1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*
* IMPLEMENTATION NOTES.
*
* The rectangular area is split into a grid of slots of fixed size. Each slot
* is initially empty, that is its value is zero. By marking some zone as "used"
* the corresponding involved slots are set to 1.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <string.h>
#include "../../src/util/memory.h"
#include "../../src/util/error.h"
#define ratnest_IMPORT
#include "ratnest.h"
/** Granularity. */
#define ratnest_N (60)
struct ratnest_Type {
/** Rectangular region to monitor. */
ratnest_Rect bounds;
/** Size of a slot. */
double dx, dy;
/** Each slot value is either 0 (not occupied) or 1 (occupied). */
char slots[ratnest_N][ratnest_N];
};
char *ratnest_RectToString(ratnest_Rect *r)
{
static char s[99];
snprintf(s, sizeof(s), "[%g, %g, %g, %g]", r->x1, r->y1, r->x2, r->y2);
return s;
}
/**
* This module assumes each rectangle be not empty and (x1,y1) be the bottom-
* left corner. Fatal error if it is not.
* @param r
*/
static void ratnest_checkRect(ratnest_Rect *r)
{
if( !(r->x1 < r->x2 && r->y1 < r->y2) )
error_internal("invalid rectangle: %s", ratnest_RectToString(r));
}
/*
static void ratnest_destruct(void *p)
{
ratnest_Type *o = (ratnest_Type *) p;
}
*/
ratnest_Type * ratnest_new(ratnest_Rect *bounds)
{
ratnest_checkRect(bounds);
ratnest_Type * this = memory_allocate(sizeof(ratnest_Type), NULL);
this->bounds = *bounds;
this->dx = (bounds->x2 - bounds->x1) / ratnest_N;
this->dy = (bounds->y2 - bounds->y1) / ratnest_N;
memory_zero(&this->slots);
return this;
}
void ratnest_markSegment(ratnest_Type *this, double x1, double y1, double x2, double y2)
{
// FIXME: do clipping; hopefully not necessary.
double deltax = x2 - x1;
double deltay = y2 - y1;
int nsteps_h = fabs(deltax) / this->dx;
int nsteps_v = fabs(deltay) / this->dy;
int nsteps = (nsteps_h < nsteps_v)? nsteps_v : nsteps_h;
// This algo is simple but it does not cover all the slots the segment
// pass over. Doubling the number of steps mitigates this issue giving
// a result good enough.
// Moreover, add 1 to force at least 1 slot be occupied by very short
// segments.
nsteps = 2*nsteps + 1;
int i;
for(i = 0; i <= nsteps; i++){
int h = (x1 + i * deltax /nsteps - this->bounds.x1) / this->dx;
if( !(0 <= h && h < ratnest_N) )
continue;
int v = (y1 + i * deltay /nsteps - this->bounds.y1) / this->dy;
if( !(0 <= v && v < ratnest_N) )
continue;
this->slots[v][h] = 1;
}
}
/**
* Clip the rectangle to the boundary.
* @param this
* @param r Modified in place with the clipped rectangle!
* @return True if the resulting rectangle is not-empty.
