1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
;;
;; Copyright (C) 2018, Rockwell Collins
;; All rights reserved.
;;
;; This software may be modified and distributed under the terms
;; of the 3-clause BSD license. See the LICENSE file for details.
;;
;;
(in-package "ACL2")
(include-book "coi/util/defun" :dir :system)
(include-book "coi/quantification/quantification" :dir :system)
(include-book "coi/util/deffix" :dir :system)
(include-book "coi/util/good-rewrite-order" :dir :system)
;; ---------------------------------------------------------------------
(in-theory
(disable
BAG::MEMBERP-CAR-WHEN-DISJOINT
BAG::SUBBAGP-REMOVE-BAG-APPEND
BAG::SUBBAGP-IMPLIES-MEMBERSHIP
BAG::DISJOINT-COMMUTATIVE
BAG::DISJOINT-OF-APPEND-ONE
LIST::DISJOINT-REMOVE-DEFINITION
BAG::REMOVE-BAG-DOES-NOTHING
list::disjoint
BAG::SUBBAGP-IMPLIES-SUBBAGP-CONS
BAG::SUBBAGP-APPEND-2
BAG::DISJOINT-OF-APPEND-TWO
BAG::REMOVE-BAG-OF-CONS
BAG::MEMBERP-SUBBAGP
BAG::SUBBAGP-SELF
BAG::SUBBAGP-IMPLIES-SUBBAGP-APPEND-CAR
BAG::SUBBAGP-IMPLIES-SUBBAGP-APPEND-REC
BAG::COUNT-<-0-REWRITE
BAG::COUNT-WHEN-MEMBERP
BAG::COUNT-OF-APPEND
BAG::COUNT-WHEN-NON-MEMBER
BAG::COUNT-0-FOR-NON-MEMBERP
))
;; ---------------------------------------------------------------------
(defun consp-equiv (x y)
(declare (type t x y))
(iff (consp x) (consp y)))
(defequiv consp-equiv)
(defcong consp-equiv equal (consp x) 1)
;; We leave it enabled since we don't actually use it for anything interesting ..
;; This is what we want to prove for each new list-like equivalence relation
(defrefinement list-equiv consp-equiv)
;; ---------------------------------------------------------------------
(def::un-skd set-equiv-quant (x y)
(forall (a) (equal (list::memberp a x)
(list::memberp a y))))
(verify-guards set-equiv-quant)
(defequiv set-equiv-quant
:hints ((quant::inst?)))
(defcong set-equiv-quant equal (list::memberp a x) 2
:hints ((quant::inst?)))
(defrefinement list-equiv set-equiv-quant)
(encapsulate
()
(encapsulate
(((set-equiv-hyps) => *)
((set-equiv-left) => *)
((set-equiv-right) => *))
(local (defun set-equiv-hyps () nil))
(local (defun set-equiv-left () nil))
(local (defun set-equiv-right () nil))
(defthm set-equiv-multiplicity-constraint
(implies
(set-equiv-hyps)
(equal (list::memberp arbitrary-varid (set-equiv-left))
(list::memberp arbitrary-varid (set-equiv-right))))
:rule-classes nil)
)
(defthm set-equiv-by-multiplicity-driver
(implies (set-equiv-hyps)
(set-equiv-quant (set-equiv-left) (set-equiv-right)))
:rule-classes nil
:hints((and stable-under-simplificationp
'(:use ((:instance
set-equiv-multiplicity-constraint
(arbitrary-varid hide)))))))
(ADVISER::defadvice ADVISER::set-equiv-by-multiplicity
(implies (set-equiv-hyps)
(set-equiv (set-equiv-left) (set-equiv-right)))
:rule-classes (:pick-a-point :driver set-equiv-by-multiplicity-driver))
)
(defcong set-equiv-quant set-equiv-quant (cons a x) 2
:hints (("Goal" :in-theory (enable list::memberp))))
(defcong set-equiv-quant set-equiv-quant (append x y) 1)
(defcong set-equiv-quant set-equiv-quant (append x y) 2)
(defthm set-equiv-quant-cons-commutes
(set-equiv-quant (cons a (cons b x))
(cons b (cons a x))))
(defthm set-equiv-quant-append-commutes
(set-equiv-quant (append x y)
(append y x)))
(defthm set-equiv-quant-append-append-commute
(set-equiv-quant (append x (append y z))
(append y (append x z))))
(defthm set-equiv-quant-append-cons-commutes-1
(set-equiv-quant (append (cons a x) y)
(cons a (append x y))))
(defthm set-equiv-quant-append-cons-commutes-2
(set-equiv-quant (append y (cons a x))
(cons a (append y x))))
(defthm set-equiv-quant-append-x-append-x
(set-equiv-quant (append x (append x y))
(append x y)))
(defthm set-equiv-quant-append-x-x
(set-equiv-quant (append x x) x))
(defthm set-equiv-quant-cons-a-cons-a
(set-equiv-quant (cons a (cons a x))
(cons a x)))
;; I don't think we really use this ..
