File: ereps.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (234 lines) | stat: -rw-r--r-- 6,186 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
(in-package "ACL2")

; Eric Smith, David Russinoff, with contributions and suggestions by Matt Kaufmann
; AMD, June 2001
;this file was previously called repsproofs.lisp

(include-book "rtl")
(include-book "float") ;to get the defns...

(local (include-book "ereps-proofs"))

(set-inhibit-warnings "theory") ; avoid warning in the next event
(local (in-theory nil))
;(set-inhibit-warnings) ; restore theory warnings (optional)


; bias of a q bit exponent field is 2^(q-1)-1
(defund bias (q) (- (expt 2 (- q 1)) 1) )

;;Encoding of floating-point numbers with explicit leading one:
;;bit vectors of length p+q+1, consisting of 1-bit sign field,
;;q-bit exponent field (bias = 2**(q-1)-1), and p-bit significand field.

(defund esgnf  (x p q) (bitn x (+ p q)))
(defund eexpof (x p q) (bits x (1- (+ p q)) p))
(defund esigf  (x p)   (bits x (1- p) 0))

;;;**********************************************************************
;;;                       REPRESENTABLE NUMBERS
;;;**********************************************************************

(defund erepp (x p q)
  (and (rationalp x)
       (not (= x 0))
       (bvecp (+ (expo x) (bias q)) q)
       (exactp x p)))


;;;**********************************************************************
;;;                      VALID ENCODINGS
;;;**********************************************************************

(defund eencodingp (x p q)
  (and (bvecp x (+ p q 1))
       (= (bitn x (- p 1)) 1)))


;;;**********************************************************************
;;;                       EENCODE
;;;**********************************************************************



; sig, expo, and sgn are defined in float.lisp


;bozo disable!
(defund eencode (x p q)
  (cat (cat (if (= (sgn x) 1) 0 1)
	    1
	    (+ (expo x) (bias q))
	    q)
       (1+ q)
       (* (sig x) (expt 2 (- p 1)))
       p) )




;;;**********************************************************************
;;;                       EDECODE
;;;**********************************************************************


(defund edecode (x p q)
  (* (if (= (esgnf x p q) 0) 1 -1)
     (esigf x p)
     (expt 2 (+ 1 (- p) (eexpof x p q) (- (bias q))))))



;;;**********************************************************************
;;;                      Encoding and Decoding are Inverses
;;;**********************************************************************

(defthm erepp-edecode
  (implies (and (eencodingp x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (erepp (edecode x p q) p q)))


(defthm eencodingp-eencode
  (implies (and (erepp x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (eencodingp (eencode x p q) p q) ))

(defthm edecode-eencode
  (implies (and (erepp x p q)
                (integerp p)
;                (> p 0)
                (integerp q)
 ;               (> q 0)
                )
           (equal (edecode (eencode x p q) p q)
                  x )))

(defthm eencode-edecode
  (implies (and (eencodingp x p q)
                (integerp p)
                (>= p 0)
                (integerp q)
                (> q 0))
           (equal (eencode (edecode x p q) p q)
                  x )))

(defthm expo-edecode
  (implies (and (eencodingp x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (equal (expo (edecode x p q))
                  (- (eexpof x p q) (bias q))
                  )))

(defthm sgn-edecode
  (implies (and (eencodingp x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (equal (sgn (edecode  x p q))
                  (if (= (esgnf x p q) 0) 1 -1))))

(defthm sig-edecode
  (implies (and (eencodingp  x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (equal (sig (edecode  x p q))
                  (/ (esigf x p) (expt 2 (- p 1))))))

(defthm eencodingp-not-zero
  (implies (and (eencodingp x p q)
                (integerp p)
                (> p 0)
                (integerp q)
                (> q 0))
           (not (equal (edecode x p q) 0))))

(defund rebias-expo (expo old new)
  (+ expo (- (bias new) (bias old))))

;;I actually needed all four of the following lemmas, although I would have thought
;;that the two bvecp lemmas would be enough.

(defthm natp-rebias-up
    (implies (and (natp n)
		  (natp m)
		  (< 0 m)
		  (<= m n)
		  (bvecp x m))
	     (natp (rebias-expo x m n)))
    :hints (("goal" :in-theory (e/d ( expt-split rebias-expo bvecp natp bias
                                                  ) (expt-compare))
		  :use (:instance expt-weak-monotone (n m) (m n)))))

(defthm natp-rebias-down
    (implies (and (natp n)
		  (natp m)
		  (< 0 m)
		  (<= m n)
		  (bvecp x n)
		  (< x (+ (expt 2 (1- n)) (expt 2 (1- m))))
		  (>= x (- (expt 2 (1- n)) (expt 2 (1- m)))))
	     (natp (rebias-expo x n m)))
    :hints (("goal" :in-theory (enable rebias-expo bvecp natp bias))))

(defthm bvecp-rebias-up
    (implies (and (natp n)
		  (natp m)
		  (< 0 m)
		  (<= m n)
		  (bvecp x m))
	     (bvecp (rebias-expo x m n) n)))

(defthm bvecp-rebias-down
    (implies (and (natp n)
		  (natp m)
		  (< 0 m)
		  (<= m n)
		  (bvecp x n)
		  (< x (+ (expt 2 (1- n)) (expt 2 (1- m))))
		  (>= x (- (expt 2 (1- n)) (expt 2 (1- m)))))
	     (bvecp (rebias-expo x n m) m)))

(defthm rebias-up
    (implies (and (natp n)
		  (natp m)
		  (> n m)
		  (> m 1)
		  (bvecp x m))
	     (equal (rebias-expo x m n)
		    (cat (cat (bitn x (1- m))
			      1
			      (mulcat 1 (- n m) (lnot (bitn x (1- m)) 1))
			      (- n m))
			 (1+ (- n m))
			 (bits x (- m 2) 0)
			 (1- m))))
  :rule-classes ())

(defthm rebias-down
    (implies (and (natp n)
		  (natp m)
		  (> n m)
		  (> m 1)
		  (bvecp x n)
		  (< x (+ (expt 2 (1- n)) (expt 2 (1- m))))
		  (>= x (- (expt 2 (1- n)) (expt 2 (1- m)))))
	     (equal (rebias-expo x n m)
		    (cat (bitn x (1- n))
			 1
			 (bits x (- m 2) 0)
			 (1- m))))
  :rule-classes ())