File: Import.sml

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (981 lines) | stat: -rw-r--r-- 33,010 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
structure Import :> Import =
struct

open HolKernel boolLib bossLib
open state_transformerTheory bitstringLib stringLib machine_ieeeSyntax
open intSyntax integer_wordSyntax bitstringSyntax state_transformerSyntax

val ERR = mk_HOL_ERR "Import"

(* ------------------------------------------------------------------------ *)

local
   val boolify_vals = ref (Redblackset.empty Int.compare)
   val type_names = ref []
   val const_names = ref []
   fun decl s = "val " ^ s
   val typ = "{Thy: string, T: string list, C: string list, N: int list}"
in
   fun log_boolify n = boolify_vals := Redblackset.add (!boolify_vals, n)
   fun log_type s = type_names := s :: !type_names
   fun log_constant s = const_names := (s ^ "_def") :: !const_names
   fun start thy =
      (type_names := []
       ; const_names := []
       ; Theory.new_theory thy)
   fun open_monad_syntax () =
      Theory.adjoin_to_theory
        {sig_ps = NONE,
         struct_ps =
            SOME (fn ppstrm => PP.add_string ppstrm "open monadsyntax")}
   fun finish i =
      (Theory.adjoin_to_theory {
         sig_ps =
           SOME (fn ppstrm =>
                   (PP.add_string ppstrm (decl "inventory:")
                    ; PP.add_break ppstrm (1, 2)
                    ; PP.add_string ppstrm typ)),
         struct_ps =
           SOME (fn ppstrm =>
                    let
                       val name = Lib.quote (Theory.current_theory ())
                       fun bl f s l =
                          ( PP.add_break ppstrm (1, 0)
                          ; PP.add_string ppstrm (s ^ " [")
                          ; PP.begin_block ppstrm PP.INCONSISTENT 0
                          ; Portable.pr_list
                              (PP.add_string ppstrm o f)
                              (fn () => PP.add_string ppstrm ",")
                              (fn () => PP.add_break ppstrm (1, 0)) l
                          ; PP.add_string ppstrm "]"
                          ; PP.end_block ppstrm)
                    in
                       PP.add_string ppstrm (decl "inventory = {")
                       ; PP.add_break ppstrm (0, 2)
                       ; PP.begin_block ppstrm PP.CONSISTENT 0
                       ; PP.add_string ppstrm ("Thy = " ^ name ^ ",")
                       ; bl Lib.quote "T =" (!type_names)
                       ; PP.add_string ppstrm (",")
                       ; bl Lib.quote "C =" (!const_names)
                       ; PP.add_string ppstrm (",")
                       ; bl Int.toString "N ="
                           (Redblackset.listItems (!boolify_vals))
                       ; PP.add_string ppstrm "}"
                       ; PP.end_block ppstrm
                       ; PP.add_newline ppstrm
                    end)}
       ; Feedback.set_trace "TheoryPP.include_docs" i
       ; Theory.export_theory ()
       ; type_names := []
       ; const_names := [])
end

(* ------------------------------------------------------------------------ *)

val Ty = ParseDatatype.pretypeToType
fun typeName ty = String.extract (Parse.type_to_string ty, 1, NONE)

(* Constant type *)
local
   fun mkTy (t, n) = ParseDatatype.dTyop {Thy = t, Tyop = n, Args = []}
   fun mkListTy a =
      ParseDatatype.dTyop {Thy = SOME "list", Tyop = "list", Args = [a]}
   val charTy = mkTy (SOME "string", "char")
in
   val uTy = mkTy (SOME "one", "one")
   val iTy = mkTy (SOME "integer", "int")
   val nTy = mkTy (SOME "num", "num")
   val bTy = mkTy (SOME "min", "bool")
   val rTy = mkTy (SOME "binary_ieee", "rounding")
   val sTy = mkListTy charTy
   val vTy = mkListTy bTy
   fun CTy n = mkTy (NONE, n)
end

(* Variable type *)
fun VTy s = ParseDatatype.dVartype ("'" ^ s)

(* Fixed-width bit-vector type *)
val FTy = ParseDatatype.dAQ o wordsSyntax.mk_int_word_type

val F1 = FTy 1
val F4 = FTy 4
val F8 = FTy 8
val F16 = FTy 16
val F32 = FTy 32
val F64 = FTy 64

(* N-bit type *)
fun typevar s = Type.mk_vartype ("'" ^ s)
fun BTy s = ParseDatatype.dAQ (wordsSyntax.mk_word_type (typevar s))

(* Arrow type *)
fun ATy (t1, t2) =
   ParseDatatype.dTyop {Thy = SOME "min", Tyop = "fun", Args = [t1, t2]}

