File: globe.c

package info (click to toggle)
acm 5.0-19
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 7,852 kB
  • ctags: 4,792
  • sloc: ansic: 42,427; makefile: 706; cpp: 293; perl: 280; sh: 198
file content (685 lines) | stat: -rwxr-xr-x 14,620 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 *   DIS/x : An implementation of the IEEE 1278.1 protocol
 *
 *   Copyright (C) 1996,1998, Riley Rainey (rrainey@ix.netcom.com)
 *
 *   This library is free software; you can redistribute it and/or
 *   modify it under the terms of either:
 *
 *   a) the GNU Library General Public License as published by the Free
 *   Software Foundation; either version 2 of the License, or (at your
 *   option) any later version.  A description of the terms and conditions
 *   of the GLPL may be found in the "COPYING.LIB" file.
 *
 *   b) the "Artistic License" which comes with this Kit.  Information
 *   about this license may be found in the "Artistic" file.
 *
 *   This library is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *   Library General Public License or the Artistic License for more details.
 *
 *   You should have received a copy of the GNU Library General Public
 *   License along with this library; if not, write to the Free
 *   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *   Information describing how to contact the author can be found in the
 *   README file.
 */

#include <dis/dis.h>
#include <math.h>
#include <stdio.h>
#include <ctype.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif

/*
 *  In the DIS 2.0 coordinate system:
 *
 *      positive Z axis is North;
 *      positive X axis points to 0N, 0E;
 *      positive Y axis points to 0N 90E.
 *
 *  So, North latitudes are positive; East longitudes are positive.
 *
 *  The world is considered a perfect ellipsoid based on the WGS84
 *  standard -- no correction is made to take into account height differences
 *  between the ellpsoid and the geoid.
 *
 *  "The Surveying Handbook", edited by Brinker and Minnick contains a decent
 *  discussion of the technical issues required to understand what's
 *  going on in this code.
 */

/*
 *  Shift location d meters on a given geodetic course (radians)
 */

void
DISUpdateWorldCoordinates(WorldCoordinates * p,
						  double cos_course, double sin_course, double d_meters)
{
	double    n1, n2, m1;
	double    sin_lat, sin_lat_sqr, tan_lat, sin_course_sqr;
	double    delta_latitude, delta_longitude, d_sqr, cos_lat;
	double    B, C, /* D, */ E, h, sin_newlat;

/*  Increase our height to the height above the reference ellipsoid */

	double    wgs84_a = WGS84_MAJOR + p->z;

	sin_lat = sin(p->latitude);
	sin_lat_sqr = sin_lat * sin_lat;
	cos_lat = cos(p->latitude);
	tan_lat = sin_lat / cos_lat;
	sin_course_sqr = sin_course * sin_course;
	d_sqr = d_meters * d_meters;

	n1 = wgs84_a / sqrt(1.0 - WGS84_ECC_SQR * sin_lat_sqr);
	m1 = (wgs84_a * (1.0 - WGS84_ECC_SQR)) /
		pow(1.0 - WGS84_ECC_SQR * sin_lat_sqr, 1.5);

	B = 1.0 / m1;

	h = d_meters * B * cos_course;

	C = tan_lat / (2.0 * m1 * n1);

#ifdef notdef
	D = (3.0 * WGS84_ECC_SQR * sin_lat * cos_lat) /
		(2.0 * (1.0 - WGS84_ECC_SQR * sin_lat_sqr));
#endif

