_prod o Term.type_of
fun s f (tm1:term) tm2 = pairSyntax.mk_uncurry (f tm2 tm1, tm2)
fun ialpha tm =
Term.inst [Type.alpha |-> wordsSyntax.dest_word_type (fstTy tm)]
fun mk_from_bool (x as (tm, a, b)) =
if tm = boolSyntax.T
then a
else if tm = boolSyntax.F
then b
else boolSyntax.mk_cond x
val mk_word_min = s ialpha wordsSyntax.word_min_tm
val mk_word_max = s ialpha wordsSyntax.word_max_tm
val mk_word_smin = s ialpha wordsSyntax.word_smin_tm
val mk_word_smax = s ialpha wordsSyntax.word_smax_tm
val mk_num_min = s (K I) numSyntax.min_tm
val mk_num_max = s (K I) numSyntax.max_tm
val mk_int_min = s (K I) intSyntax.min_tm
val mk_int_max = s (K I) intSyntax.max_tm
val c_mk_comb = Lib.curry Term.mk_comb
fun mk_from_enum ty =
SOME (Lib.curry Term.mk_comb (enum2num ty)) handle HOL_ERR _ => NONE
fun mk_fp_triop f =
let
val ftm = case f of
fpAdd32 => machine_ieeeSyntax.fp32Syntax.fp_add_tm
| fpAdd64 => machine_ieeeSyntax.fp64Syntax.fp_add_tm
| fpMul32 => machine_ieeeSyntax.fp32Syntax.fp_mul_tm
| fpMul64 => machine_ieeeSyntax.fp64Syntax.fp_mul_tm
| fpSub32 => machine_ieeeSyntax.fp32Syntax.fp_sub_tm
| fpSub64 => machine_ieeeSyntax.fp64Syntax.fp_sub_tm
| _ => raise ERR "mk_fp_triop" ""
val ty = ftm |> Term.type_of
|> Type.dom_rng |> snd
|> Type.dom_rng |> fst
val a = Term.mk_var ("a", binary_ieeeSyntax.rounding_ty)
val b = Term.mk_var ("b", ty)
val c = Term.mk_var ("c", ty)
val l = [a, b, c]
val p = pairSyntax.list_mk_pair l
val ptm = pairSyntax.mk_pabs (p, Term.list_mk_comb (ftm, l))
in
fn tm =>
(ptm, tm) |> Term.mk_comb
|> PairRules.PBETA_CONV
|> Thm.concl
|> boolSyntax.rhs
end
fun pickCast ty2 tm =
let
val ty1 = Term.type_of tm
val dw = wordsSyntax.dest_word_type
in
if wordsSyntax.is_word_type ty1
then if wordsSyntax.is_word_type ty2
then wordsSyntax.mk_w2w (tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_w2v tm
else if ty2 = numSyntax.num
then wordsSyntax.mk_w2n tm
else if ty2 = intSyntax.int_ty
then integer_wordSyntax.mk_w2i tm
else if ty2 = stringSyntax.string_ty
then wordsSyntax.mk_word_to_hex_string tm
else if ty2 = Type.bool
then boolSyntax.mk_neg (boolSyntax.mk_eq (tm, mk_word0 ty1))
else Term.mk_comb (num2enum ty2, wordsSyntax.mk_w2n tm)
else if ty1 = bitstringSyntax.bitstring_ty
then if wordsSyntax.is_word_type ty2
then bitstringSyntax.mk_v2w (tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then tm
else if ty2 = numSyntax.num
then bitstringSyntax.mk_v2n tm
else if ty2 = intSyntax.int_ty
then intSyntax.mk_injected (bitstringSyntax.mk_v2n tm)
else if ty2 = stringSyntax.string_ty
then bitstringSyntax.mk_v2s tm
else if ty2 = Type.bool
then boolSyntax.mk_neg (boolSyntax.mk_eq
(bitstringSyntax.mk_v2n tm, numSyntax.zero_tm))
else Term.mk_comb (num2enum ty2, bitstringSyntax.mk_v2n tm)
else if ty1 = numSyntax.num
then if wordsSyntax.is_word_type ty2
then wordsSyntax.mk_n2w (tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_n2v tm
else if ty2 = numSyntax.num
then tm
else if ty2 = intSyntax.int_ty
