1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
; cert_param: (uses-acl2r)
(in-package "ACL2")
(include-book "metric")
;;
;; The identity function is convex
;;
(defun id-fn (x) (realfix x))
(defthm id-fn-is-convex
(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))
(<= (id-fn (+ (* a x) (* (- 1 a) y)))
(+ (* a (id-fn x)) (* (- 1 a) (id-fn y))))))
;;
;; The square function is convex
;;
(defun square-fn (x) (* (realfix x) (realfix x)))
;; to show square-fn is convex, we show
;; 0 <= a x^2 + ( 1 - a ) y^2 - ( a x + ( 1 - a ) y )^2
(encapsulate
nil
;; ax^2 + (1-a)y^2 - (ax + (1-a)y)^2 = a(1-a)(x-y)^2
(local (defthm lemma-1
(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))
(equal (- (+ (* a (square-fn x)) (* (- 1 a) (square-fn y)))
(square-fn (+ (* a x) (* (- 1 a) y))))
(* a (- 1 a) (square-fn (- x y)))))))
(defthm square-fn-positivity
(<= 0 (square-fn x)))
(local (defthm lemma-2
(implies (and (realp a) (<= 0 a))
(<= 0 (* a (square-fn x))))))
(defthm square-fn-is-convex
(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))
(<= (square-fn (+ (* a x) (* (- 1 a) y)))
(+ (* a (square-fn x)) (* (- 1 a) (square-fn y)))))
:hints (("GOAL" :use ((:instance lemma-2
(a (* a (- 1 a)))
(x (- x y)))))))
)
;;
;; the Euclidean norm, eu-norm, is convex
;;
(encapsulate
nil
(in-theory (disable eu-metric-metric-sq-equivalence eu-norm))
;; apply triange inequality to obtain
;; || a x + ( 1 - a ) y || <= || a x || + || ( 1 - a ) y ||
(local (defthm lemma-1
(implies (and (real-listp x) (real-listp y) (= (len x) (len y))
(realp a) (<= 0 a)); (<= a 1))
(<= (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(+ (eu-norm (scalar-* a x)) (eu-norm (scalar-* (- 1 a) y)))))
:hints (("GOAL" :use ((:instance scalar-*-closure (a (- 1 a)) (vec y))
(:instance scalar-*-closure (vec x))
(:instance triangle-inequality
(x (scalar-* a x))
(y (scalar-* (- 1 a) y))))))))
;; || ax + (1-a)y || <= a || x || + (1-a) || y ||
(defthm eu-norm-is-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y))
(realp a) (<= 0 a) (<= a 1))
(<= (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(+ (* a (eu-norm x)) (* (- 1 a) (eu-norm y)))))
:hints (("GOAL" :use ((:instance lemma-1)))))
)
;;
;; sum of convex functions is convex
;; affine composition of convex functions is convex
;; (under certain conditions)
;;
(encapsulate
(((cvfn-1 *) => *)
((cvfn-2 *) => *)
((cvndfn *) => *)) ;; Convex non-decreasing function
(local (defun cvndfn (x) (realfix x)))
(local (defun cvfn-1 (x) (declare (ignore x)) 4141414111))
(local (defun cvfn-2 (x) (declare (ignore x)) 21))
(defthm realp-of-cvfn-1 (realp (cvfn-1 x)))
(defthm realp-of-cvfn-2 (realp (cvfn-2 x)))
;;
;; proving cvfn-1, cvfn-2, cvndfn are convex
;;
(defthm cvfn-1-convex
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1))
(<= (cvfn-1 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(+ (* a (cvfn-1 x)) (* (- 1 a) (cvfn-1 y))))))
(defthm cvfn-2-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y))
(realp a) (<= 0 a) (<= a 1))
(<= (cvfn-2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(+ (* a (cvfn-2 x)) (* (- 1 a) (cvfn-2 y))))))
(defthm cvndfn-convex
(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))
(<= (cvndfn (+ (* a x) (* (- 1 a) y)))
(+ (* a (cvndfn x)) (* (- 1 a) (cvndfn y))))))
;;
;; cvndfn is non-decreasing
;;
(defthm cvndfn-non-decreasing
(implies (and (realp a) (realp b) (<= a b))
(<= (cvndfn a) (cvndfn b))))
;; Disable definitions
(local (in-theory (disable (:d cvfn-1) (:e cvfn-1) (:t cvfn-1))))