(def::fix set-fix
set-equiv-quant
)
(local
(encapsulate
()
(set-tau-auto-mode nil)
(defund set-equiv-context (x)
(declare (ignore x)) t)
(in-theory (disable (:type-prescription set-equiv-context)))
(set-tau-auto-mode t)
;; So .. there is an issue with forward-chaining off of an
;; equivalence relation .. it is not symmetric so it doesn't
;; account for commuted instances. This is an experiement
;; to identify objects that are probably appear as arguments
;; to an equiv relation.
(defthm identify-set-equiv-context
(implies
(set-equiv-quant x y)
(and (set-equiv-context x)
(set-equiv-context y)))
:rule-classes (:forward-chaining)
:hints (("Goal" :in-theory (enable set-equiv-context))))
(defmacro iff-conjunction (x y)
`(and (or (not ,x) ,y)
(or ,x (not ,y))))
(defthm set-equiv-implies-memberp-equiv
(implies
(and
(set-equiv-context y)
(set-equiv-quant x y))
(iff-conjunction (list::memberp a y)
(list::memberp a x)))
:rule-classes ((:forward-chaining :trigger-terms ((list::memberp a x)))))
(defthm consp-implies-memberp-car
(implies
(consp x)
(list::memberp (car x) x))
:rule-classes (:type-prescription :forward-chaining))
(defthm memberp-implies-consp
(implies
(list::memberp a x)
(consp x))
:rule-classes (:forward-chaining))
))
(defrefinement set-equiv-quant consp-equiv)
;; ---------------------------------------------------------------------
;; (encapsulate
;; (
;; ((fn * *) => *)
;; ((fixx *) => *)
;; ((equiv * *) => *)
;; )
;; (local (defun fixx (x) x))
;; (local (defun equiv (x y) (equal x y)))
;; (local (defun fn (a b) (list a b)))
;; (defequiv equiv)
;; (defthm equiv1-implies-equiv2-fn
;; (implies
;; (syntaxp (symbolp x))
;; (equiv (fn x a) (fn (fixx x) a))))
;; )
;; (defthm fn-cong
;; (implies
;; (equal (fixx x) (fixx y))
;; (equiv (fn x a) (fn y a))))
(defthm member-remove-equal
(equal (list::memberp a (remove-equal b x))
(if (equal a b) nil
(list::memberp a x))))
(defthm remove-non-member
(implies
(not (list::memberp a list))
(equal (remove-equal a list)
(list-fix list))))
(defcong set-equiv-quant set-equiv-quant (remove-equal a x) 2)
(defthm remove-equal-commutes
(equal (remove-equal a (remove-equal b list))
(remove-equal b (remove-equal a list))))
(defthm remove-remove
(equal (remove-equal a (remove-equal a x))
(remove-equal a x)))
(defthm len-remove-equal
(implies
(list::memberp a list)
(< (len (remove-equal a list))
(len list)))
:rule-classes (:linear))
;; ---------------------------------------------------------------------
(def::un set-insert (a list)
(declare (xargs :signature ((t true-listp) true-listp)
:congruence ((nil set-equiv-quant) set-equiv-quant)))
(if (list::memberp a list) list
