File: sets.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,138,276 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,978; makefile: 3,840; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (540 lines) | stat: -rw-r--r-- 14,237 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
;; 
;; Copyright (C) 2018, Rockwell Collins
;; All rights reserved.
;; 
;; This software may be modified and distributed under the terms
;; of the 3-clause BSD license.  See the LICENSE file for details.
;; 
;; 
(in-package "ACL2")
(include-book "coi/util/defun" :dir :system)
(include-book "coi/quantification/quantification" :dir :system)
(include-book "coi/util/deffix" :dir :system)
(include-book "coi/util/good-rewrite-order" :dir :system)

;; ---------------------------------------------------------------------

(in-theory 
 (disable 
  BAG::MEMBERP-CAR-WHEN-DISJOINT
  BAG::SUBBAGP-REMOVE-BAG-APPEND
  BAG::SUBBAGP-IMPLIES-MEMBERSHIP
  BAG::DISJOINT-COMMUTATIVE
  BAG::DISJOINT-OF-APPEND-ONE
  LIST::DISJOINT-REMOVE-DEFINITION
  BAG::REMOVE-BAG-DOES-NOTHING
  list::disjoint
  BAG::SUBBAGP-IMPLIES-SUBBAGP-CONS
  BAG::SUBBAGP-APPEND-2
  BAG::DISJOINT-OF-APPEND-TWO
  BAG::REMOVE-BAG-OF-CONS
  BAG::MEMBERP-SUBBAGP
  BAG::SUBBAGP-SELF
  BAG::SUBBAGP-IMPLIES-SUBBAGP-APPEND-CAR
  BAG::SUBBAGP-IMPLIES-SUBBAGP-APPEND-REC
  BAG::COUNT-<-0-REWRITE
  BAG::COUNT-WHEN-MEMBERP
  BAG::COUNT-OF-APPEND
  BAG::COUNT-WHEN-NON-MEMBER
  BAG::COUNT-0-FOR-NON-MEMBERP 
  ))

;; ---------------------------------------------------------------------

(defun consp-equiv (x y)
  (declare (type t x y))
  (iff (consp x) (consp y)))

(defequiv consp-equiv)

(defcong consp-equiv equal (consp x) 1)

;; We leave it enabled since we don't actually use it for anything interesting ..

;; This is what we want to prove for each new list-like equivalence relation
(defrefinement list-equiv consp-equiv)

;; ---------------------------------------------------------------------

(def::un-skd set-equiv-quant (x y)
  (forall (a) (equal (list::memberp a x)
                     (list::memberp a y))))

(verify-guards set-equiv-quant)

(defequiv set-equiv-quant
  :hints ((quant::inst?)))

(defcong set-equiv-quant equal (list::memberp a x) 2
  :hints ((quant::inst?)))

(defrefinement list-equiv set-equiv-quant)

(encapsulate
 ()

 (encapsulate
  (((set-equiv-hyps) => *)
   ((set-equiv-left) => *)
   ((set-equiv-right) => *))

  (local (defun set-equiv-hyps () nil))
  (local (defun set-equiv-left () nil))
  (local (defun set-equiv-right () nil))

  (defthm set-equiv-multiplicity-constraint
    (implies
     (set-equiv-hyps)
     (equal (list::memberp arbitrary-varid (set-equiv-left))
            (list::memberp arbitrary-varid (set-equiv-right))))
    :rule-classes nil)
  )

 (defthm set-equiv-by-multiplicity-driver
   (implies (set-equiv-hyps)
            (set-equiv-quant (set-equiv-left) (set-equiv-right)))
   :rule-classes nil
   :hints((and stable-under-simplificationp
               '(:use ((:instance
                        set-equiv-multiplicity-constraint
                        (arbitrary-varid hide)))))))

 (ADVISER::defadvice ADVISER::set-equiv-by-multiplicity
   (implies (set-equiv-hyps)
            (set-equiv (set-equiv-left) (set-equiv-right)))
   :rule-classes (:pick-a-point :driver set-equiv-by-multiplicity-driver))

 )

(defcong set-equiv-quant set-equiv-quant (cons a x) 2
  :hints (("Goal" :in-theory (enable list::memberp))))