	E = (1.0 + 3.0 * tan_lat * tan_lat) *
		(1.0 - WGS84_ECC_SQR * sin_lat_sqr) / (6.0 * wgs84_a * wgs84_a);

	delta_latitude = d_meters * B * cos_course -
		d_sqr * C * sin_course_sqr -
		h * d_sqr * E * sin_course_sqr;

	p->latitude += delta_latitude;
	if (p->latitude > M_PI_2) {
		p->latitude -= M_PI_2;
	}
	else if (p->latitude < -M_PI_2) {
		p->latitude += M_PI_2;
	}

	sin_newlat = sin(p->latitude);

	n2 = wgs84_a / sqrt(1.0 - WGS84_ECC_SQR * sin_newlat * sin_newlat);

	delta_longitude = (d_meters * sin_course) / (n2 * cos(p->latitude));

	p->longitude += delta_longitude;
	if (p->longitude > M_PI) {
		p->longitude -= M_PI;
	}
	else if (p->longitude < -M_PI) {
		p->longitude += M_PI;
	}
}

/*
 *  Shift location d_meters meters on a given geodetic course (radians)
 *  returns new outbound heading correct for the new location in delta_course_rad
 */

void
DISUpdateWorldCoordinatesEx(WorldCoordinates * p,
						  double cos_course, double sin_course, double d_meters,
						  double * delta_course_rad )
{
	double    n1, n2, m1;
	double    sin_lat, sin_lat_sqr, tan_lat, sin_course_sqr;
	double    delta_latitude, delta_longitude, d_sqr, cos_lat;
	double    B, C, /* D, */ E, h, sin_newlat;
	double    old_latitude, phi_m, sin_phi_m, cos_phi_m;

/* arc-seconds per rad */
	const double rho = 206264.8062470964;

/*  Increase our height to the height above the reference ellipsoid */

	double    wgs84_a = WGS84_MAJOR + p->z;

	sin_lat = sin(p->latitude);
	sin_lat_sqr = sin_lat * sin_lat;
	cos_lat = cos(p->latitude);
	tan_lat = sin_lat / cos_lat;
	sin_course_sqr = sin_course * sin_course;
	d_sqr = d_meters * d_meters;

	n1 = wgs84_a / sqrt(1.0 - WGS84_ECC_SQR * sin_lat_sqr);
	m1 = (wgs84_a * (1.0 - WGS84_ECC_SQR)) /
		pow(1.0 - WGS84_ECC_SQR * sin_lat_sqr, 1.5);

	B = 1.0 / m1;

	h = d_meters * B * cos_course;

	C = tan_lat / (2.0 * m1 * n1);

#ifdef notdef
	D = (3.0 * WGS84_ECC_SQR * sin_lat * cos_lat) /
		(2.0 * (1.0 - WGS84_ECC_SQR * sin_lat_sqr));
#endif

	E = (1.0 + 3.0 * tan_lat * tan_lat) *
		(1.0 - WGS84_ECC_SQR * sin_lat_sqr) / (6.0 * wgs84_a * wgs84_a);

	delta_latitude = d_meters * B * cos_course -
		d_sqr * C * sin_course_sqr -
		h * d_sqr * E * sin_course_sqr;

	old_latitude = p->latitude;

	p->latitude += delta_latitude;
	if (p->latitude > M_PI_2) {
		p->latitude -= M_PI_2;
	}
	else if (p->latitude < -M_PI_2) {
		p->latitude += M_PI_2;
	}

	phi_m = old_latitude + delta_latitude / 2.0;
	sin_phi_m = sin(phi_m);
	cos_phi_m = cos(phi_m);

	sin_newlat = sin(p->latitude);

	n2 = wgs84_a / sqrt(1.0 - WGS84_ECC_SQR * sin_newlat * sin_newlat);

	delta_longitude = (d_meters * sin_course) / (n2 * cos(p->latitude));

	*delta_course_rad = delta_longitude * sin_phi_m / cos(delta_latitude / 2.0) +
		delta_longitude * (sin_phi_m * cos_phi_m * cos_phi_m) / rho;

	p->longitude += delta_longitude;
	if (p->longitude > M_PI) {
		p->longitude -= M_PI;
	}
	else if (p->longitude < -M_PI) {
		p->longitude += M_PI;
	}
}


