1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
|
/**
* This file is part of the World Magnetic Model library created by the
* National Centers for Environmental Information - NOAA.
* Downloaded from: https://www.ngdc.noaa.gov/geomag/WMM/soft.shtml
* Date taken: 2020-01-03.
* @version $Date: 2020/01/08 05:11:01 $
* @file
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <assert.h>
#define Geomagnetism_IMPORT
#include "Geomagnetism.h"
// LINKER_OPTIONS -lm
/* Id: GeomagnetismLibrary.c 1521 2017-01-24 17:52:41Z awoods
*
* ABSTRACT
*
* The purpose of Geomagnetism Library is primarily to support the World Magnetic Model (WMM) 2015-2020.
* It however is built to be used for spherical harmonic models of the Earth's magnetic field
* generally and supports models even with a large (>>12) number of degrees. It is also used in many
* other geomagnetic models distributed by NCEI.
*
* REUSE NOTES
*
* Geomagnetism Library is intended for reuse by any application that requires
* Computation of Geomagnetic field from a spherical harmonic model.
*
* REFERENCES
*
* Further information on Geoid can be found in the WMM Technical Documents.
*
*
* LICENSES
*
* The WMM source code is in the public domain and not licensed or under copyright.
* The information and software may be used freely by the public. As required by 17 U.S.C. 403,
* third parties producing copyrighted works consisting predominantly of the material produced by
* U.S. government agencies must provide notice with such work(s) identifying the U.S. Government material
* incorporated and stating that such material is not subject to copyright protection.
*
* RESTRICTIONS
*
* Geomagnetism library has no restrictions.
*
* ENVIRONMENT
*
* Geomagnetism library was tested in the following environments
*
* 1. Red Hat Linux with GCC Compiler
* 2. MS Windows 7 with MinGW compiler
* 3. Sun Solaris with GCC Compiler
*
*
* National Centers for Environmental Information
* NOAA E/NE42, 325 Broadway
* Boulder, CO 80305 USA
* Attn: Arnaud Chulliat
* Phone: (303) 497-6522
* Email: Arnaud.Chulliat@noaa.gov
* Software and Model Support
* National Centers for Environmental Information
* NOAA E/NE42
* 325 Broadway
* Boulder, CO 80305 USA
* Attn: Adam Woods or Manoj Nair
* Phone: (303) 497-6640 or -4642
* Email: geomag.models@noaa.gov
* URL: http://www.ngdc.noaa.gov/Geomagnetic/WMM/DoDWMM.shtml
* For more details on the subroutines, please consult the WMM
* Technical Documentations at
* http://www.ngdc.noaa.gov/Geomagnetic/WMM/DoDWMM.shtml
* Nov 23, 2009
* Written by Manoj C Nair and Adam Woods
* Manoj.C.Nair@noaa.Gov
* Adam.Woods@noaa.gov
*/
/******************************************************************************
************************************Wrapper***********************************
* This grouping consists of functions call groups of other functions to do a
* complete calculation of some sort. For example, the MAG_Geomag function
* does everything necessary to compute the geomagnetic elements from a given
* geodetic point in space and magnetic model adjusted for the appropriate
* date. These functions are the external functions necessary to create a
* program that uses or calculates the magnetic field.
******************************************************************************
******************************************************************************/
int MAG_Geomag(MAGtype_Ellipsoid Ellip, MAGtype_CoordSpherical CoordSpherical, MAGtype_CoordGeodetic CoordGeodetic,
MAGtype_MagneticModel *TimedMagneticModel, MAGtype_GeoMagneticElements *GeoMagneticElements)
/*
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point.
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid
of magnetic field, these are better achieved by the subroutine MAG_Grid.