(defcong set-equiv-quant set-equiv-quant (append x y) 1)
(defcong set-equiv-quant set-equiv-quant (append x y) 2)

(defthm set-equiv-quant-cons-commutes
  (set-equiv-quant (cons a (cons b x))
                   (cons b (cons a x))))

(defthm set-equiv-quant-append-commutes
  (set-equiv-quant (append x y)
                   (append y x)))

(defthm set-equiv-quant-append-append-commute
  (set-equiv-quant (append x (append y z))
                   (append y (append x z))))

(defthm set-equiv-quant-append-cons-commutes-1
  (set-equiv-quant (append (cons a x) y)
                   (cons a (append x y))))

(defthm set-equiv-quant-append-cons-commutes-2
  (set-equiv-quant (append y (cons a x))
                   (cons a (append y x))))

(defthm set-equiv-quant-append-x-append-x
  (set-equiv-quant (append x (append x y))
                   (append x y)))

(defthm set-equiv-quant-append-x-x
  (set-equiv-quant (append x x) x))

(defthm set-equiv-quant-cons-a-cons-a
  (set-equiv-quant (cons a (cons a x))
                   (cons a x)))

;; I don't think we really use this ..
(def::fix set-fix
  set-equiv-quant
  )

(local
 (encapsulate
     ()
   (set-tau-auto-mode nil)
   (defund set-equiv-context (x) 
     (declare (ignore x)) t)
   (in-theory (disable (:type-prescription set-equiv-context)))
   (set-tau-auto-mode t)
   
   ;; So .. there is an issue with forward-chaining off of an
   ;; equivalence relation .. it is not symmetric so it doesn't
   ;; account for commuted instances.  This is an experiement
   ;; to identify objects that are probably appear as arguments
   ;; to an equiv relation.
   (defthm identify-set-equiv-context
     (implies
      (set-equiv-quant x y)
      (and (set-equiv-context x)
           (set-equiv-context y)))
     :rule-classes (:forward-chaining)
     :hints (("Goal" :in-theory (enable set-equiv-context))))
   
   (defmacro iff-conjunction (x y)
     `(and (or (not ,x) ,y)
           (or ,x (not ,y))))
   
   (defthm set-equiv-implies-memberp-equiv
     (implies
      (and
       (set-equiv-context y)
       (set-equiv-quant x y))
      (iff-conjunction (list::memberp a y)
                       (list::memberp a x)))
     :rule-classes ((:forward-chaining :trigger-terms ((list::memberp a x)))))
   
   (defthm consp-implies-memberp-car
     (implies
      (consp x)
      (list::memberp (car x) x))
     :rule-classes (:type-prescription :forward-chaining))
   
   (defthm memberp-implies-consp
     (implies
      (list::memberp a x)
      (consp x))
     :rule-classes (:forward-chaining))
   
   ))

(defrefinement set-equiv-quant consp-equiv)

;; ---------------------------------------------------------------------

;; (encapsulate
;;     (
;;      ((fn * *) => *)
;;      ((fixx *) => *)
;;      ((equiv * *) => *)
;;      )
;;   (local (defun fixx (x) x))
;;   (local (defun equiv (x y) (equal x y)))
;;   (local (defun fn (a b) (list a b)))
;;   (defequiv equiv)
;;   (defthm equiv1-implies-equiv2-fn
;;     (implies
;;      (syntaxp (symbolp x))
;;      (equiv (fn x a) (fn (fixx x) a))))
;;   )

;; (defthm fn-cong
;;   (implies
;;    (equal (fixx x) (fixx y))
;;    (equiv (fn x a) (fn y a))))

(defthm member-remove-equal
  (equal (list::memberp a (remove-equal b x))
         (if (equal a b) nil
           (list::memberp a x))))

(defthm remove-non-member
  (implies
   (not (list::memberp a list))
   (equal (remove-equal a list)
          (list-fix list))))

(defcong set-equiv-quant set-equiv-quant (remove-equal a x) 2)

(defthm remove-equal-commutes
  (equal (remove-equal a (remove-equal b list))
         (remove-equal b (remove-equal a list))))