(local (in-theory (disable (:d cvfn-2) (:e cvfn-2) (:t cvfn-2))))
(local (in-theory (disable (:d cvndfn) (:e cvndfn) (:t cvndfn))))
;; sum of convex functions is convex
(defthm cvfn-1-+-cvfn-2-convex
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1))
(<= (+ (cvfn-1 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(cvfn-2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(+ (* a (+ (cvfn-1 x) (cvfn-2 x)))
(* (- 1 a) (+ (cvfn-1 y) (cvfn-2 y))))))
:hints (("GOAL" :use ((:instance cvfn-1-convex)
(:instance cvfn-2-convex)))))
;; alpha*f(x) is convex for alpha >= 0
(encapsulate
nil
;; factor out alpha
(local (defthm lemma-1
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1)
(realp alpha) (<= 0 alpha))
(= (+ (* a (* alpha (cvfn-1 x)))
(* (- 1 a) (* alpha (cvfn-1 y))))
(* alpha
(+ (* a (cvfn-1 x))
(* (- 1 a) (cvfn-1 y))))))))
(defthm a-*-cvfn-1-convex
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1)
(realp alpha) (<= 0 alpha))
(<= (* alpha (cvfn-1 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(+ (* a (* alpha (cvfn-1 x)))
(* (- 1 a) (* alpha (cvfn-1 y))))))
:hints (("GOAL" :in-theory (disable distributivity)
:use ((:instance cvfn-1-convex)
(:instance lemma-1)))))
)
;; intermediate step combining cvndfn-non-decreasing and cvfn-2-is-convex
(defthm cvndfn-monotonic-cvfn-2-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y)) (realp a) (<= 0 a) (<= a 1))
(<= (cvndfn (cvfn-2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(cvndfn (+ (* a (cvfn-2 x)) (* (- 1 a) (cvfn-2 y))))))
:hints (("GOAL" ;:do-not-induct t
:use ((:instance cvfn-2-convex)
(:instance cvndfn-non-decreasing
(a (cvfn-2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(b (+ (* a (cvfn-2 x)) (* (- 1 a) (cvfn-2 y)))))))))
;; desired inequality
(defthm cvndfn-cvfn-2-is-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y)) (realp a) (<= 0 a) (<= a 1))
(<= (cvndfn (cvfn-2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(+ (* a (cvndfn (cvfn-2 x))) (* (- 1 a) (cvndfn (cvfn-2 y))))))
:hints (("GOAL" :use ((:instance cvndfn-monotonic-cvfn-2-convex)
(:instance cvndfn-convex
(x (cvfn-2 x))
(y (cvfn-2 y)))))))
)
;;
;; squared Euclidean norm, norm-sq, is convex
;;
(encapsulate
nil
;;
;; first need to show f(x) = x^2 on [0,\infty]
;; is monotonically increasing and convex
;;
(local
(defun strict-square-fn (x)
(if (< x 0) 0 (square-fn x))))
(local (defthm strict-square-fn-non-decreasing
(implies (and (realp a) (realp b) (<= a b))
(<= (strict-square-fn a) (strict-square-fn b)))))
(local (defthm square-fn-non-decreasing-on-positives
(implies (and (realp a) (realp b) (<= a b) (<= 0 a) (<= 0 b))
(<= (square-fn a) (square-fn b)))))
(local (defthm strict-square-fn-is-strict
(implies (and (realp x) (<= x 0))
(equal (strict-square-fn x) 0))))
;;
;; monotonicity taken care of - now for convexity (harder than expected)
;;
(local (defthm lemma-1
(implies (and (realp a) (<= 0 a) (realp x) (< x 0))
(<= (* a x) 0))))
(local (defthm lemma-2
(implies (and (realp a) (realp b) (<= a 0) (<= b 0))
(<= (+ a b) 0))))
(local (defthm lemma-3
(implies (and (realp a) (<= 0 a) (<= a 1) (realp x) (< x 0) (realp y) (< y 0))
(<= (+ (* a x) (* (- 1 a) y)) 0))
:hints (("GOAL" :in-theory (disable distributivity)
:use ((:instance lemma-1)
(:instance lemma-1 (x y) (a (- 1 a)))
(:instance lemma-2 (a (* a x)) (b (* (- 1 a) y))))))))
(local (defthm lemma-4
(implies (and (realp a) (<= 0 a) (realp x) (<= 0 x))
(<= 0 (* a x)))))
(local (defthm lemma-5
(implies (and (realp x) (realp y) (<= 0 x) (<= 0 y))
(<= 0 (+ x y)))))