then intSyntax.mk_injected tm
else if ty2 = stringSyntax.string_ty
then ASCIInumbersSyntax.mk_num_to_dec_string tm
else if ty2 = Type.bool
then boolSyntax.mk_neg (boolSyntax.mk_eq
(tm, numSyntax.zero_tm))
else Term.mk_comb (num2enum ty2, tm)
else if ty1 = intSyntax.int_ty
then if wordsSyntax.is_word_type ty2
then integer_wordSyntax.mk_i2w (tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_n2v (intSyntax.mk_Num tm)
else if ty2 = numSyntax.num
then intSyntax.mk_Num tm
else if ty2 = intSyntax.int_ty
then tm
else if ty2 = stringSyntax.string_ty
then integer_wordSyntax.mk_toString tm
else if ty2 = Type.bool
then boolSyntax.mk_neg (boolSyntax.mk_eq
(tm, intSyntax.zero_tm))
else Term.mk_comb (num2enum ty2, intSyntax.mk_Num tm)
else if ty1 = stringSyntax.string_ty
then if wordsSyntax.is_word_type ty2
then wordsSyntax.mk_word_from_hex_string (tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_s2v tm
else if ty2 = numSyntax.num
then ASCIInumbersSyntax.mk_num_from_dec_string tm
else if ty2 = intSyntax.int_ty
then integer_wordSyntax.mk_fromString tm
else if ty2 = stringSyntax.string_ty
then tm
else if ty2 = Type.bool
then Term.mk_comb (string2bool, tm)
else Term.mk_comb (string2enum ty2, tm)
else if ty1 = Type.bool
then if wordsSyntax.is_word_type ty2
then mk_from_bool (tm, mk_word1 ty2, mk_word0 ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then mk_from_bool (tm,
bitstringSyntax.bitstring_of_binstring "1",
bitstringSyntax.bitstring_of_binstring "0")
else if ty2 = numSyntax.num
then mk_from_bool (tm, one_tm, numSyntax.zero_tm)
else if ty2 = intSyntax.int_ty
then mk_from_bool (tm,
intSyntax.one_tm, intSyntax.zero_tm)
else if ty2 = stringSyntax.string_ty
then mk_from_bool (tm,
stringSyntax.fromMLstring "true",
stringSyntax.fromMLstring "false")
else if ty2 = Type.bool
then tm
else raise ERR "pickCast" "bool -> ?"
else case mk_from_enum ty1 of
SOME e2n =>
if wordsSyntax.is_word_type ty2
then wordsSyntax.mk_n2w (e2n tm, dw ty2)
else if ty2 = bitstringSyntax.bitstring_ty
then bitstringSyntax.mk_n2v (e2n tm)
else if ty2 = numSyntax.num
then e2n tm
else if ty2 = intSyntax.int_ty
then intSyntax.mk_injected (e2n tm)
else if ty2 = stringSyntax.string_ty
then Term.mk_comb (enum2string ty1, tm)
else if ty2 = Type.bool
then boolSyntax.mk_neg (boolSyntax.mk_eq
(tm, hd (TypeBase.constructors_of ty1)))
else Term.mk_comb (num2enum ty2, e2n tm)
| _ => raise ERR "pickCast"
("bad domain: " ^ typeName ty1 ^ " -> " ^ typeName ty2)
end
fun pick (a, b, c, d) tm =
let
val ty = Term.type_of tm
in
Option.valOf
(if Option.isSome a andalso wordsSyntax.is_word_type ty
then a
else if Option.isSome b andalso ty = bitstringSyntax.bitstring_ty
then b
else if Option.isSome c andalso ty = numSyntax.num
then c
else if Option.isSome d andalso ty = intSyntax.int_ty
then d
else raise ERR "Mop" "pick") tm
end
fun pickMinMax (a, b, c) tm =
let
val ty = fstTy tm
in
(if wordsSyntax.is_word_type ty
then a