(cons a list)))
(defthm list::memberp-set-insert
(equal (list::memberp a (set-insert b list))
(or (equal a b)
(list::memberp a list))))
(in-theory (disable set-insert))
;; ---------------------------------------------------------------------
(def::un set-size (list)
(declare (xargs :signature ((t) natp)
:guard (true-listp list)
:measure (len list)))
(if (not (consp list)) 0
(1+ (set-size (remove-equal (car list) list)))))
(defthmd open-set-size-on-memberp
(implies
(list::memberp a list)
(equal (set-size list)
(1+ (set-size (remove-equal a list)))))
:hints (("Goal" :induct (set-size list)
:expand (list::memberp a list))))
(defun x-y-set-induction (x y)
(declare (xargs :measure (len x)))
(if (consp x)
(x-y-set-induction (remove-equal (car x) x)
(remove-equal (car x) y))
(list x y)))
(encapsulate
()
(local (in-theory (enable open-set-size-on-memberp)))
(local
(defthm memberp-car-remove-equal
(implies
(and
(consp x)
(not (equal (car x) a)))
(list::memberp (car x) (remove-equal a x)))
:rule-classes ((:forward-chaining :trigger-terms ((remove-equal a x))))))
(defcong set-equiv-quant equal (set-size x) 1
:hints (("Goal" :induct (x-y-set-induction x x-equiv))
(and stable-under-simplificationp
'(:cases ((equal (car x) (car x-equiv)))))))
)
(defthmd set-size-remove-equal
(equal (set-size (remove-equal a x))
(if (list::memberp a x) (1- (set-size x))
(set-size x))))
(local
(encapsulate
()
(local (in-theory (enable set-size-remove-equal)))
(defthm set-size-cons
(equal (set-size (cons a x))
(if (list::memberp a x) (set-size x)
(1+ (set-size x))))
:hints (("Goal" :do-not-induct t :expand (set-size (cons a x)))))
(defthm set-size-set-insert
(equal (set-size (set-insert a x))
(if (list::memberp a x) (set-size x)
(1+ (set-size x))))
:hints (("Goal" :in-theory (enable set-insert))))
(defthm set-size-cdr
(equal (set-size (cdr x))
(if (not (consp x)) 0
(if (list::memberp (car x) (cdr x)) (set-size x)
(1- (set-size x))))))
))
(defun set-size-equiv (x y)
(equal (set-size x) (set-size y)))
(defequiv set-size-equiv)
(defrefinement set-equiv-quant set-size-equiv)
(defcong set-size-equiv equal (set-size x) 1)
(in-theory (disable set-size-equiv))
(theory-invariant (incompatible (:rewrite open-set-size-on-memberp)
(:rewrite set-size-remove-equal)))
(in-theory (enable set-size-remove-equal))
;; ---------------------------------------------------------------------
(def::un-skd subset-p (x y)
(forall (a) (implies
(list::memberp a x)
(list::memberp a y))))
(verify-guards subset-p)
(defthm memberp-from-memberp-subset
(implies
(and
(subset-p x y)
(list::memberp a x))
(list::memberp a y))
:rule-classes (:forward-chaining)
:hints ((quant::inst?)))