/*
 *  Convert cartesian geocentric coordinates into WGS84 geodetic lat/lon/z
 */

void
DISGeocentricToWorldCoordinates(dis_world_coordinates * loc,
								WorldCoordinates * p)
{
	double    a_sqr = WGS84_MAJOR * WGS84_MAJOR, b_sqr = WGS84_MINOR * WGS84_MINOR;
	double    w, x, x_sqr, z, delta_x, cos_x;
	double    f, f_prime, w0, z0;

	w = sqrt(loc->x * loc->x + loc->y * loc->y);
	z = loc->z;

/*
 *  x is the sine of the parametric latitude.  Use the sine of the geocentric
 *  latitude as the initial guess.
 */

	if (w == 0.0 && z == 0.0) {
		p->latitude = 0.0;
		p->longitude = 0.0;
		p->z = 0.0;
		return;
	}

	x = z / sqrt(w * w + z * z);

/*
 *  Compute x with accuracy that will yield a lat/lon accuracy of
 *  about 0.0001 arc-seconds (~ 0.10 foot).
 */

	for (delta_x = 1.0; fabs(delta_x) > 4.8E-10;) {

		x_sqr = x * x;

		cos_x = sqrt(1.0 - x_sqr);

		f = 2.0 * (WGS84_MAJOR * x * w - a_sqr * x * cos_x - WGS84_MINOR * cos_x * z +
				   b_sqr * cos_x * x);

		f_prime = 2.0 * (a_sqr + 2.0 * (a_sqr * x_sqr) - WGS84_MAJOR * w * x_sqr +
						 b_sqr - 2.0 * b_sqr * x_sqr + WGS84_MINOR * x * z);

		delta_x = f / f_prime;
		x -= delta_x;
	}

	z0 = WGS84_MINOR * x;
	w0 = WGS84_MAJOR * sqrt(1.0 - x * x);

	p->z = sqrt((z - z0) * (z - z0) + (w - w0) * (w - w0));
	p->latitude = atan(z0 / (w0 * (1.0 - WGS84_ECC_SQR)));
	p->longitude = atan2(loc->y, loc->x);
}

/*
 *  Convert WGS84 geodetic lat/lon/z into cartesian geocentric coordinates
 */

void
DISWorldCoordinatesToGeocentric(WorldCoordinates * w,
								dis_world_coordinates * p)
{
	double    N, N1;
	double    cos_latitude, sin_latitude;

	sin_latitude = sin(w->latitude);
	cos_latitude = cos(w->latitude);

/*
 *  N is the length of the normal line segment from the surface to the
 *  spin axis.
 */

	N = WGS84_MAJOR / sqrt(1.0 - (WGS84_ECC_SQR * sin_latitude * sin_latitude));

/*
 *  N1 lengthens the normal line to account for height above the surface
 */

	N1 = N + w->z;

	p->x = N1 * cos_latitude * cos(w->longitude);
	p->y = N1 * cos_latitude * sin(w->longitude);
	p->z = (((WGS84_MINOR * WGS84_MINOR) / (WGS84_MAJOR * WGS84_MAJOR)) * N + w->z) * sin_latitude;
}

char     *
DISLatitudeToString(char *s, double la, LatLongDisplayFormat mode)
{

	int       d, m;
	double    dla, dmin, dsec;
	double    round_dms = 1.0 / (36000.0 * 2.0);
	double    round_dm = 1.0 / (600.0 * 2.0);
	char     *ns;

	round_dms = round_dm = 0.0;

	switch (mode) {

	case LLM_DMS:
		ns = (la >= 0.0) ? "N" : "S";
		dla = RADtoDEG(fabs(la)) + round_dms;
		d = (int) dla;
		dmin = (dla - (double) d) * 60.0;
		m = (int) dmin;
		dsec = (dmin - (double) m) * 60.0;
		sprintf(s, "%d %d %.1f %s", d, m, dsec, ns);
		break;

	case LLM_DM:
		ns = (la >= 0.0) ? "N" : "S";
		dla = RADtoDEG(fabs(la)) + round_dm;
		d = (int) dla;
		dmin = (dla - (double) d) * 60.0;
		sprintf(s, "%d %.1f %s", d, dmin, ns);
		break;

	case LLM_D:
		ns = (la >= 0.0) ? "N" : "S";
		dla = RADtoDEG(fabs(la)) + 0.05;
		sprintf(s, "%.1f %s", dla, ns);
		break;

	case LLM_SIGNED_D:
		sprintf(s, "%.1f", RADtoDEG(la));
		break;
	}

	return s;