INPUT: Ellip
CoordSpherical
CoordGeodetic
TimedMagneticModel
OUTPUT : GeoMagneticElements
CALLS: MAG_AllocateLegendreFunctionMemory(NumTerms); ( For storing the ALF functions )
MAG_ComputeSphericalHarmonicVariables( Ellip, CoordSpherical, TimedMagneticModel->nMax, &SphVariables); (Compute Spherical Harmonic variables )
MAG_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); Compute ALF
MAG_Summation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSph); Accumulate the spherical harmonic coefficients
MAG_SecVarSummation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSphVar); Sum the Secular Variation Coefficients
MAG_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); Map the computed Magnetic fields to Geodetic coordinates
MAG_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); Calculate the Geomagnetic elements
MAG_CalculateSecularVariationElements(MagneticResultsGeoVar, GeoMagneticElements); Calculate the secular variation of each of the Geomagnetic elements
*/
{
MAGtype_LegendreFunction *LegendreFunction;
MAGtype_SphericalHarmonicVariables *SphVariables;
int NumTerms;
MAGtype_MagneticResults MagneticResultsSph, MagneticResultsGeo, MagneticResultsSphVar, MagneticResultsGeoVar;
NumTerms = ((TimedMagneticModel->nMax + 1) * (TimedMagneticModel->nMax + 2) / 2);
LegendreFunction = MAG_AllocateLegendreFunctionMemory(NumTerms); /* For storing the ALF functions */
SphVariables = MAG_AllocateSphVarMemory(TimedMagneticModel->nMax);
MAG_ComputeSphericalHarmonicVariables(Ellip, CoordSpherical, TimedMagneticModel->nMax, SphVariables); /* Compute Spherical Harmonic variables */
MAG_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); /* Compute ALF */
MAG_Summation(LegendreFunction, TimedMagneticModel, *SphVariables, CoordSpherical, &MagneticResultsSph); /* Accumulate the spherical harmonic coefficients*/
MAG_SecVarSummation(LegendreFunction, TimedMagneticModel, *SphVariables, CoordSpherical, &MagneticResultsSphVar); /*Sum the Secular Variation Coefficients */
MAG_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); /* Map the computed Magnetic fields to Geodeitic coordinates */
MAG_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSphVar, &MagneticResultsGeoVar); /* Map the secular variation field components to Geodetic coordinates*/
MAG_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); /* Calculate the Geomagnetic elements, Equation 19 , WMM Technical report */
MAG_CalculateSecularVariationElements(MagneticResultsGeoVar, GeoMagneticElements); /*Calculate the secular variation of each of the Geomagnetic elements*/
MAG_FreeLegendreMemory(LegendreFunction);
MAG_FreeSphVarMemory(SphVariables);
return TRUE;
} /*MAG_Geomag*/
void MAG_Gradient(MAGtype_Ellipsoid Ellip, MAGtype_CoordGeodetic CoordGeodetic, MAGtype_MagneticModel *TimedMagneticModel, MAGtype_Gradient *Gradient)
{
/*It should be noted that the x[2], y[2], and z[2] variables are NOT the same
coordinate system as the directions in which the gradients are taken. These
variables represent a Cartesian coordinate system where the Earth's center is
the origin, 'z' points up toward the North (rotational) pole and 'x' points toward
the prime meridian. 'y' points toward longitude = 90 degrees East.
The gradient is preformed along a local Cartesian coordinate system with the
origin at CoordGeodetic. 'z' points down toward the Earth's core, x points