*/
static int ratnest_clipRectToBounds(ratnest_Type *this, ratnest_Rect *r)
{
// left bound:
if( r->x2 <= this->bounds.x1 )
return 0;
if( r->x1 < this->bounds.x1 )
r->x1 = this->bounds.x1;
// right bound:
if( this->bounds.x2 <= r->x1 )
return 0;
if( this->bounds.x2 < r->x2 )
r->x2 = this->bounds.x2;
// bottom bound:
if( r->y2 <= this->bounds.y1 )
return 0;
if( r->y1 < this->bounds.y1 )
r->y1 = this->bounds.y1;
// top bound:
if( this->bounds.y2 <= r->y1 )
return 0;
if( this->bounds.y2 < r->y2 )
r->y2 = this->bounds.y2;
if( (r->x2 - r->x1) * (r->y2 - r->y1) <= 0 )
return 0;
return 1;
}
void ratnest_markRect(ratnest_Type *this, ratnest_Rect *r)
{
ratnest_checkRect(r);
ratnest_Rect r1 = *r;
if( ! ratnest_clipRectToBounds(this, &r1) )
return;
int h1 = (r1.x1 - this->bounds.x1) / this->dx;
if( h1 >= ratnest_N )
h1 = ratnest_N - 1;
int h2 = (r1.x2 - this->bounds.x1) / this->dx;
if( h2 >= ratnest_N )
h2 = ratnest_N - 1;
int v1 = (r1.y1 - this->bounds.y1) / this->dy;
if( v1 >= ratnest_N )
v1 = ratnest_N - 1;
int v2 = (r1.y2 - this->bounds.y1) / this->dy;
if( v2 >= ratnest_N )
v2 = ratnest_N - 1;
int h, v;
for(v = v1; v <= v2; v++)
for(h = h1; h <= h2; h++)
this->slots[v][h] = 1;
}
int ratnest_place(ratnest_Type *this, ratnest_Rect *r, ratnest_Rect *found)
{
ratnest_checkRect(r);
double req_width = r->x2 - r->x1;
double req_height = r->y2 - r->y1;
if( !(req_width <= this->bounds.x2 - this->bounds.x1
&& req_height <= this->bounds.y2 - this->bounds.y1) )
error_internal("rectangle too big to place: %s", ratnest_RectToString(r));
// No. of slot required (width and height):
int width = ceil(req_width / this->dx);
int height = ceil(req_height / this->dy);
// Limits of the search area among slots:
int hmax = ratnest_N - width;
int vmax = ratnest_N - height;
// Initial search area [h1,v1,h2,v2] among slots is the slot where the
// given rectangle is located; if occupied, widens the search area by
// one slot and tray again with the slots added on the border of that
// larger area.
int h1 = (r->x1 - this->bounds.x1)/this->dx;
if( h1 < 0 ) h1 = 0;
else if( h1 > hmax ) h1 = hmax;
int v1 = (r->y1 - this->bounds.y1)/this->dy;
if( v1 < 0 ) v1 = 0;
else if( v1 > vmax ) v1 = vmax;
int h2 = h1;
int v2 = v1;
while(1){
// Search place along the border of [h1,v1,h2,v2]:
int v, h;
for(v = v2; v >= v1; v--){
for(h = h2; h >= h1; h--){
if( !(v == v1 || v == v2 || h == h1 || h == h2) )
// Not a slot on the border of [h1,v1,h2,v2].
continue;
// Check if the slots are free:
int occupied = 0;
int v1, h1;
for(v1 = v; v1 < v + height; v1++){
for(h1 = h; h1 < h + width; h1++){
if( this->slots[v1][h1] != 0 ){
occupied = 1;
break;
}
}
if( occupied )
break;
}
if( ! occupied ){
// Put the requested rectangle at the center of the available
// free slots area, so we also have a bit of margin added.
double avail_width = width * this->dx;
double avail_height = height * this->dy;
found->x1 = this->bounds.x1 + h * this->dx + (avail_width - req_width)/2;
found->y1 = this->bounds.y1 + v * this->dy + (avail_height - req_height)/2;
found->x2 = found->x1 + req_width;
found->y2 = found->y1 + req_height;
return 1;
}
}
}
// Widens search area [h1,v1,h2,v2] by one slot and retry on the border.
int wider = 0;
if( v1 > 0 ){
v1--;
wider = 1;
}
if( v2 < vmax ){
v2++;
wider = 1;
}
if( h1 > 0 ){
h1--;
wider = 1;
}
if( h2 < hmax ){
h2++;
wider = 1;
}
if( ! wider ){
// Cannot enlarge search area any further -- give up.
return 0;
}
}
}
/**
* Draws a circle on each occupied slot.
* @param this
* @param ps
*/
/*
void ratnest_debug(ratnest_Type *this, ps_Type *ps)
{
ps_setLineWidth(ps, 0.2);
int h, v;
for(h = 0; h < ratnest_N; h++){
double x = this->bounds.x1 + h*this->dx;
for(v = 0; v < ratnest_N; v++){
if( this->slots[v][h] == 0 )
continue;
double y = this->bounds.y1 + v*this->dy;
ps_drawRect(ps, x, y, this->dx, this->dy);
}
}
}
*/
|