1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
(in-package "ACL2")
(defund bvecp (x k)
(declare (xargs :guard (integerp k)))
(and (integerp x)
(<= 0 x)
(< x (expt 2 k))))
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= 0 x))))
;what is this file??
;; 2. equality comparison
(defun log= (x y)
(declare (xargs :guard t))
(if (equal x y) 1 0))
(defun log<> (x y)
(declare (xargs :guard t))
(if (equal x y) 0 1))
;; 3. unsigned inequalities
(defun log< (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (< x y) 1 0))
(defun log<= (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (<= x y) 1 0))
(defun log> (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (> x y) 1 0))
(defun log>= (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (>= x y) 1 0))
;; 2. equality comparison
(defun log= (x y)
(declare (xargs :guard t))
(if (equal x y) 1 0))
(defun log<> (x y)
(declare (xargs :guard t))
(if (equal x y) 0 1))
;; 3. unsigned inequalities
(defun log< (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (< x y) 1 0))
(defun log<= (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (<= x y) 1 0))
(defun log> (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (> x y) 1 0))
(defun log>= (x y)
(declare (xargs :guard (and (rationalp x) (rationalp y))))
(if (>= x y) 1 0))
;; 4. signed inequalities
;; The following function is not generated by translate-rtl, it is only needed
;; for the definitions of comp2<, comp2<=, etc.
(defun comp2 (x n)
(declare (xargs :guard (and (rationalp x) (integerp n))))
(if (< x (expt 2 (1- n)))
x
(- (- (expt 2 n) x))))
(defun comp2< (x y n)
(declare (xargs :guard (and (rationalp x) (rationalp y) (integerp n))))
(log< (comp2 x n) (comp2 y n)))
(defun comp2<= (x y n)
(declare (xargs :guard (and (rationalp x) (rationalp y) (integerp n))))
(log<= (comp2 x n) (comp2 y n)))
(defun comp2> (x y n)
(declare (xargs :guard (and (rationalp x) (rationalp y) (integerp n))))
(log> (comp2 x n) (comp2 y n)))
(defun comp2>= (x y n)
(declare (xargs :guard (and (rationalp x) (rationalp y) (integerp n))))
(log>= (comp2 x n) (comp2 y n)))
;; 5. unary logical operations
;make separate books for these? logior1 has one?
(defun logand1 (x n)
(declare (xargs :guard (integerp n)))
(log= x (1- (expt 2 n))))
(defun logior1 (x)
(declare (xargs :guard t))
(if (equal x 0) 0 1))
(defun logxor1 (src)
(declare (xargs :guard (integerp src)))
(if (oddp (logcount src)) 1 0))
;should rtl.lisp disable these fns?
;; log<
(defthm log<-bvecp
(bvecp (log< x y) 1)
:hints (("Goal" :in-theory (enable log<))))
(defthm log<-nonnegative-integer-type
(and (integerp (log< x y))
(<= 0 (log< x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log<))))
;this rule is no better than log<-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<)))
;just a rewrite rule
(defthm log<-natp
(natp (log< x y)))
;; log<=
(defthm log<=-bvecp
(bvecp (log<= x y) 1)
:hints (("Goal" :in-theory (enable log<=))))
(defthm log<=-nonnegative-integer-type
(and (integerp (log<= x y))
(<= 0 (log<= x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log<=))))
;this rule is no better than log<=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<=)))
;just a rewrite rule
(defthm log<=-natp
(natp (log<= x y)))
;; log>
(defthm log>-bvecp
(bvecp (log> x y) 1)
:hints (("Goal" :in-theory (enable log>))))
(defthm log>-nonnegative-integer-type
(and (integerp (log> x y))
(<= 0 (log> x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log>))))
;this rule is no better than log>-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log>)))
;just a rewrite rule
(defthm log>-natp
(natp (log> x y)))
;; log>=
(defthm log>=-bvecp
(bvecp (log>= x y) 1)
:hints (("Goal" :in-theory (enable log>=))))
(defthm log>=-nonnegative-integer-type
(and (integerp (log>= x y))
(<= 0 (log>= x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log>=))))
;this rule is no better than log>=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log>=)))
;just a rewrite rule
(defthm log>=-natp
(natp (log>= x y)))
;; log=
(defthm log=-bvecp
(bvecp (log= x y) 1)
:hints (("Goal" :in-theory (enable log=))))
(defthm log=-nonnegative-integer-type
(and (integerp (log= x y))
(<= 0 (log= x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log=))))
(defthm log=-commutative
(equal (log= x y)
(log= y x)))
;this rule is no better than log=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log=)))
;just a rewrite rule
(defthm log=-natp
(natp (log= x y)))
;; log<>
(defthm log<>-bvecp
(bvecp (log<> x y) 1)
:hints (("Goal" :in-theory (enable log<>))))
(defthm log<>-nonnegative-integer-type
(and (integerp (log<> x y))
(<= 0 (log<> x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable log<>))))
;this rule is no better than log<>-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<>)))
;just a rewrite rule
(defthm log<>-natp
(natp (log<> x y)))
(defthm log<>-commutative
(equal (log<> x y)
(log<> y x)))
;; logand1
(defthm logand1-bvecp
(bvecp (logand1 x y) 1)
:hints (("Goal" :in-theory (enable logand1))))
(defthm logand1-nonnegative-integer-type
(and (integerp (logand1 x y))
(<= 0 (logand1 x y)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable logand1))))
;this rule is no better than logand1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logand1)))
;just a rewrite rule
(defthm logand1-natp
(natp (logand1 x y)))
;; logior1
(defthm logior1-bvecp
(bvecp (logior1 x) 1)
:hints (("Goal" :in-theory (enable logior1))))
(defthm logior1-nonnegative-integer-type
(and (integerp (logior1 x))
(<= 0 (logior1 x)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable logior1))))
;this rule is no better than logior1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logior1)))
;just a rewrite rule
(defthm logior1-natp
(natp (logior1 x)))
;; logxor1
(defthm logxor1-bvecp
(bvecp (logxor1 x) 1)
:hints (("Goal" :in-theory (enable logxor1))))
(defthm logxor1-nonnegative-integer-type
(and (integerp (logxor1 x))
(<= 0 (logxor1 x)))
:rule-classes (:type-prescription)
:hints (("Goal" :in-theory (enable logxor1))))
;this rule is no better than logxor1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logxor1)))
;just a rewrite rule
(defthm logxor1-natp
(natp (logxor1 x)))
|