North, tangent to the local longitude line, and 'y' points East, tangent to
the local latitude line.*/
double phiDelta = 0.01, /*DeltaY = 0.01,*/ hDelta = -1, x[2], y[2], z[2], distance;
MAGtype_CoordSpherical AdjCoordSpherical;
MAGtype_CoordGeodetic AdjCoordGeodetic;
MAGtype_GeoMagneticElements GeomagneticElements, AdjGeoMagneticElements[2];
/*Initialization*/
MAG_GeodeticToSpherical(Ellip, CoordGeodetic, &AdjCoordSpherical);
MAG_Geomag(Ellip, AdjCoordSpherical, CoordGeodetic, TimedMagneticModel, &GeomagneticElements);
AdjCoordGeodetic = MAG_CoordGeodeticAssign(CoordGeodetic);
/*Gradient along x*/
AdjCoordGeodetic.phi = CoordGeodetic.phi + phiDelta;
MAG_GeodeticToSpherical(Ellip, AdjCoordGeodetic, &AdjCoordSpherical);
MAG_Geomag(Ellip, AdjCoordSpherical, AdjCoordGeodetic, TimedMagneticModel, &AdjGeoMagneticElements[0]);
MAG_SphericalToCartesian(AdjCoordSpherical, &x[0], &y[0], &z[0]);
AdjCoordGeodetic.phi = CoordGeodetic.phi - phiDelta;
MAG_GeodeticToSpherical(Ellip, AdjCoordGeodetic, &AdjCoordSpherical);
MAG_Geomag(Ellip, AdjCoordSpherical, AdjCoordGeodetic, TimedMagneticModel, &AdjGeoMagneticElements[1]);
MAG_SphericalToCartesian(AdjCoordSpherical, &x[1], &y[1], &z[1]);
distance = sqrt((x[0] - x[1])*(x[0] - x[1])+(y[0] - y[1])*(y[0] - y[1])+(z[0] - z[1])*(z[0] - z[1]));
Gradient->GradPhi = MAG_GeoMagneticElementsSubtract(AdjGeoMagneticElements[0], AdjGeoMagneticElements[1]);
Gradient->GradPhi = MAG_GeoMagneticElementsScale(Gradient->GradPhi, 1 / distance);
AdjCoordGeodetic = MAG_CoordGeodeticAssign(CoordGeodetic);
/*Gradient along y*/
/*It is perhaps noticeable that the method here for calculation is substantially
different than that for the gradient along x. As we near the North pole
the longitude lines approach each other, and the calculation that works well
for latitude lines becomes unstable when 0.01 degrees represents sufficiently
small numbers, and fails to function correctly at all at the North Pole*/
MAG_GeodeticToSpherical(Ellip, CoordGeodetic, &AdjCoordSpherical);
MAG_GradY(Ellip, AdjCoordSpherical, CoordGeodetic, TimedMagneticModel, GeomagneticElements, &(Gradient->GradLambda));
/*Gradient along z*/
AdjCoordGeodetic.HeightAboveEllipsoid = CoordGeodetic.HeightAboveEllipsoid + hDelta;
AdjCoordGeodetic.HeightAboveGeoid = CoordGeodetic.HeightAboveGeoid + hDelta;
MAG_GeodeticToSpherical(Ellip, AdjCoordGeodetic, &AdjCoordSpherical);
MAG_Geomag(Ellip, AdjCoordSpherical, AdjCoordGeodetic, TimedMagneticModel, &AdjGeoMagneticElements[0]);
MAG_SphericalToCartesian(AdjCoordSpherical, &x[0], &y[0], &z[0]);
AdjCoordGeodetic.HeightAboveEllipsoid = CoordGeodetic.HeightAboveEllipsoid - hDelta;
AdjCoordGeodetic.HeightAboveGeoid = CoordGeodetic.HeightAboveGeoid - hDelta;
MAG_GeodeticToSpherical(Ellip, AdjCoordGeodetic, &AdjCoordSpherical);
MAG_Geomag(Ellip, AdjCoordSpherical, AdjCoordGeodetic, TimedMagneticModel, &AdjGeoMagneticElements[1]);
MAG_SphericalToCartesian(AdjCoordSpherical, &x[1], &y[1], &z[1]);
distance = sqrt((x[0] - x[1])*(x[0] - x[1])+(y[0] - y[1])*(y[0] - y[1])+(z[0] - z[1])*(z[0] - z[1]));
Gradient->GradZ = MAG_GeoMagneticElementsSubtract(AdjGeoMagneticElements[0], AdjGeoMagneticElements[1]);
Gradient->GradZ = MAG_GeoMagneticElementsScale(Gradient->GradZ, 1/distance);
AdjCoordGeodetic = MAG_CoordGeodeticAssign(CoordGeodetic);
}
int MAG_SetDefaults(MAGtype_Ellipsoid *Ellip, MAGtype_Geoid *Geoid)
/*
Sets default values for WMM subroutines.