else if ty = numSyntax.num
then b
else if ty = intSyntax.int_ty
then c
else raise ERR "Mop" "pickMinMax") tm
end
in
fun Mop (m : monop, x) =
(case m of
BNot => wordsSyntax.mk_word_1comp
| Fst => pairSyntax.mk_fst
| Head => listSyntax.mk_hd
| IsSome => optionSyntax.mk_is_some
| Length => listSyntax.mk_length
| Msb => wordsSyntax.mk_word_msb
| Not => boolSyntax.mk_neg
| Rev => wordsSyntax.mk_word_reverse
| Smax => mk_word_smax
| Smin => mk_word_smin
| Snd => pairSyntax.mk_snd
| SofL => listSyntax.mk_list_to_set
| Some => optionSyntax.mk_some
| Tail => listSyntax.mk_tl
| ValOf => optionSyntax.mk_the
| Min => pickMinMax (mk_word_min, mk_num_min, mk_int_min)
| Max => pickMinMax (mk_word_max, mk_num_max, mk_int_max)
| Abs => pick (SOME wordsSyntax.mk_word_abs, NONE, NONE,
SOME intSyntax.mk_absval)
| Neg => pick (SOME wordsSyntax.mk_word_2comp, NONE, NONE,
SOME intSyntax.mk_negated)
| Size => pick (SOME wordsSyntax.mk_word_len,
SOME listSyntax.mk_length, NONE, NONE)
| Log => pick (SOME wordsSyntax.mk_word_log2, NONE,
SOME bitSyntax.mk_log2, NONE)
| K1 ty => (fn tm => combinSyntax.mk_K_1 (tm, Ty ty))
| SE ty =>
(fn tm =>
wordsSyntax.mk_sw2sw (tm, wordsSyntax.dest_word_type (Ty ty)))
| Cast ty => pickCast (Ty ty)
| fpNeg32 => machine_ieeeSyntax.fp32Syntax.mk_fp_negate
| fpNeg64 => machine_ieeeSyntax.fp64Syntax.mk_fp_negate
| _ => mk_fp_triop m
) x
end
local
fun pick (a, b, c, d) (tm1, tm2: term) : term =
let
val ty = Term.type_of tm1
in
Option.valOf
(if Option.isSome a andalso wordsSyntax.is_word_type ty
then a
else if Option.isSome b andalso ty = bitstringSyntax.bitstring_ty
then b
else if Option.isSome c andalso ty = numSyntax.num
then c
else if Option.isSome d andalso ty = intSyntax.int_ty
then d
else raise ERR "Bop" "pick") (tm1, tm2)
end
fun pickShift (a, b) (tm1 : term, tm2) : term =
(if wordsSyntax.is_word_type (Term.type_of tm2) then a else b) (tm1, tm2)
fun COMM f (x, y) = f (y, x)
fun icurry tm =
Term.mk_comb
(Term.inst [Type.alpha |-> numSyntax.num, Type.beta |-> Type.bool,
Type.gamma |-> Type.bool] pairSyntax.curry_tm, tm)
fun mk_modify (f, a) = wordsSyntax.mk_word_modify (icurry f, a)
in
fun Bop (b : binop, x, y) = (x, y) |>
(case b of
And => boolSyntax.mk_conj
| BAnd => wordsSyntax.mk_word_and
| BOr => wordsSyntax.mk_word_or
| BXor => wordsSyntax.mk_word_xor
| In => pred_setSyntax.mk_in
| Insert => pred_setSyntax.mk_insert
| Mdfy => mk_modify
| Or => boolSyntax.mk_disj
| Uge => wordsSyntax.mk_word_hs
| Ugt => wordsSyntax.mk_word_hi
| Ule => wordsSyntax.mk_word_ls
| Ult => wordsSyntax.mk_word_lo
| Lt => pick (SOME wordsSyntax.mk_word_lt, NONE,
SOME numSyntax.mk_less, SOME intSyntax.mk_less)
| Gt => pick (SOME wordsSyntax.mk_word_gt, NONE,
SOME numSyntax.mk_greater, SOME intSyntax.mk_great)
| Le => pick (SOME wordsSyntax.mk_word_le, NONE,
SOME numSyntax.mk_leq, SOME intSyntax.mk_leq)
| Ge => pick (SOME wordsSyntax.mk_word_ge, NONE,
SOME numSyntax.mk_geq, SOME intSyntax.mk_geq)
