File: lextra-proofs.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (201 lines) | stat: -rw-r--r-- 6,824 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
(in-package "ACL2")

(include-book "land")
(include-book "lior")
(include-book "lxor")
(local (include-book "../arithmetic/top"))
(local (include-book "logand"))
(local (include-book "logior"))
(local (include-book "logxor"))
(local (include-book "merge"))
(local (include-book "bvecp"))
(local (include-book "bits"))

(defthmd lior-land-1
  (equal (lior x (land y z n) n)
         (land (lior x y n) (lior x z n) n))
  :hints (("Goal" :use ((:instance logior-logand
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))
				   (z (bits z (1- n) 0))))
           :in-theory (enable lior land))))

(defthmd lior-land-2
  (equal (lior (land y z n) x n)
         (land (lior x y n) (lior x z n) n))
  :hints (("Goal" :use ((:instance logior-logand
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))
				   (z (bits z (1- n) 0))))
           :in-theory (enable lior land))))

(defthmd land-lior-1
  (equal (land x (lior y z n) n)
         (lior (land x y n) (land x z n) n))
  :hints (("Goal" :use ((:instance logand-logior
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))
				   (z (bits z (1- n) 0))))
           :in-theory (enable lior land))))

(defthmd land-lior-2
  (equal (land (lior y z n) x n)
         (lior (land x y n) (land x z n) n))
  :hints (("Goal" :use ((:instance logand-logior
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))
				   (z (bits z (1- n) 0))))
           :in-theory (enable lior land))))

(defthmd lior-land-lxor
  (equal (lior (land x y n) (lior (land x z n) (land y z n) n) n)
         (lior (land x y n) (land (lxor x y n) z n) n))
  :hints (("Goal" :use ((:instance log3
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))
				   (z (bits z (1- n) 0))))
           :in-theory (enable lior land lxor))))

(defthmd lxor-rewrite
  (equal (lxor x y n)
         (lior (land x (lnot y n) n)
               (land y (lnot x n) n)
               n))
  :hints (("Goal" :use ((:instance logxor-rewrite-2
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))))
           :in-theory (enable lior land lxor))))

(defthmd lnot-lxor
  (equal (lnot (lxor x y n) n)
         (lxor (lnot x n) y n))
  :hints (("Goal" :use ((:instance lnot-logxor
				   (x (bits x (1- n) 0))
				   (y (bits y (1- n) 0))))
           :in-theory (enable lxor))))

;move
(defthm bits-of-1-plus-double
  (implies (and (integerp x)
                (<= 0 i)
                )
           (equal (bits (+ 1 (* 2 x)) i 1)
                  (bits x (1- i) 0)))
  :hints (("goal" :in-theory (enable bits expt-split mod-prod mod-sum-cases)
           ))
  )

;move
;useful for inductions involvling lnot?
(defthm lnot-shift-plus-1
  (implies (and (case-split (integerp x))
                (case-split (< 0 n))
                (case-split (integerp n))
                )
           (equal (lnot (+ 1 (* 2 x)) n)
                  (* 2 (lnot x (1- n)))))
  :hints (("Goal" :use (:instance bits-plus-bits (x (+ 1 (* 2 X))) (n  (1- N)) (m 0) (p 1))
           :in-theory (enable lnot expt-split))))

;move?
;do we want this sort of theorem about lognot and logand too?
; Matt K.:  The original proof fails using v2-8-alpha-12-30-03.  I don't know
; why, but I do notice that the induction heuristics are getting in the way,
; because the problem goal (the one with the hint below) goes through in the
; proof-builder.  So we use the proof-builder proof.

#|
(local
 (defthm lnot-lior-aux
  (implies (and (integerp x) ;gen?
                (integerp y) ;gen?
                )
           (equal (lnot (lior x y n) n)
                  (land (lnot x n) (lnot y n) n)))
  :hints (("subgoal *1/2" :use (lior-def
                                (:instance land-def (x  (LNOT X N)) (y (LNOT Y N)))
                                (:instance mod012 (x x))
                                (:instance mod012 (x y))
                                (:instance lnot-fl (k 1))
                                (:instance lnot-fl (x y) (k 1))
                                )
           )
          ("Goal" :in-theory (enable lnot-shift)
           :do-not '(generalize)
           :induct ( op-dist-induct x y n)))))
|#

(local
 (DEFTHM LNOT-LIOR-AUX
   (IMPLIES (AND (INTEGERP X) (INTEGERP Y))
            (EQUAL (LNOT (LIOR X Y N) N)
                   (LAND (LNOT X N) (LNOT Y N) N)))
   :INSTRUCTIONS
   ((:IN-THEORY (ENABLE LNOT-SHIFT))
    (:INDUCT (OP-DIST-INDUCT X Y N))
    :PROVE
    (:PROVE :HINTS
            (("Goal" :USE
              (LIOR-DEF (:INSTANCE LAND-DEF (X (LNOT X N))
                                   (Y (LNOT Y N)))
                        (:INSTANCE MOD012 (X X))
                        (:INSTANCE MOD012 (X Y))
                        (:INSTANCE LNOT-FL (K 1))
                        (:INSTANCE LNOT-FL (X Y) (K 1))))))
    :PROVE)))

(defthm lnot-lior
  (equal (lnot (lior x y n) n)
         (land (lnot x n) (lnot y n) n))
  :hints (("goal" :in-theory (disable lnot-lior-aux)
           :use (:instance lnot-lior-aux (x (fl x)) (y (fl y)))))
  )

; See comment above about v2-8-alpha-12-30-03.  A similar situation applies
; just below.
#|
(local
 (defthm lnot-land-aux
   (implies (and (integerp x) ;gen?
                 (integerp y) ;gen?
                 )
            (equal (lnot (land x y n) n)
                   (lior (lnot x n) (lnot y n) n)))
   :hints (("subgoal *1/2" :use (land-def
                                 (:instance lior-def (x  (LNOT X N)) (y (LNOT Y N)))
                                 (:instance mod012 (x x))
                                 (:instance mod012 (x y))
                                 (:instance lnot-fl (k 1))
                                 (:instance lnot-fl (x y) (k 1))
                                 )
            )
           ("Goal" :in-theory (enable lnot-shift)
            :do-not '(generalize)
            :induct ( op-dist-induct x y n)))))
|#

(DEFTHM LNOT-LAND-AUX
        (IMPLIES (AND (INTEGERP X) (INTEGERP Y))
                 (EQUAL (LNOT (LAND X Y N) N)
                        (LIOR (LNOT X N) (LNOT Y N) N)))
        :INSTRUCTIONS
        ((:IN-THEORY (ENABLE LNOT-SHIFT))
         (:INDUCT (OP-DIST-INDUCT X Y N))
         :PROVE
         (:PROVE :HINTS
                 (("Goal" :USE
                          (LAND-DEF (:INSTANCE LIOR-DEF (X (LNOT X N))
                                               (Y (LNOT Y N)))
                                    (:INSTANCE MOD012 (X X))
                                    (:INSTANCE MOD012 (X Y))
                                    (:INSTANCE LNOT-FL (K 1))
                                    (:INSTANCE LNOT-FL (X Y) (K 1))))))
         :PROVE))

(defthm lnot-land
  (equal (lnot (land x y n) n)
         (lior (lnot x n) (lnot y n) n))
  :hints (("Goal" :in-theory (disable LNOT-LAND-aux)
           :use (:instance lnot-land-aux (x (fl x)) (y (fl y)))))
  )