UPDATES : Ellip
Geoid
CALLS : none
*/
{
/* Sets WGS-84 parameters */
Ellip->a = 6378.137; /*semi-major axis of the ellipsoid in */
Ellip->b = 6356.7523142; /*semi-minor axis of the ellipsoid in */
Ellip->fla = 1 / 298.257223563; /* flattening */
Ellip->eps = sqrt(1 - (Ellip->b * Ellip->b) / (Ellip->a * Ellip->a)); /*first eccentricity */
Ellip->epssq = (Ellip->eps * Ellip->eps); /*first eccentricity squared */
Ellip->re = 6371.2; /* Earth's radius */
/* Sets EGM-96 model file parameters */
Geoid->NumbGeoidCols = 1441; /* 360 degrees of longitude at 15 minute spacing */
Geoid->NumbGeoidRows = 721; /* 180 degrees of latitude at 15 minute spacing */
Geoid->NumbHeaderItems = 6; /* min, max lat, min, max long, lat, long spacing*/
Geoid->ScaleFactor = 4; /* 4 grid cells per degree at 15 minute spacing */
Geoid->NumbGeoidElevs = Geoid->NumbGeoidCols * Geoid->NumbGeoidRows;
Geoid->Geoid_Initialized = 0; /* Geoid will be initialized only if this is set to zero */
Geoid->UseGeoid = MAG_USE_GEOID;
return TRUE;
} /*MAG_SetDefaults */
int MAG_robustReadMagneticModel_Large(char *filename, char *filenameSV, MAGtype_MagneticModel **MagneticModel)
{
char line[MAXLINELENGTH], ModelName[] = "Enhanced Magnetic Model";/*Model Name must be no longer than 31 characters*/
int n, nMax = 0, nMaxSV = 0, num_terms, a, epochlength=5, i;
FILE *MODELFILE;
MODELFILE = fopen(filename, "r");
if(MODELFILE == 0) {
return 0;
}
if (NULL == fgets(line, MAXLINELENGTH, MODELFILE))
{
return 0;
}
do
{
if(NULL == fgets(line, MAXLINELENGTH, MODELFILE))
break;
a = sscanf(line, "%d", &n);
if(n > nMax && (n < 99999 && a == 1 && n > 0))
nMax = n;
} while(n < 99999 && a == 1);
fclose(MODELFILE);
MODELFILE = fopen(filenameSV, "r");
if(MODELFILE == 0) {
return 0;
}
n = 0;
if (NULL == fgets(line, MAXLINELENGTH, MODELFILE))
return 0;
do
{
if(NULL == fgets(line, MAXLINELENGTH, MODELFILE))
break;
a = sscanf(line, "%d", &n);
if(n > nMaxSV && (n < 99999 && a == 1 && n > 0))
nMaxSV = n;
} while(n < 99999 && a == 1);
fclose(MODELFILE);
num_terms = CALCULATE_NUMTERMS(nMax);
*MagneticModel = MAG_AllocateModelMemory(num_terms);
(*MagneticModel)->nMax = nMax;
(*MagneticModel)->nMaxSecVar = nMaxSV;
if(nMaxSV > 0) (*MagneticModel)->SecularVariationUsed = TRUE;
for(i = 0; i < num_terms; i++) {
(*MagneticModel)->Main_Field_Coeff_G[i] = 0;
(*MagneticModel)->Main_Field_Coeff_H[i] = 0;
(*MagneticModel)->Secular_Var_Coeff_G[i] = 0;
(*MagneticModel)->Secular_Var_Coeff_H[i] = 0;
}
MAG_readMagneticModel_Large(filename, filenameSV, *MagneticModel);
(*MagneticModel)->CoefficientFileEndDate = (*MagneticModel)->epoch + epochlength;
strcpy((*MagneticModel)->ModelName, ModelName);
(*MagneticModel)->EditionDate = (*MagneticModel)->epoch;
return 1;
} /*MAG_robustReadMagneticModel_Large*/
int MAG_robustReadMagModels(char *filename, MAGtype_MagneticModel *(*magneticmodels)[], int array_size)
{
char line[MAXLINELENGTH];
int n, nMax = 0, num_terms, a;
FILE *MODELFILE;
MODELFILE = fopen(filename, "r");
if(MODELFILE == 0) {
return 0;
}
if (NULL==fgets(line, MAXLINELENGTH, MODELFILE)){
return 0;
}
if(line[0] == '%'){
MAG_readMagneticModel_SHDF(filename, magneticmodels, array_size);
}
else if(array_size == 1)
{
do
{
if(NULL == fgets(line, MAXLINELENGTH, MODELFILE))
break;
a = sscanf(line, "%d", &n);
if(n > nMax && (n < 99999 && a == 1 && n > 0))
nMax = n;
} while(n < 99999 && a == 1);
num_terms = CALCULATE_NUMTERMS(nMax);
(*magneticmodels)[0] = MAG_AllocateModelMemory(num_terms);
(*magneticmodels)[0]->nMax = nMax;
(*magneticmodels)[0]->nMaxSecVar = nMax;
MAG_readMagneticModel(filename, (*magneticmodels)[0]);
(*magneticmodels)[0]->CoefficientFileEndDate = (*magneticmodels)[0]->epoch + 5;
} else return 0;
fclose(MODELFILE);
return 1;
} /*MAG_robustReadMagModels*/
/*End of Wrapper Functions*/
/******************************************************************************
********************************User Interface********************************
* This grouping consists of functions which interact with the directly with
* the user and are generally specific to the XXX_point.c, XXX_grid.c, and
* XXX_file.c programs. They deal with input from and output to the user.