| Bit => pick (SOME (COMM wordsSyntax.mk_word_bit),
SOME (COMM bitstringSyntax.mk_testbit), NONE, NONE)
| Add => pick (SOME wordsSyntax.mk_word_add,
SOME bitstringSyntax.mk_add, SOME numSyntax.mk_plus,
SOME intSyntax.mk_plus)
| Sub => pick (SOME wordsSyntax.mk_word_sub, NONE,
SOME numSyntax.mk_minus, SOME intSyntax.mk_minus)
| Mul => pick (SOME wordsSyntax.mk_word_mul, NONE,
SOME numSyntax.mk_mult, SOME intSyntax.mk_mult)
| Div => pick (SOME wordsSyntax.mk_word_div, NONE,
SOME numSyntax.mk_div, SOME intSyntax.mk_div)
| Mod => pick (SOME wordsSyntax.mk_word_mod, NONE,
SOME numSyntax.mk_mod, SOME intSyntax.mk_mod)
| Quot => pick (SOME wordsSyntax.mk_word_sdiv, NONE, NONE,
SOME intSyntax.mk_quot)
| Rem => pick (SOME wordsSyntax.mk_word_srem, NONE, NONE,
SOME intSyntax.mk_rem)
| Rep => pick (SOME (wordsSyntax.mk_word_replicate o Lib.swap),
SOME bitstringSyntax.mk_replicate, NONE, NONE)
| Exp => pick (NONE, NONE, SOME numSyntax.mk_exp, SOME intSyntax.mk_exp)
| Lsl => pick (SOME (pickShift (wordsSyntax.mk_word_lsl_bv,
wordsSyntax.mk_word_lsl)),
SOME bitstringSyntax.mk_shiftl, NONE, NONE)
| Lsr => pickShift (wordsSyntax.mk_word_lsr_bv, wordsSyntax.mk_word_lsr)
| Asr => pickShift (wordsSyntax.mk_word_asr_bv, wordsSyntax.mk_word_asr)
| Ror => pickShift (wordsSyntax.mk_word_ror_bv, wordsSyntax.mk_word_ror)
| Rol => pickShift (wordsSyntax.mk_word_rol_bv, wordsSyntax.mk_word_rol))
end
(* ------------------------------------------------------------------------ *)
(* Definitions *)
local
val tac = SRW_TAC [listSimps.LIST_ss, numSimps.ARITH_ss] []
in
fun MEASURE_TAC tm =
TotalDefn.WF_REL_TAC `^(boolSyntax.mk_icomb (numSyntax.measure_tm, tm))`
THEN tac
end
fun new_def s x = Definition.new_definition (s ^ "_def", boolSyntax.mk_eq x)
fun z_def def =
Feedback.trace ("Define.storage_message", 0)
bossLib.zDefine [HOLPP.ANTIQUOTE (boolSyntax.mk_eq def)]
fun t_def s def m =
Feedback.trace ("Define.storage_message", 0)
(bossLib.tDefine s [HOLPP.ANTIQUOTE (boolSyntax.mk_eq def)])
(MEASURE_TAC m)
val mesg =
Lib.with_flag
(Feedback.MESG_to_string,
fn s => (log_constant s; "Defined: " ^ s ^ "\n"))
Feedback.HOL_MESG
fun Def (s, a, b) =
let
val ty = Type.--> (Term.type_of a, Term.type_of b)
val c = Term.mk_var (s, ty)
val isrec = (HolKernel.find_term (Lib.equal c) b; true)
handle HOL_ERR _ => false
val def = if isrec andalso Term.is_abs b
then let
val (vs, b1) = Term.strip_abs b
in
(Term.list_mk_comb (c, a :: vs), b1)
end
else (Term.mk_comb (c, a), b)
val () = resetAnon ()
in
(if isrec then z_def else new_def s) def before mesg s
end
fun tDef (s, a, b, m) =
let
val ty = Type.--> (Term.type_of a, Term.type_of b)
val c = Term.mk_var (s, ty)
val def = if Term.is_abs b
then let
val (vs, b1) = Term.strip_abs b
in
(Term.list_mk_comb (c, a :: vs), b1)
end
else (Term.mk_comb (c, a), b)
val () = resetAnon ()
in
t_def s def m before mesg s
end
fun Def0 (s, b) = new_def s (Term.mk_var (s, Term.type_of b), b) before mesg s
end (* Import *)
|