(* Product type *)
fun PTy (t1, t2) =
   ParseDatatype.dTyop {Thy = SOME "pair", Tyop = "prod", Args = [t1, t2]}

(* Set type *)
fun STy t = ATy (t, bTy)

(* List type *)
fun LTy t =
   ParseDatatype.dTyop {Thy = SOME "list", Tyop = "list", Args = [t]}

(* Option type *)
fun OTy t =
   ParseDatatype.dTyop {Thy = SOME "option", Tyop = "option", Args = [t]}

(* ------------------------------------------------------------------------ *)

val myDatatype =
   let
      val w = String.size "Defined type: \""
   in
      (Lib.with_flag
         (Feedback.MESG_to_string,
          fn s => (log_type
                     (String.extract (s, w, SOME (String.size s - w - 1)))
                   ; s ^ "\n")) o
       Feedback.trace ("Theory.save_thm_reporting", 0) o
       Lib.with_flag (Datatype.big_record_size, 25))
       Datatype.astHol_datatype
   end

(* Record type *)
fun Record (n, l) = myDatatype [(n, ParseDatatype.Record l)]

(* Algebraic type *)
val Construct = myDatatype o List.map (I ## ParseDatatype.Constructors)

(* ------------------------------------------------------------------------ *)

fun mk_local_const (n, ty) =
   Term.mk_thy_const {Ty = ty, Thy = Theory.current_theory (), Name = n}

(* Literals *)

(* Unit *)
val LU = oneSyntax.one_tm
(* Bool *)
val LT = boolSyntax.T
val LF = boolSyntax.F
(* Integer *)
fun LI i = intSyntax.term_of_int (Arbint.fromInt i)
(* Natural *)
fun LN n = numSyntax.term_of_int n
(* String *)
fun LS s = stringSyntax.fromMLstring s
(* Bitstring *)
fun LV v = bitstringSyntax.bitstring_of_binstring v
(* Fixed-width  *)
fun LW (i, w) = wordsSyntax.mk_wordii (i, w)
(* N-bit  *)
fun LY (i, n) = wordsSyntax.mk_n2w (LN i, typevar n)
(* Enumerated  *)
fun LC (c, ty) = mk_local_const (c, Ty ty)
(* NONE *)
fun LO ty = optionSyntax.mk_none (Ty ty)
(* Empty set *)
fun LE ty = pred_setSyntax.mk_empty (Ty ty)
(* Empty list (Nil) *)
fun LNL ty = listSyntax.mk_nil (Ty ty)
(* UNKNOWN  *)
fun LX ty = boolSyntax.mk_arb (Ty ty)

(* ------------------------------------------------------------------------ *)

(* Function call *)

fun Call (f, ty, tm) =
   let
      val typ = Type.--> (Term.type_of tm, Ty ty)
      val vc = mk_local_const (f, typ)
               handle HOL_ERR {origin_function = "mk_thy_const", ...} =>
                 Term.mk_var (f, typ) (* for recursion *)
   in
      Term.mk_comb (vc, tm)
   end

(* Constants *)

fun Const (c, ty) =
   let
      val typ = Ty ty
   in
      mk_local_const (c, typ)
      handle HOL_ERR {origin_function = "mk_thy_const", ...} =>
        Term.mk_var (c, typ) (* for recursion *)
   end

(* Variables *)

local
   val anon = ref 0
   fun anonSuffix () = (if !anon = 0 then "" else Int.toString (!anon))
                       before anon := !anon + 1
in
   fun resetAnon () = anon := 0
   fun AVar ty = Term.mk_var ("_" ^ anonSuffix(), Ty ty)
end

fun Var (v, ty) = Term.mk_var (v, Ty ty)

fun uVar v = Term.mk_var (v, oneSyntax.one_ty)
fun bVar v = Term.mk_var (v, Type.bool)
fun nVar v = Term.mk_var (v, numSyntax.num)
fun iVar v = Term.mk_var (v, intSyntax.int_ty)
fun sVar v = Term.mk_var (v, stringSyntax.string_ty)
fun vVar v = Term.mk_var (v, bitstringSyntax.bitstring_ty)

(* Closure *)

val Close = pairSyntax.mk_pabs

(* Application *)

val Apply = Term.mk_comb

(* Tuple *)

fun TP l =
   let
      val (f, lst) = Lib.front_last l
   in
      List.foldr pairSyntax.mk_pair lst f
   end

(* Map update *)

fun Fupd (m, i, e) = Term.mk_comb (combinSyntax.mk_update (i, e), m)

(* Cases *)

