File: induct.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (73 lines) | stat: -rw-r--r-- 1,584 bytes parent folder | download | duplicates (20)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
(in-package "ACL2")

;Necessary definitions:

(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(local (include-book "fl")) ; yuck?

(defun or-dist-induct (y n)
  (if (and (integerp n) (>= n 0))
      (if (= n 0)
	  y
	(or-dist-induct (fl (/ y 2)) (1- n)))
    ()))

(defun log-induct (i j)
  (if (and (integerp i) (>= i 0)
	   (integerp j) (>= j 0))
      (if (or (= i 0) (= j 0))
	  ()
	(log-induct (fl (/ i 2)) (fl (/ j 2))))
    ()))

(DEFUN logand-three-args-induct (I J K)
  (declare (xargs :measure (ACL2-COUNT (abs i))
                  :hints (("Goal" :in-theory (enable abs)))))
  (IF (AND (INTEGERP I)
           (INTEGERP J)
           (INTEGERP K)
           )
      (IF (OR (= I 0) (= J 0) (= K 0)
              (= I -1) (= J -1) (= K -1))
          NIL
          (logand-three-args-induct
           (FL (/ I 2))
           (FL (/ J 2))
           (FL (/ K 2))))
      NIL))


(DEFUN LOG-INDUCT-allows-negatives (i j)
  (IF (AND (INTEGERP i)
           (INTEGERP j)
           )
      (IF (OR (= i 0) (= j 0) (= i -1) (= j -1))
          NIL
          (LOG-INDUCT-allows-negatives (FL (/ i 2)) (FL (/ j 2))))
      NIL))

(defun op-dist-induct (i j n)
  (if (and (integerp n) (>= n 0))
      (if  (= n 0)
	  (list i j)
	(op-dist-induct (fl (/ i 2)) (fl (/ j 2)) (1- n)))
    ()))

#|
(defun op-dist-induct-negative (i j n)
  (if (and (integerp n) (<= n 0))
      (if (= n 0)
	  (list i j)
	(op-dist-induct-negative (fl (/ i 2)) (fl (/ j 2)) (1+ n)))
    ()))
|#


;move?
(defun natp-induct (k)
  (if (zp k)
      t
    (natp-induct (1- k))))