}

char     *
DISLongitudeToString(char *s, double lo, LatLongDisplayFormat mode)
{

	int       d, m;
	double    dlo, dmin, dsec;
	double    round_dms = 1.0 / (36000.0 * 2.0);
	double    round_dm = 1.0 / (600.0 * 2.0);
	char     *ew;

	round_dms = round_dm = 0.0;

	switch (mode) {

	case LLM_DMS:
		ew = (lo >= 0.0) ? "E" : "W";
		dlo = RADtoDEG(fabs(lo)) + round_dms;
		d = (int) dlo;
		dmin = (dlo - (double) d) * 60.0;
		m = (int) dmin;
		dsec = (dmin - (double) m) * 60.0;
		sprintf(s, "%d %d %.1f %s", d, m, dsec, ew);
		break;

	case LLM_DM:
		ew = (lo >= 0.0) ? "E" : "W";
		dlo = RADtoDEG(fabs(lo)) + round_dm;
		d = (int) dlo;
		dmin = (dlo - (double) d) * 60.0;
		sprintf(s, "%d %.1f %s", d, dmin, ew);
		break;

	case LLM_D:
		ew = (lo >= 0.0) ? "E" : "W";
		dlo = RADtoDEG(fabs(lo)) + 0.05;
		sprintf(s, "%.1f %s", dlo, ew);
		break;

	case LLM_SIGNED_D:
		sprintf(s, "%.1f", RADtoDEG(lo));
		break;

	}

	return s;

}

#define STATE_INITIAL	0
#define STATE_WORD	1
#define STATE_INTEGER	2
#define STATE_FLOAT	3

typedef enum {
	EndOfFile,
	TOKEN_FLOAT,
	TOKEN_LONG,
	TOKEN_DASH,
	TOKEN_NORTH,
	TOKEN_SOUTH,
	TOKEN_EAST,
	TOKEN_WEST
} token_id;

typedef union {
	double    double_value;
	long      long_value;
} lex_val;

static lex_val lex_value;

struct lex_record {
	char     *s;
	FILE     *f;
	int       lookahead_valid;
	int       lookahead;
	int       stack_top;
	lex_val   value_stack[16];
};

static int
input(struct lex_record *p)
{
	int       val;

	if (p->lookahead_valid) {
		p->lookahead_valid = 0;
		val = p->lookahead;
	}
	else if (p->s) {
		val = *(p->s)++;
	}
	else {
		val = fgetc(p->f);
	}
	return val;
}

#define push_value(p, type, val) \
	p->value_stack[p->stack_top++].type = val

#define pop_value(p, type) (p->value_stack[--p->stack_top].type)

#define unput(p, c)	{ p->lookahead = c; p->lookahead_valid = 1; }

#define InitializeLexRecord(p)	{ p->lookahead_valid = 0; }

static char token[256];
static int token_length = 0;

static    token_id
NextTokenx(struct lex_record *p)
{
	register int c, state = STATE_INITIAL;