(* val CS = TypeBase.mk_case *)

fun CS (x, cs) =
   Term.beta_conv (Term.mk_comb
     (Lib.with_flag (Feedback.emit_MESG, false)
        (Lib.with_flag (Globals.priming, SOME "_")
           TypeBase.mk_pattern_fn) cs, x))
   before resetAnon ()

(* Let-expression *)

fun Let (v,e,b) =
   boolSyntax.mk_let (Close (v, b), e)
   handle HOL_ERR {origin_function = "mk_pabs", ...} => CS (e, [(v, b)])

(* Set of list *)

val SL =
   fn [] => raise ERR "SL" "empty"
    | l as (h::_) => pred_setSyntax.prim_mk_set (l, Term.type_of h)

(* List of list *)

val LL =
   fn [] => raise ERR "LL" "empty"
    | l as (h::_) => listSyntax.mk_list (l, Term.type_of h)

local
   fun gen_mk_list (l, tm) = List.foldr listSyntax.mk_cons tm l
in
   val LLC =
      fn ([], tm) =>
           let
              val ty = fst (pairSyntax.dest_prod (Term.type_of tm))
              val cons = Term.inst [Type.alpha |-> ty] listSyntax.cons_tm
           in
              pairSyntax.mk_uncurry (cons, tm)
           end
       | ltm => gen_mk_list ltm
end

(* Record constructor (may not work for really big records) *)

local
   fun strip_fun_type ty =
      let
         fun strip (a, ty) =
            case Lib.total Type.dom_rng ty of
              SOME (ty1, ty2) => strip (ty1::a, ty2)
            | NONE => (List.rev a, ty)
      in
         strip ([], ty)
      end
   fun get_cons ty =
      let
         val tm = Lib.singleton_of_list (TypeBase.constructors_of ty)
      in
         (fst (strip_fun_type (Term.type_of tm)), tm)
      end
   fun split l = Lib.split_after (List.length l)
in
   fun Rec (ty, l) =
      let
         val (tys, tm) = get_cons (Ty ty)
      in
         if List.length l = List.length tys
            then Term.list_mk_comb (tm, l)
         else let
                 val cs = List.map get_cons tys
                 val (tms, rst) =
                    List.foldl
                      (fn ((tys, f), (a, r)) =>
                          let
                              val (args, rst) = split tys r
                          in
                             (Term.list_mk_comb (f, args) :: a, rst)
                          end) ([], l) cs
              in
                 List.null rst orelse raise ERR "Rec" "too many arguments";
                 Term.list_mk_comb (tm, List.rev tms)
              end
      end
end

(* Record destructor *)

fun Dest (f, ty, tm) = Call (typeName (Term.type_of tm) ^ "_" ^ f, ty, tm)

(* Record update *)

fun smart_dest_pair tm =
   case Lib.total pairSyntax.dest_pair tm of
      SOME p => p
    | NONE => (pairSyntax.mk_fst tm, pairSyntax.mk_snd tm)

fun Rupd (f, tm) =
   let
      val (rty, fty) = pairSyntax.dest_prod (Term.type_of tm)
      val typ = Type.--> (Type.--> (fty, fty), Type.--> (rty, rty))
      val fupd = mk_local_const (typeName rty ^ "_" ^ f ^ "_fupd", typ)
      val (x, d) = smart_dest_pair tm
   in
      Term.list_mk_comb (fupd, [combinSyntax.mk_K_1 (d, Term.type_of d), x])
   end

(* Boolify constructor *)

val bit_bool =
   Feedback.trace ("Theory.save_thm_reporting", 0) bitstringLib.bitify_boolify

fun BL (i, tm) =
   let
      val () = log_boolify i
      val { mk_boolify, ... } = bit_bool i
   in
      mk_boolify tm
   end

(* If-then-else *)

fun ITE (i, t, e) = boolSyntax.mk_cond (i, t, e)

fun ITB (l, e) = List.foldr (fn ((b, t), e) => ITE (b, t, e)) e l

(* Sub-word extract *)

fun EX (x, h, l, ty) =
   let
      val typ = Ty ty
   in
      if typ = bitstringSyntax.bitstring_ty
         then bitstringSyntax.mk_field (h, l, x)
      else wordsSyntax.mk_word_extract (h, l, x, wordsSyntax.dest_word_type typ)
   end

(* Bit-field insert *)

fun BFI (t as (_, _, x, _)) =
   if Term.type_of x = bitstringSyntax.bitstring_ty
      then bitstringSyntax.mk_field_insert t
   else wordsSyntax.mk_bit_field_insert t