(local (defthm lemma-6
(implies (and (realp a) (<= 0 a) (<= a 1) (realp x) (realp y) (<= 0 x) (<= 0 y))
(<= 0 (+ (* a x) (* (- 1 a) y))))
:hints (("GOAL" :in-theory (disable distributivity commutativity-of-*)
:use ((:instance lemma-5 (x (* a x)) (y (* (- 1 a) y)))
(:instance lemma-4)
(:instance lemma-4 (a (- 1 a)) (x y)))))))
(local (defthm lemma-7
(implies (and (realp x) (realp y) (<= 0 x) (<= y 0))
(<= (+ x y) x))))
(local (defthm lemma-8
(implies (and (realp a) (realp x) (realp y)
(<= 0 a) (<= a 1) (<= 0 x) (< y 0))
(<= (+ (* a x) (* (- 1 a) y))
(* a x)))
:hints (("GOAL" :use ((:instance lemma-1 (a (- 1 a)) (x y))
(:instance lemma-4)
(:instance lemma-7 (x (* a x)) (y (* (- 1 a) y))))))))
(local (defthm lemma-9
(implies (and (realp a) (realp x) (realp y)
(<= 0 a) (<= a 1) (<= 0 x) (< y 0)
(<= 0 (+ (* a x) (* (- 1 a) y))))
(<= (square-fn (+ (* a x) (* (- 1 a) y)))
(square-fn (* a x))))
:hints (("GOAL" :in-theory (disable square-fn)
:use ((:instance lemma-8)
(:instance square-fn-non-decreasing-on-positives
(a (+ (* a x) (* (- 1 a) y)))
(b (* a x)))
(:instance lemma-4))))))
(local (defthm lemma-10
(implies (and (realp a) (realp x)
(<= 0 a) (<= a 1) (<= 0 x))
(<= (square-fn (* a x))
(* a (square-fn x))))))
(local (defthm lemma-11
(implies (and (realp a) (realp b) (realp c) (<= a b) (<= b c))
(<= a c))))
(local (defthm lemma-12
(implies (and (realp a) (realp x) (realp y)
(<= 0 a) (<= a 1) (<= 0 x) (< y 0)
(<= 0 (+ (* a x) (* (- 1 a) y))))
(<= (square-fn (+ (* a x) (* (- 1 a) y)))
(* a (square-fn x))))
:hints (("GOAL" :in-theory (disable square-fn commutativity-of-* distributivity)
:use ((:instance lemma-11
(a (square-fn (+ (* a x) (* (- 1 a) y))))
(b (square-fn (* a x)))
(c (* a (square-fn x))))
(:instance lemma-10)
(:instance lemma-9))))))
(local (defthm strict-square-fn-is-convex
(implies (and (realp x) (realp y) (realp a) (<= 0 a) (<= a 1))
(<= (strict-square-fn (+ (* a x) (* (- 1 a) y)))
(+ (* a (strict-square-fn x))
(* (- 1 a) (strict-square-fn y)))))
:hints (("GOAL" :in-theory (disable square-fn
distributivity)
:cases (and (<= 0 x) (<= 0 y))
:use ((:instance lemma-3)
(:instance lemma-12)
(:instance square-fn-is-convex)
(:instance lemma-12 (x y) (y x) (a (- 1 a))))))))
(local (defthm lemma-13
(implies (and (real-listp x) (real-listp y) (= (len x) (len y)) (realp a) (<= 0 a) (<= a 1))
(<= (strict-square-fn (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(strict-square-fn (+ (* a (eu-norm x))
(* (- 1 a) (eu-norm y))))))
:hints (("GOAL" :use ((:instance eu-norm-is-convex)
(:instance strict-square-fn-non-decreasing
(a (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(b (+ (* a (eu-norm x)) (* (- 1 a) (eu-norm y))))))))))
(local (defthm strict-square-fn-eu-norm-is-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y)) (realp a) (<= 0 a) (<= a 1))
(<= (strict-square-fn (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y))))
(+ (* a (strict-square-fn (eu-norm x)))
(* (- 1 a) (strict-square-fn (eu-norm y))))))
:hints (("GOAL" :do-not-induct t
:in-theory (disable not lemma-11 strict-square-fn eu-norm distributivity commutativity-of-*)
:use ((:instance strict-square-fn-is-convex (x (eu-norm x)) (y (eu-norm y)))
(:instance lemma-11
(a (strict-square-fn (eu-norm (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))))
(b (strict-square-fn (+ (* a (eu-norm x))
(* (- 1 a) (eu-norm y)))))
(c (+ (* a (strict-square-fn (eu-norm x)))
(* (- 1 a) (strict-square-fn (eu-norm y))))))
(:instance lemma-13))))))
(local (defthm norm-sq-strict-square-fn-eu-norm-equivalence