(defthm remove-remove
  (equal (remove-equal a (remove-equal a x))
         (remove-equal a x)))

(defthm len-remove-equal
  (implies
   (list::memberp a list)
   (< (len (remove-equal a list))
      (len list)))
  :rule-classes (:linear))

;; ---------------------------------------------------------------------

(def::un set-insert (a list)
  (declare (xargs :signature ((t true-listp) true-listp)
                  :congruence ((nil set-equiv-quant) set-equiv-quant)))
  (if (list::memberp a list) list
    (cons a list)))

(defthm list::memberp-set-insert
  (equal (list::memberp a (set-insert b list))
         (or (equal a b)
             (list::memberp a list))))

(in-theory (disable set-insert))

;; ---------------------------------------------------------------------

(def::un set-size (list)
  (declare (xargs :signature ((t) natp)
                  :guard (true-listp list)
                  :measure (len list)))
  (if (not (consp list)) 0
    (1+ (set-size (remove-equal (car list) list)))))

(defthmd open-set-size-on-memberp
  (implies
   (list::memberp a list)
   (equal (set-size list)
          (1+ (set-size (remove-equal a list)))))
  :hints (("Goal" :induct (set-size list)
           :expand (list::memberp a list))))


(defun x-y-set-induction (x y)
  (declare (xargs :measure (len x)))
  (if (consp x)
      (x-y-set-induction (remove-equal (car x) x)
                         (remove-equal (car x) y))
    (list x y)))
    
(encapsulate
    ()

  (local (in-theory (enable open-set-size-on-memberp)))
  
  (local
   (defthm memberp-car-remove-equal
     (implies
      (and
       (consp x)
       (not (equal (car x) a)))
      (list::memberp (car x) (remove-equal a x)))
     :rule-classes ((:forward-chaining :trigger-terms ((remove-equal a x))))))
  
  (defcong set-equiv-quant equal (set-size x) 1
    :hints (("Goal" :induct (x-y-set-induction x x-equiv))
            (and stable-under-simplificationp
                 '(:cases ((equal (car x) (car x-equiv)))))))

  )

(defthmd set-size-remove-equal
  (equal (set-size (remove-equal a x))
         (if (list::memberp a x) (1- (set-size x))
           (set-size x))))
   
(local
 (encapsulate
     ()

   (local (in-theory (enable set-size-remove-equal)))

   (defthm set-size-cons
     (equal (set-size (cons a x))
            (if (list::memberp a x) (set-size x)
              (1+ (set-size x))))
     :hints (("Goal" :do-not-induct t :expand (set-size (cons a x)))))
   
   (defthm set-size-set-insert
     (equal (set-size (set-insert a x))
            (if (list::memberp a x) (set-size x)
              (1+ (set-size x))))
     :hints (("Goal" :in-theory (enable set-insert))))
   
   (defthm set-size-cdr
     (equal (set-size (cdr x))
            (if (not (consp x)) 0
              (if (list::memberp (car x) (cdr x)) (set-size x)
                (1- (set-size x))))))

   ))

(defun set-size-equiv (x y)
  (equal (set-size x) (set-size y)))

(defequiv set-size-equiv)
(defrefinement set-equiv-quant set-size-equiv)

(defcong set-size-equiv equal (set-size x) 1)

(in-theory (disable set-size-equiv))

(theory-invariant (incompatible (:rewrite open-set-size-on-memberp)
                                (:rewrite set-size-remove-equal)))

(in-theory (enable set-size-remove-equal))

;; ---------------------------------------------------------------------

(def::un-skd subset-p (x y)
  (forall (a) (implies
               (list::memberp a x)
               (list::memberp a y))))

(verify-guards subset-p)

(defthm memberp-from-memberp-subset
  (implies
   (and
    (subset-p x y)
    (list::memberp a x))
   (list::memberp a y))
  :rule-classes (:forward-chaining)
  :hints ((quant::inst?)))