(* Concatenation *)

fun CC [] = raise ERR "CC" "empty"
  | CC l =
   let
      val (f, lst) = Lib.front_last l
      val ty = Term.type_of lst
      val mk = if ty = stringSyntax.string_ty
                  then stringSyntax.mk_strcat
               else if ty = bitstringSyntax.bitstring_ty
                  then listSyntax.mk_append
               else wordsSyntax.mk_word_concat
   in
      List.foldr mk lst f
   end

(* Equality *)

fun EQ (x, y) = boolSyntax.mk_eq (x, y)

(* Monad operations *)

(* Return/Unit *)

val MU = state_transformerSyntax.mk_unit o (I ## Ty)

(* Bind *)

val MB = state_transformerSyntax.mk_bind

(* Read *)

val MR = state_transformerSyntax.mk_read

(* Write *)

val MW = state_transformerSyntax.mk_write

(* Narrow *)

val MN = state_transformerSyntax.mk_narrow

(* Widen *)

val MD = state_transformerSyntax.mk_widen o (I ## Ty)

(* For-loop *)

val For = HolKernel.mk_monop state_transformerSyntax.for_tm

(* ------------------------------------------------------------------------ *)

(* Primitive binary and unary operations *)

datatype monop =
     Abs
   | BNot
   | Cast of ParseDatatype.pretype
   | Fst
   | Head
   | IsSome
   | K1 of ParseDatatype.pretype
   | Length
   | Log
   | Max
   | Min
   | Msb
   | Neg
   | Not
   | Rev
   | SE of ParseDatatype.pretype
   | Size
   | Smax
   | Smin
   | Snd
   | SofL
   | Some
   | Tail
   | ValOf
   | fpAdd32
   | fpAdd64
   | fpMul32
   | fpMul64
   | fpNeg32
   | fpNeg64
   | fpSub32
   | fpSub64

datatype binop =
     Add
   | And
   | Asr
   | BAnd
   | BOr
   | BXor
   | Bit
   | Div
   | Exp
   | Ge
   | Gt
   | In
   | Insert
   | Le
   | Lsl
   | Lsr
   | Lt
   | Mdfy
   | Mod
   | Mul
   | Or
   | Quot
   | Rem
   | Rep
   | Rol
   | Ror
   | Sub
   | Uge
   | Ugt
   | Ule
   | Ult

local
   val m =
      ref (Redblackmap.mkDict String.compare : (string, term) Redblackmap.dict)
in
   fun string2enum ty =
      let
         val name = fst (Type.dest_type ty)
      in
         case Redblackmap.peek (!m, name) of
            SOME tm => tm
          | NONE =>
              let
                 val tm = ty
                          |> stringLib.Define_string2enum
                          |> Thm.concl
                          |> boolSyntax.dest_forall
                          |> snd
                          |> boolSyntax.lhs
                          |> boolSyntax.rator
              in
                 m := Redblackmap.insert (!m, name, tm)
                 ; tm
              end
      end
end

local
   val m =
      ref (Redblackmap.mkDict String.compare : (string, term) Redblackmap.dict)
in
   fun enum2string ty =
      let
         val name = fst (Type.dest_type ty)
      in
         case Redblackmap.peek (!m, name) of
            SOME tm => tm
          | NONE =>
              let
                 val tm = ty
                          |> stringLib.Define_enum2string
                          |> Thm.concl
                          |> boolSyntax.strip_conj
                          |> hd
                          |> boolSyntax.lhs
                          |> boolSyntax.rator
              in
                 m := Redblackmap.insert (!m, name, tm)
                 ; tm
              end
      end
end

local
   val one_tm = numSyntax.mk_numeral Arbnum.one

   fun mk_w tm ty = wordsSyntax.mk_n2w (tm, wordsSyntax.dest_word_type ty)
   val mk_word0 = mk_w numSyntax.zero_tm
   val mk_word1 = mk_w one_tm

   fun enum2num ty =
      Lib.with_exn mk_local_const
        (typeName ty ^ "2num", Type.--> (ty, numLib.num))
        (ERR "pickCast" "enum2num not found")

   fun num2enum ty =
      Lib.with_exn mk_local_const
        ("num2" ^ typeName ty, Type.--> (numLib.num, ty))
        (ERR "pickCast" "num2enum not found")

   fun mk_test a b c d = boolSyntax.mk_cond (boolSyntax.mk_eq (a, b), c, d)

   val string2bool =
      let
         val v = Term.mk_var ("s", stringSyntax.string_ty)
      in
         Term.mk_abs (v,
            mk_test v (stringSyntax.fromMLstring "true") boolSyntax.T
              (mk_test v (stringSyntax.fromMLstring "false") boolSyntax.F
                 (boolSyntax.mk_arb Type.bool)))
      end