(equal (strict-square-fn (eu-norm x))
(norm^2 x))
:hints (("GOAL" :in-theory (enable norm^2 eu-norm)))))
(defthm norm-sq-is-convex
(implies (and (real-listp x) (real-listp y) (= (len x) (len y)) (realp a) (<= 0 a) (<= a 1))
(<= (norm^2 (vec-+ (scalar-* a x) (scalar-* (- 1 a) y)))
(+ (* a (norm^2 x))
(* (- 1 a) (norm^2 y)))))
:hints (("GOAL" :use ((:instance strict-square-fn-eu-norm-is-convex)
(:instance norm-sq-strict-square-fn-eu-norm-equivalence)))))
)
;;
;; a useful inequality:
;; a ( 1 - a ) || x - y ||^2 <= a || x ||^2 + ( 1 - a ) || y ||^2
;;
;; This is used twice in Nesterov's theorem
;; ineq. 1 implies ineq. 6
;; ineq. 2 implies ineq. 5
;;
(encapsulate
nil
;; simple property of squares
(local (defthm lemma-1
(implies (and (realp a) (realp b) (<= a b) (<= 0 a) (<= 0 b))
(<= (* a a) (* b b)))))
(local (defthm lemma-2
(implies (and (realp a) (realp b) (realp c) (<= 0 a) (<= b c))
(<= (* a b) (* a c)))))
;; by the triangle inequality
;; a || x - y ||^2 <= a (|| x | + || y ||)^2
(local (defthm lemma-3
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a))
(<= (* a (* (eu-norm (vec-- x y)) (eu-norm (vec-- x y))))
(* a (* (+ (eu-norm x) (eu-norm y))
(+ (eu-norm x) (eu-norm y))))))
:hints (("GOAL" :in-theory (disable expt)
:use ((:instance triangle-inequality (y (scalar-* -1 y)))
(:instance lemma-1
(a (eu-norm (vec-- x y)))
(b (+ (eu-norm x) (eu-norm (scalar-* -1 y)))))
(:instance lemma-2
(b (* (eu-norm (vec-- x y)) (eu-norm (vec-- x y))))
(c (* (+ (eu-norm x) (eu-norm y))
(+ (eu-norm x) (eu-norm y))))))))))
;;
;; ( a x - ( 1 - a ) y )^2 = a x^2 + ( 1 - a ) y^2 - a ( 1 - a ) ( x + y )^2
;; - somewhat surprised this passed without issues
;;
(local (defthm lemma-4
(implies (and (realp a) (realp x) (realp y))
(equal (* (- (* a x) (* (- 1 a) y))
(- (* a x) (* (- 1 a) y)))
(+ (* a (* x x))
(* (- 1 a) (* y y))
(- (* a (- 1 a) (* (+ x y) (+ x y)))))))))
(local (defthm lemma-5
(implies (realp a)
(<= 0 (* a a)))))
;; a (1-a) (x+y)^2 <= a x^2 + (1-a) y^2
(local (defthm lemma-6
(implies (and (realp a) (realp x) (realp y))
(<= (* a (- 1 a) (* (+ x y) (+ x y)))
(+ (* a (* x x))
(* (- 1 a) (* y y)))))
:hints (("GOAL" :use (:instance lemma-5 (a (- (* a x) (* (- 1 a) y))))))))
;;
;; set x = ||x|| and y = ||y|| to show
;; a (1-a) (||x|| + ||y||)^2 <= a ||x||^2 + (1-a) ||y||^2
;;
(local (defthm lemma-7
(implies (and (real-listp x) (real-listp y) (= (len y) (len x)) (realp a))
(<= (* a (- 1 a) (* (+ (eu-norm x) (eu-norm y))
(+ (eu-norm x) (eu-norm y))))
(+ (* a (* (eu-norm x) (eu-norm x)))
(* (- 1 a) (* (eu-norm y) (eu-norm y))))))
:hints (("GOAL" :use (:instance lemma-6 (x (eu-norm x)) (y (eu-norm y)))))))
;;
;; combine lemma-7 triangle inequality from lemma-3 to obtain
;; a (1-a) || x - y ||^2 <= a ||x||^2 + (1-a) ||y||^2
;;
(defthm quasi-triangle-inequality
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1))
(<= (* a (- 1 a) (* (eu-norm (vec-- x y)) (eu-norm (vec-- x y))))
(+ (* a (* (eu-norm x) (eu-norm x)))
(* (- 1 a) (* (eu-norm y) (eu-norm y))))))
:hints (("GOAL" :use ((:instance lemma-7)
(:instance lemma-3 (a (* a (- 1 a))))))))
(defthm quasi-triangle-inequality-norm-sq
(implies (and (real-listp x) (real-listp y) (= (len y) (len x))
(realp a) (<= 0 a) (<= a 1))
(<= (* a (- 1 a) (metric^2 x y))
(+ (* a (norm^2 x))
(* (- 1 a) (norm^2 y)))))
:hints (("GOAL" :use ((:instance quasi-triangle-inequality)
(:instance eu-norm-*-eu-norm (vec x))
(:instance eu-norm-*-eu-norm (vec y))
(:instance eu-metric-metric-sq-equivalence)))))
)
|