(encapsulate
()
(encapsulate
(((subset-p-hyps) => *)
((subset-p-left) => *)
((subset-p-right) => *))
(local (defun subset-p-hyps () nil))
(local (defun subset-p-left () nil))
(local (defun subset-p-right () nil))
(defthm subset-p-multiplicity-constraint
(implies
(subset-p-hyps)
(implies
(list::memberp arbitrary-varid (subset-p-left))
(list::memberp arbitrary-varid (subset-p-right))))
:rule-classes nil)
)
(defthm subset-p-by-multiplicity-driver
(implies (subset-p-hyps)
(subset-p (subset-p-left) (subset-p-right)))
:rule-classes nil
:hints((and stable-under-simplificationp
'(:use ((:instance
subset-p-multiplicity-constraint
(arbitrary-varid hide)))))))
(ADVISER::defadvice ADVISER::subset-p-by-multiplicity
(implies (subset-p-hyps)
(subset-p (subset-p-left) (subset-p-right)))
:rule-classes (:pick-a-point :driver subset-p-by-multiplicity-driver))
(in-theory (disable (ADVISER-SUBSET-P-TRIGGER)))
)
(defcong set-equiv-quant iff (subset-p x y) 1
:hints ((quant::inst?)))
(defcong set-equiv-quant iff (subset-p x y) 2
:hints ((quant::inst?)))
(defthm subset-p-identity
(subset-p x x))
(encapsulate
()
(local
(defthm equal-booleanp
(implies
(booleanp x)
(iff (equal x y)
(and (booleanp y)
(iff x y)))))
)
(defthmd set-equiv-double-containment
(iff (set-equiv-quant x y)
(and (subset-p x y)
(subset-p y x)))
:hints ((quant::inst?)))
)
(defthm subsetp-remove-equal
(subset-p (remove-equal a x) x)
:rule-classes (:rewrite))
(defthm subset-p-append-cons-backchaining-1
(implies
(subset-p (append x y) z)
(subset-p (append x y) (cons a z))))
(defthm subset-p-append-append-backchaining-1
(implies
(and
(syntaxp (not (equal w y)))
(subset-p (append w x) z))
(subset-p (append w x) (append y z)))
:hints ((quant::inst?)))
(defthm subset-p-cons-cons
(implies
(subset-p x y)
(subset-p (cons a x) (cons a y))))
(defthm subset-p-append-append
(implies
(subset-p y z)
(subset-p (append x y) (append x z))))
(defthm subsetp-append-id
(and (subset-p x (append x y))
(subset-p x (append y x))))
(defthm subsetp-cons-id
(subset-p x (cons a x)))
(defthm subsetp-nil
(subset-p nil x))
(encapsulate
()
(local
(defthm not-consp-implies-no-members
(implies
(not (consp x))
(not (list::memberp a x)))))
(defthm subset-not-consp
(implies
(not (consp y))
(iff (subset-p x y)
(not (consp x))))
:hints (("Goal" :in-theory (disable (:type-prescription consp-implies-memberp-car)))))
)
(defun set-subtract (x y)
(if (not (consp y)) x
(let ((x (remove-equal (car y) x)))
(set-subtract x (cdr y)))))
(defthm member-set-subtract
(iff (list::memberp a (set-subtract x y))
(and (list::memberp a x)
(not (list::memberp a y)))))
(defthm subset-set-subtract
(subset-p (set-subtract x y) x)
:rule-classes ((:forward-chaining :trigger-terms ((set-subtract x y)))))
;; ---------------------------------------------------------------------
(def::un-sk empty-p (x)
(forall (a) (not (list::memberp a x))))
(encapsulate
()
(local
(defthm consp-is-memberp-car
(iff (consp x)
(list::memberp (car x) x))))
(local
(in-theory (disable
BAG::SUBBAGP-IMPLIES-MEMBERSHIP
BAG::MEMBERP-CAR-WHEN-DISJOINT LIST::MEMBERP-CAR
default-car BAG::DISJOINT-SELF-MEANS-NOT-CONSP list::memberp)))
(defthmd consp-is-not-empty-p
(iff (consp x)
(not (empty-p x)))
:hints ((quant::inst?)))
)
|