   val fstTy = fst o pairSyntax.dest_prod o Term.type_of

   fun s f (tm1:term) tm2 = pairSyntax.mk_uncurry (f tm2 tm1, tm2)

   fun ialpha tm =
      Term.inst [Type.alpha |-> wordsSyntax.dest_word_type (fstTy tm)]

   fun mk_from_bool (x as (tm, a, b)) =
      if tm = boolSyntax.T
         then a
      else if tm = boolSyntax.F
         then b
      else boolSyntax.mk_cond x

   val mk_word_min  = s ialpha wordsSyntax.word_min_tm
   val mk_word_max  = s ialpha wordsSyntax.word_max_tm
   val mk_word_smin = s ialpha wordsSyntax.word_smin_tm
   val mk_word_smax = s ialpha wordsSyntax.word_smax_tm

   val mk_num_min = s (K I) numSyntax.min_tm
   val mk_num_max = s (K I) numSyntax.max_tm
   val mk_int_min = s (K I) intSyntax.min_tm
   val mk_int_max = s (K I) intSyntax.max_tm

   val c_mk_comb = Lib.curry Term.mk_comb

   fun mk_from_enum ty =
      SOME (Lib.curry Term.mk_comb (enum2num ty)) handle HOL_ERR _ => NONE

   fun mk_fp_triop f =
      let
         val ftm = case f of
                      fpAdd32 => machine_ieeeSyntax.fp32Syntax.fp_add_tm
                    | fpAdd64 => machine_ieeeSyntax.fp64Syntax.fp_add_tm
                    | fpMul32 => machine_ieeeSyntax.fp32Syntax.fp_mul_tm
                    | fpMul64 => machine_ieeeSyntax.fp64Syntax.fp_mul_tm
                    | fpSub32 => machine_ieeeSyntax.fp32Syntax.fp_sub_tm
                    | fpSub64 => machine_ieeeSyntax.fp64Syntax.fp_sub_tm
                    | _ => raise ERR "mk_fp_triop" ""
         val ty = ftm |> Term.type_of
                      |> Type.dom_rng |> snd
                      |> Type.dom_rng |> fst
         val a = Term.mk_var ("a", binary_ieeeSyntax.rounding_ty)
         val b = Term.mk_var ("b", ty)
         val c = Term.mk_var ("c", ty)
         val l = [a, b, c]
         val p = pairSyntax.list_mk_pair l
         val ptm = pairSyntax.mk_pabs (p, Term.list_mk_comb (ftm, l))
      in
         fn tm =>
            (ptm, tm) |> Term.mk_comb
                      |> PairRules.PBETA_CONV
                      |> Thm.concl
                      |> boolSyntax.rhs
      end

