1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#include "Vlib.h"
#define EPSILON 0.00000000000001
/*
* Quaternion code based on code from "Advanced Animation and Rendering
* Techniques: Theory and Practice" by Alan Watt and Mark Watt.
*/
void
VQuaternionToMatrix(VQuaternion * q, VMatrix * m)
{
double s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
s = 2.0 / (q->v.x * q->v.x + q->v.y * q->v.y +
q->v.z * q->v.z + q->s * q->s);
xs = q->v.x * s;
ys = q->v.y * s;
zs = q->v.z * s;
wx = q->s * xs;
wy = q->s * ys;
wz = q->s * zs;
xx = q->v.x * xs;
xy = q->v.x * ys;
xz = q->v.x * zs;
yy = q->v.y * ys;
yz = q->v.y * zs;
zz = q->v.z * zs;
VIdentMatrix(m);
m->m[0][0] = 1.0 - (yy + zz);
m->m[0][1] = xy + wz;
m->m[0][2] = xz - wy;
m->m[1][0] = xy - wz;
m->m[1][1] = 1.0 - (xx + zz);
m->m[1][2] = yz + wx;
m->m[2][0] = xz + wy;
m->m[2][1] = yz - wx;
m->m[2][2] = 1.0 - (xx + yy);
}
void
VMatrixToQuaternion(VMatrix * m, VQuaternion * q)
{
double tr, s, *q1 = (double *) &q->v;
int i, j, k;
tr = m->m[0][0] + m->m[1][1] + m->m[2][2];
if (tr > 0.0) {
s = sqrt(tr + 1.0);
q->s = s * 0.5;
s = 0.5 / s;
q->v.x = (m->m[1][2] - m->m[2][1]) * s;
q->v.y = (m->m[2][0] - m->m[0][2]) * s;
q->v.z = (m->m[0][1] - m->m[1][0]) * s;
}
else {
i = 0;
if (m->m[1][1] > m->m[0][0]) {
i = 1;
}
if (m->m[2][2] > m->m[i][i]) {
i = 2;
}
j = (i + 1) % 3;
k = (j + 1) % 3;
s = sqrt((m->m[i][i] - (m->m[j][j] + m->m[k][k])) + 1.0);
q1[i] = s * 0.5;
s = 0.5 / s;
q->s = (m->m[j][k] + m->m[k][j]) * s;
q1[j] = (m->m[i][j] + m->m[j][i]) * s;
q1[k] = (m->m[i][k] + m->m[k][i]) * s;
}
}
void
VInterpolateQuaternion(VQuaternion * p, VQuaternion * q, double t, VQuaternion * qt)
{
double omega, cosom, sinom, sclp, sclq;
cosom = p->v.x * p->v.x + p->v.y * p->v.y +
p->v.z * p->v.z + p->s * p->s;
if ((1.0 + cosom) > EPSILON) {
if ((1.0 - cosom) > EPSILON) {
omega = acos(cosom);
sinom = sin(omega);
sclp = sin((1.0 - t) * omega) / sinom;
sclq = sin(t * omega) / sinom;
}
else {
sclp = 1.0 - t;
sclq = t;
}
qt->v.x = p->v.x * sclp + q->v.x * sclq;
qt->v.y = p->v.y * sclp + q->v.y * sclq;
qt->v.z = p->v.z * sclp + q->v.z * sclq;
qt->s = p->s * sclp + q->s * sclq;
}
else {
qt->v.x = -p->v.y;
qt->v.y = p->v.x;
qt->v.z = -p->s;
qt->s = p->v.z;
sclp = sin((1.0 - t) * M_PI_2);
sclq = sin(t * M_PI_2);
qt->v.x = p->v.x * sclp + qt->v.x * sclq;
qt->v.y = p->v.y * sclp + qt->v.y * sclq;
qt->v.z = p->v.z * sclp + qt->v.z * sclq;
}
}
VQuaternion *
VQuaternionMult(VQuaternion * a, VQuaternion * b, VQuaternion * r)
{
VPoint aa, bb, c;
r->s = a->s * b->s - VDotProd(&a->v, &b->v);
VCrossProd(&a->v, &b->v, &c);
c.x += a->s * b->v.x + b->s * a->v.x;
c.y += a->s * b->v.y + b->s * a->v.y;
c.z += a->s * b->v.z + b->s * a->v.z;
r->v = c;
return r;
}
VQuaternion *
VQuaternionComplement(VQuaternion * a, VQuaternion * r)
{
r->s = a->s;
r->v.x = -a->v.x;
r->v.y = -a->v.y;
r->v.z = -a->v.z;
return r;
}
|