#ifndef HAVE_STDLIB_H
#ifndef linux
	extern double atof(const char *);
#endif
#endif

	token_length = 0;

	while ((c = input(p)) != EOF) {

		switch (state) {

		case STATE_INITIAL:

			if (isspace(c)) {
				continue;
			}
			else if (isdigit(c)) {
				token[token_length++] = c;
				state = STATE_INTEGER;
			}
			else if (c == '.') {
				token[token_length++] = c;
				state = STATE_FLOAT;
			}
			else {
				token[0] = c;
				token[1] = '\0';
#ifdef DEBUG
				printf("other %s\n", token);
#endif
				switch (c) {
				case '-':
					return TOKEN_DASH;
				case 'n':
				case 'N':
					return TOKEN_NORTH;
				case 'e':
				case 'E':
					return TOKEN_EAST;
				case 's':
				case 'S':
					return TOKEN_SOUTH;
				case 'w':
				case 'W':
					return TOKEN_WEST;
/*
 *  invalid character
 */
				default:
					return EndOfFile;
				}
			}
			break;

		case STATE_INTEGER:
		case STATE_FLOAT:
			if (isspace(c) ||
				c == '-' ||
				toupper(c) == 'N' ||
				toupper(c) == 'S' ||
				toupper(c) == 'W' ||
				toupper(c) == 'E') {
				token[token_length] = '\0';
				unput(p, c);
				if (state == STATE_INTEGER) {
					lex_value.long_value = atoi(token);
					return TOKEN_LONG;
				}
				else {
					lex_value.double_value = atof(token);
					return TOKEN_FLOAT;
				}
			}
			else {
				if (c == '.') {
					state = STATE_FLOAT;
				}
				token[token_length++] = c;
			}
			break;

		default:
			token[token_length++] = c;
			break;
		}
	}

	return EndOfFile;
}

static    token_id
NextToken(struct lex_record *p)
{
	token_id  t;

	t = NextTokenx(p);

#ifdef DEBUG
	printf("token %s\n", token);
#endif
	return t;
}

static int
ParseLatitude(struct lex_record *p)
{
	double    x = 0.0;
	double    divider = 1.0;
	int       int_valid = 1;
	token_id  t;

	t = NextToken(p);
	for (;;) {
		switch (t) {
		case TOKEN_NORTH:
			lex_value.double_value = x;
			return 0;

		case TOKEN_SOUTH:
			lex_value.double_value = -x;
			return 0;

		case TOKEN_LONG:
			if (int_valid) {
				x += lex_value.long_value / divider;
				divider *= 60.0;
				t = NextToken(p);
				if (t == TOKEN_DASH) {
					t = NextToken(p);
				}
			}
			else {
				return -1;
			}
			break;

		case TOKEN_FLOAT:
			int_valid = 0;
			x += lex_value.double_value / divider;
			divider *= 60.0;
			t = NextToken(p);
			if (t == TOKEN_DASH) {
				t = NextToken(p);
			}
			break;
		default:
			return -1;
		}
	}
}

static int
ParseLongitude(struct lex_record *p)
{
	double    x = 0.0;
	double    divider = 1.0;
	int       t, int_valid = 1;

	t = NextToken(p);
	for (;;) {
		switch (t) {
		case TOKEN_EAST:
			lex_value.double_value = x;
			return 0;

		case TOKEN_WEST:
			lex_value.double_value = -x;
			return 0;

		case TOKEN_LONG:
			if (int_valid) {
				x += lex_value.long_value / divider;
				divider *= 60.0;
				t = NextToken(p);
				if (t == TOKEN_DASH) {
					t = NextToken(p);
				}
			}
			else {
				return -1;
			}
			break;

		case TOKEN_FLOAT:
			int_valid = 0;
			x += lex_value.double_value / divider;
			divider *= 60.0;
			t = NextToken(p);
			if (t == TOKEN_DASH) {
				t = NextToken(p);
			}
			break;

		default:
			return -1;
		}
	}
}

char     *
DISStringToLatLong(char *s, WorldCoordinates * w)
{
	struct lex_record p;

	p.s = s;
	p.lookahead_valid = 0;

	if (ParseLatitude(&p) != 0) {
		return 0;
	}
	w->latitude = DEGtoRAD(lex_value.double_value);

	if (ParseLongitude(&p) != 0) {
		return 0;
	}
	w->longitude = DEGtoRAD(lex_value.double_value);
	w->z = 0.0;
	return p.s;
}