   fun pickCast ty2 tm =
      let
         val ty1 = Term.type_of tm
         val dw = wordsSyntax.dest_word_type
      in
         if wordsSyntax.is_word_type ty1
            then if wordsSyntax.is_word_type ty2
                    then wordsSyntax.mk_w2w (tm, dw ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then bitstringSyntax.mk_w2v tm
                 else if ty2 = numSyntax.num
                    then wordsSyntax.mk_w2n tm
                 else if ty2 = intSyntax.int_ty
                    then integer_wordSyntax.mk_w2i tm
                 else if ty2 = stringSyntax.string_ty
                    then wordsSyntax.mk_word_to_hex_string tm
                 else if ty2 = Type.bool
                    then boolSyntax.mk_neg (boolSyntax.mk_eq (tm, mk_word0 ty1))
                 else Term.mk_comb (num2enum ty2, wordsSyntax.mk_w2n tm)
         else if ty1 = bitstringSyntax.bitstring_ty
            then if wordsSyntax.is_word_type ty2
                    then bitstringSyntax.mk_v2w (tm, dw ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then tm
                 else if ty2 = numSyntax.num
                    then bitstringSyntax.mk_v2n tm
                 else if ty2 = intSyntax.int_ty
                    then intSyntax.mk_injected (bitstringSyntax.mk_v2n tm)
                 else if ty2 = stringSyntax.string_ty
                    then bitstringSyntax.mk_v2s tm
                 else if ty2 = Type.bool
                    then boolSyntax.mk_neg (boolSyntax.mk_eq
                           (bitstringSyntax.mk_v2n tm, numSyntax.zero_tm))
                 else Term.mk_comb (num2enum ty2, bitstringSyntax.mk_v2n tm)
         else if ty1 = numSyntax.num
            then if wordsSyntax.is_word_type ty2
                    then wordsSyntax.mk_n2w (tm, dw ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then bitstringSyntax.mk_n2v tm
                 else if ty2 = numSyntax.num
                    then tm
                 else if ty2 = intSyntax.int_ty
                    then intSyntax.mk_injected tm
                 else if ty2 = stringSyntax.string_ty
                    then ASCIInumbersSyntax.mk_num_to_dec_string tm
                 else if ty2 = Type.bool
                    then boolSyntax.mk_neg (boolSyntax.mk_eq
                           (tm, numSyntax.zero_tm))
                 else Term.mk_comb (num2enum ty2, tm)
         else if ty1 = intSyntax.int_ty
            then if wordsSyntax.is_word_type ty2
                    then integer_wordSyntax.mk_i2w (tm, dw ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then bitstringSyntax.mk_n2v (intSyntax.mk_Num tm)
                 else if ty2 = numSyntax.num
                    then intSyntax.mk_Num tm
                 else if ty2 = intSyntax.int_ty
                    then tm
                 else if ty2 = stringSyntax.string_ty
                    then integer_wordSyntax.mk_toString tm
                 else if ty2 = Type.bool
                    then boolSyntax.mk_neg (boolSyntax.mk_eq
                           (tm, intSyntax.zero_tm))
                 else Term.mk_comb (num2enum ty2, intSyntax.mk_Num tm)
         else if ty1 = stringSyntax.string_ty
            then if wordsSyntax.is_word_type ty2
                    then wordsSyntax.mk_word_from_hex_string (tm, dw ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then bitstringSyntax.mk_s2v tm
                 else if ty2 = numSyntax.num
                    then ASCIInumbersSyntax.mk_num_from_dec_string tm
                 else if ty2 = intSyntax.int_ty
                    then integer_wordSyntax.mk_fromString tm
                 else if ty2 = stringSyntax.string_ty
                    then tm
                 else if ty2 = Type.bool
                    then Term.mk_comb (string2bool, tm)
                 else Term.mk_comb (string2enum ty2, tm)
         else if ty1 = Type.bool
            then if wordsSyntax.is_word_type ty2
                    then mk_from_bool (tm, mk_word1 ty2, mk_word0 ty2)
                 else if ty2 = bitstringSyntax.bitstring_ty
                    then mk_from_bool (tm,
                           bitstringSyntax.bitstring_of_binstring "1",
                           bitstringSyntax.bitstring_of_binstring "0")
                 else if ty2 = numSyntax.num
                    then mk_from_bool (tm, one_tm, numSyntax.zero_tm)
                 else if ty2 = intSyntax.int_ty
                    then mk_from_bool (tm,
                           intSyntax.one_tm, intSyntax.zero_tm)
                 else if ty2 = stringSyntax.string_ty
                    then mk_from_bool (tm,
                           stringSyntax.fromMLstring "true",
                           stringSyntax.fromMLstring "false")
                 else if ty2 = Type.bool
                    then tm
                 else raise ERR "pickCast" "bool -> ?"
         else case mk_from_enum ty1 of
                 SOME e2n =>
                    if wordsSyntax.is_word_type ty2
                       then wordsSyntax.mk_n2w (e2n tm, dw ty2)
                    else if ty2 = bitstringSyntax.bitstring_ty
                       then bitstringSyntax.mk_n2v (e2n tm)
                    else if ty2 = numSyntax.num
                       then e2n tm
                    else if ty2 = intSyntax.int_ty
                       then intSyntax.mk_injected (e2n tm)
                    else if ty2 = stringSyntax.string_ty
                       then Term.mk_comb (enum2string ty1, tm)
                    else if ty2 = Type.bool
                       then boolSyntax.mk_neg (boolSyntax.mk_eq
                              (tm, hd (TypeBase.constructors_of ty1)))
                    else Term.mk_comb (num2enum ty2, e2n tm)
               | _ => raise ERR "pickCast"
                        ("bad domain: " ^ typeName ty1 ^ " -> " ^ typeName ty2)
      end

      fun pick (a, b, c, d) tm =
         let
            val ty = Term.type_of tm
         in
            Option.valOf
              (if Option.isSome a andalso wordsSyntax.is_word_type ty
                  then a
               else if Option.isSome b andalso ty = bitstringSyntax.bitstring_ty
                  then b
               else if Option.isSome c andalso ty = numSyntax.num
                  then c
               else if Option.isSome d andalso ty = intSyntax.int_ty
                  then d
               else raise ERR "Mop" "pick") tm
         end