(encapsulate
 ()

 (encapsulate
  (((subset-p-hyps) => *)
   ((subset-p-left) => *)
   ((subset-p-right) => *))

  (local (defun subset-p-hyps () nil))
  (local (defun subset-p-left () nil))
  (local (defun subset-p-right () nil))

  (defthm subset-p-multiplicity-constraint
    (implies
     (subset-p-hyps)
     (implies
      (list::memberp arbitrary-varid (subset-p-left))
      (list::memberp arbitrary-varid (subset-p-right))))
    :rule-classes nil)
  )

 (defthm subset-p-by-multiplicity-driver
   (implies (subset-p-hyps)
            (subset-p (subset-p-left) (subset-p-right)))
   :rule-classes nil
   :hints((and stable-under-simplificationp
               '(:use ((:instance
                        subset-p-multiplicity-constraint
                        (arbitrary-varid hide)))))))

 (ADVISER::defadvice ADVISER::subset-p-by-multiplicity
   (implies (subset-p-hyps)
            (subset-p (subset-p-left) (subset-p-right)))
   :rule-classes (:pick-a-point :driver subset-p-by-multiplicity-driver))

 (in-theory (disable (ADVISER-SUBSET-P-TRIGGER)))

 )

(defcong set-equiv-quant iff (subset-p x y) 1
  :hints ((quant::inst?)))

(defcong set-equiv-quant iff (subset-p x y) 2
  :hints ((quant::inst?)))

(defthm subset-p-identity
  (subset-p x x))

(encapsulate
    ()

  (local
   (defthm equal-booleanp
     (implies
      (booleanp x)
      (iff (equal x y)
           (and (booleanp y)
                (iff x y)))))
   )

  (defthmd set-equiv-double-containment
    (iff (set-equiv-quant x y)
         (and (subset-p x y)
              (subset-p y x)))
    :hints ((quant::inst?)))
  )

(defthm subsetp-remove-equal
  (subset-p (remove-equal a x) x)
  :rule-classes (:rewrite))

(defthm subset-p-append-cons-backchaining-1
  (implies
   (subset-p (append x y) z)
   (subset-p (append x y) (cons a z))))

(defthm subset-p-append-append-backchaining-1
  (implies
   (and
    (syntaxp (not (equal w y)))
    (subset-p (append w x) z))
   (subset-p (append w x) (append y z)))
  :hints ((quant::inst?)))

(defthm subset-p-cons-cons
  (implies
   (subset-p x y)
   (subset-p (cons a x) (cons a y))))

(defthm subset-p-append-append
  (implies
   (subset-p y z)
   (subset-p (append x y) (append x z))))

(defthm subsetp-append-id
  (and (subset-p x (append x y))
       (subset-p x (append y x))))

(defthm subsetp-cons-id
  (subset-p x (cons a x)))

(defthm subsetp-nil
  (subset-p nil x))

(encapsulate
    ()

  (local
   (defthm not-consp-implies-no-members
     (implies
      (not (consp x))
      (not (list::memberp a x)))))

  (defthm subset-not-consp
    (implies
     (not (consp y))
     (iff (subset-p x y)
          (not (consp x))))
    :hints (("Goal" :in-theory (disable (:type-prescription consp-implies-memberp-car)))))

  )

(defun set-subtract (x y)
  (if (not (consp y)) x
    (let ((x (remove-equal (car y) x)))
      (set-subtract x (cdr y)))))

(defthm member-set-subtract
  (iff (list::memberp a (set-subtract x y))
       (and (list::memberp a x)
            (not (list::memberp a y)))))

(defthm subset-set-subtract
  (subset-p (set-subtract x y) x)
  :rule-classes ((:forward-chaining :trigger-terms ((set-subtract x y)))))

;; ---------------------------------------------------------------------

(def::un-sk empty-p (x)
  (forall (a) (not (list::memberp a x))))

(encapsulate
    ()

  (local
   (defthm consp-is-memberp-car
     (iff (consp x)
          (list::memberp (car x) x))))
  
  (local
   (in-theory (disable 
               BAG::SUBBAGP-IMPLIES-MEMBERSHIP
               BAG::MEMBERP-CAR-WHEN-DISJOINT LIST::MEMBERP-CAR
               default-car BAG::DISJOINT-SELF-MEANS-NOT-CONSP list::memberp)))
  
  (defthmd consp-is-not-empty-p
    (iff (consp x)
         (not (empty-p x)))
    :hints ((quant::inst?)))

  )