      fun pickMinMax (a, b, c) tm =
         let
            val ty = fstTy tm
         in
           (if wordsSyntax.is_word_type ty
               then a
            else if ty = numSyntax.num
               then b
            else if ty = intSyntax.int_ty
               then c
            else raise ERR "Mop" "pickMinMax") tm
         end
in
   fun Mop (m : monop, x) =
      (case m of
         BNot   => wordsSyntax.mk_word_1comp
       | Fst    => pairSyntax.mk_fst
       | Head   => listSyntax.mk_hd
       | IsSome => optionSyntax.mk_is_some
       | Length => listSyntax.mk_length
       | Msb    => wordsSyntax.mk_word_msb
       | Not    => boolSyntax.mk_neg
       | Rev    => wordsSyntax.mk_word_reverse
       | Smax   => mk_word_smax
       | Smin   => mk_word_smin
       | Snd    => pairSyntax.mk_snd
       | SofL   => listSyntax.mk_list_to_set
       | Some   => optionSyntax.mk_some
       | Tail   => listSyntax.mk_tl
       | ValOf  => optionSyntax.mk_the
       | Min  => pickMinMax (mk_word_min, mk_num_min, mk_int_min)
       | Max  => pickMinMax (mk_word_max, mk_num_max, mk_int_max)
       | Abs  => pick (SOME wordsSyntax.mk_word_abs, NONE, NONE,
                       SOME intSyntax.mk_absval)
       | Neg  => pick (SOME wordsSyntax.mk_word_2comp, NONE, NONE,
                       SOME intSyntax.mk_negated)
       | Size => pick (SOME wordsSyntax.mk_word_len,
                       SOME listSyntax.mk_length, NONE, NONE)
       | Log  => pick (SOME wordsSyntax.mk_word_log2, NONE,
                       SOME bitSyntax.mk_log2, NONE)
       | K1 ty => (fn tm => combinSyntax.mk_K_1 (tm, Ty ty))
       | SE ty =>
           (fn tm =>
              wordsSyntax.mk_sw2sw (tm, wordsSyntax.dest_word_type (Ty ty)))
       | Cast ty => pickCast (Ty ty)
       | fpNeg32 => machine_ieeeSyntax.fp32Syntax.mk_fp_negate
       | fpNeg64 => machine_ieeeSyntax.fp64Syntax.mk_fp_negate
       | _ => mk_fp_triop m
      ) x
end

local
   fun pick (a, b, c, d) (tm1, tm2: term) : term =
      let
         val ty = Term.type_of tm1
      in
         Option.valOf
           (if Option.isSome a andalso wordsSyntax.is_word_type ty
               then a
            else if Option.isSome b andalso ty = bitstringSyntax.bitstring_ty
               then b
            else if Option.isSome c andalso ty = numSyntax.num
               then c
            else if Option.isSome d andalso ty = intSyntax.int_ty
               then d
            else raise ERR "Bop" "pick") (tm1, tm2)
      end
   fun pickShift (a, b) (tm1 : term, tm2) : term =
      (if wordsSyntax.is_word_type (Term.type_of tm2) then a else b) (tm1, tm2)
   fun COMM f (x, y) = f (y, x)
   fun icurry tm =
       Term.mk_comb
          (Term.inst [Type.alpha |-> numSyntax.num, Type.beta |-> Type.bool,
                      Type.gamma |-> Type.bool] pairSyntax.curry_tm, tm)
   fun mk_modify (f, a) = wordsSyntax.mk_word_modify (icurry f, a)
in
   fun Bop (b : binop, x, y) = (x, y) |>
     (case b of
        And    => boolSyntax.mk_conj
      | BAnd   => wordsSyntax.mk_word_and
      | BOr    => wordsSyntax.mk_word_or
      | BXor   => wordsSyntax.mk_word_xor
      | In     => pred_setSyntax.mk_in
      | Insert => pred_setSyntax.mk_insert
      | Mdfy   => mk_modify
      | Or     => boolSyntax.mk_disj
      | Uge    => wordsSyntax.mk_word_hs
      | Ugt    => wordsSyntax.mk_word_hi
      | Ule    => wordsSyntax.mk_word_ls
      | Ult    => wordsSyntax.mk_word_lo
      | Lt   => pick (SOME wordsSyntax.mk_word_lt, NONE,
                      SOME numSyntax.mk_less, SOME intSyntax.mk_less)
      | Gt   => pick (SOME wordsSyntax.mk_word_gt, NONE,
                      SOME numSyntax.mk_greater, SOME intSyntax.mk_great)
      | Le   => pick (SOME wordsSyntax.mk_word_le, NONE,
                      SOME numSyntax.mk_leq, SOME intSyntax.mk_leq)
      | Ge   => pick (SOME wordsSyntax.mk_word_ge, NONE,
                      SOME numSyntax.mk_geq, SOME intSyntax.mk_geq)
      | Bit  => pick (SOME (COMM wordsSyntax.mk_word_bit),
                      SOME (COMM bitstringSyntax.mk_testbit), NONE, NONE)
      | Add  => pick (SOME wordsSyntax.mk_word_add,
                      SOME bitstringSyntax.mk_add, SOME numSyntax.mk_plus,
                      SOME intSyntax.mk_plus)
      | Sub  => pick (SOME wordsSyntax.mk_word_sub, NONE,
                      SOME numSyntax.mk_minus, SOME intSyntax.mk_minus)
      | Mul  => pick (SOME wordsSyntax.mk_word_mul, NONE,
                      SOME numSyntax.mk_mult, SOME intSyntax.mk_mult)
      | Div  => pick (SOME wordsSyntax.mk_word_div, NONE,
                      SOME numSyntax.mk_div, SOME intSyntax.mk_div)
      | Mod  => pick (SOME wordsSyntax.mk_word_mod, NONE,
                      SOME numSyntax.mk_mod, SOME intSyntax.mk_mod)
      | Quot => pick (SOME wordsSyntax.mk_word_sdiv, NONE, NONE,
                      SOME intSyntax.mk_quot)
      | Rem  => pick (SOME wordsSyntax.mk_word_srem, NONE, NONE,
                      SOME intSyntax.mk_rem)
      | Rep  => pick (SOME (wordsSyntax.mk_word_replicate o Lib.swap),
                      SOME bitstringSyntax.mk_replicate, NONE, NONE)
      | Exp  => pick (NONE, NONE, SOME numSyntax.mk_exp, SOME intSyntax.mk_exp)
      | Lsl  => pick (SOME (pickShift (wordsSyntax.mk_word_lsl_bv,
                                       wordsSyntax.mk_word_lsl)),
                      SOME bitstringSyntax.mk_shiftl, NONE, NONE)
      | Lsr  => pickShift (wordsSyntax.mk_word_lsr_bv, wordsSyntax.mk_word_lsr)
      | Asr  => pickShift (wordsSyntax.mk_word_asr_bv, wordsSyntax.mk_word_asr)
      | Ror  => pickShift (wordsSyntax.mk_word_ror_bv, wordsSyntax.mk_word_ror)
      | Rol  => pickShift (wordsSyntax.mk_word_rol_bv, wordsSyntax.mk_word_rol))
end

(* ------------------------------------------------------------------------ *)

(* Definitions *)

local
   val tac = SRW_TAC [listSimps.LIST_ss, numSimps.ARITH_ss] []
in
   fun MEASURE_TAC tm =
      TotalDefn.WF_REL_TAC `^(boolSyntax.mk_icomb (numSyntax.measure_tm, tm))`
      THEN tac
end

fun new_def s x = Definition.new_definition (s ^ "_def", boolSyntax.mk_eq x)

fun z_def def =
   Feedback.trace ("Define.storage_message", 0)
   bossLib.zDefine [HOLPP.ANTIQUOTE (boolSyntax.mk_eq def)]

fun t_def s def m =
   Feedback.trace ("Define.storage_message", 0)
   (bossLib.tDefine s [HOLPP.ANTIQUOTE (boolSyntax.mk_eq def)])
     (MEASURE_TAC m)

val mesg =
   Lib.with_flag
      (Feedback.MESG_to_string,
       fn s => (log_constant s; "Defined: " ^ s ^ "\n"))
      Feedback.HOL_MESG

fun Def (s, a, b) =
   let
      val ty = Type.--> (Term.type_of a, Term.type_of b)
      val c = Term.mk_var (s, ty)
      val isrec = (HolKernel.find_term (Lib.equal c) b; true)
                  handle HOL_ERR _ => false
      val def = if isrec andalso Term.is_abs b
                   then let
                           val (vs, b1) = Term.strip_abs b
                        in
                           (Term.list_mk_comb (c, a :: vs), b1)
                        end
                else (Term.mk_comb (c, a), b)
      val () = resetAnon ()
   in
      (if isrec then z_def else new_def s) def before mesg s
   end

fun tDef (s, a, b, m) =
   let
      val ty = Type.--> (Term.type_of a, Term.type_of b)
      val c = Term.mk_var (s, ty)
      val def = if Term.is_abs b
                   then let
                           val (vs, b1) = Term.strip_abs b
                        in
                           (Term.list_mk_comb (c, a :: vs), b1)
                        end
                else (Term.mk_comb (c, a), b)
      val () = resetAnon ()
   in
      t_def s def m before mesg s
   end

fun Def0 (s, b) = new_def s (Term.mk_var (s, Term.type_of b), b) before mesg s

end (* Import *)