******************************************************************************/
void MAG_Error(int control)
/*This prints WMM errors.
INPUT control Error look up number
OUTPUT none
CALLS : none
*/
{
switch(control) {
case 1:
printf("\nError allocating in MAG_LegendreFunctionMemory.\n");
break;
case 2:
printf("\nError allocating in MAG_AllocateModelMemory.\n");
break;
case 3:
printf("\nError allocating in MAG_InitializeGeoid\n");
break;
case 4:
printf("\nError in setting default values.\n");
break;
case 5:
printf("\nError initializing Geoid.\n");
break;
case 6:
printf("\nError opening WMM.COF\n.");
break;
case 7:
printf("\nError opening WMMSV.COF\n.");
break;
case 8:
printf("\nError reading Magnetic Model.\n");
break;
case 9:
printf("\nError printing Command Prompt introduction.\n");
break;
case 10:
printf("\nError converting from geodetic co-ordinates to spherical co-ordinates.\n");
break;
case 11:
printf("\nError in time modifying the Magnetic model\n");
break;
case 12:
printf("\nError in Geomagnetic\n");
break;
case 13:
printf("\nError printing user data\n");\
break;
case 14:
printf("\nError allocating in MAG_SummationSpecial\n");
break;
case 15:
printf("\nError allocating in MAG_SecVarSummationSpecial\n");
break;
case 16:
printf("\nError in opening EGM9615.BIN file\n");
break;
case 17:
printf("\nError: Latitude OR Longitude out of range in MAG_GetGeoidHeight\n");
break;
case 18:
printf("\nError allocating in MAG_PcupHigh\n");
break;
case 19:
printf("\nError allocating in MAG_PcupLow\n");
break;
case 20:
printf("\nError opening coefficient file\n");
break;
case 21:
printf("\nError: UnitDepth too large\n");
break;
case 22:
printf("\nYour system needs Big endian version of EGM9615.BIN. \n");
printf("Please download this file from http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml. \n");
printf("Replace the existing EGM9615.BIN file with the downloaded one\n");
break;
}
} /*MAG_Error*/
int MAG_GetUserGrid(MAGtype_CoordGeodetic *minimum, MAGtype_CoordGeodetic *maximum, double *step_size, double *a_step_size, double *step_time, MAGtype_Date
*StartDate, MAGtype_Date *EndDate, int *ElementOption, int *PrintOption, char *OutputFile, MAGtype_Geoid *Geoid)
/* Prompts user to enter parameters to compute a grid - for use with the MAG_grid function
Note: The user entries are not validated before here. The function populates the input variables & data structures.
UPDATE : minimum Pointer to data structure with the following elements
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
maximum -same as the above -MAG_USE_GEOID
step_size : double pointer : spatial step size, in decimal degrees
a_step_size : double pointer : double altitude step size (km)
step_time : double pointer : time step size (decimal years)
StartDate : pointer to data structure with the following elements updates
double DecimalYear; ( decimal years )
EndDate : Same as the above
CALLS : none
*/
{
FILE *fileout;
char filename[] = "GridProgramDirective.txt";
char buffer[20];
int dummy;
printf("Please Enter Minimum Latitude (in decimal degrees):\n");
if (NULL == fgets(buffer, 20, stdin)) {
minimum->phi = 0;
printf("Unrecognized input default %lf used\n", minimum->phi);
}else {
sscanf(buffer, "%lf", &minimum->phi);
}
strcpy(buffer, "");
printf("Please Enter Maximum Latitude (in decimal degrees):\n");
if (NULL == fgets(buffer, 20, stdin)) {
maximum->phi = 0;
printf("Unrecognized input default %lf used\n", maximum->phi);
} else {
sscanf(buffer, "%lf", &maximum->phi);
}
strcpy(buffer, "");
printf("Please Enter Minimum Longitude (in decimal degrees):\n");
if (NULL == fgets(buffer, 20, stdin)) {
minimum->lambda = 0;
printf("Unrecognized input default %lf used\n", minimum->lambda);
} else {
sscanf(buffer, "%lf", &minimum->lambda);
}
strcpy(buffer, "");
printf("Please Enter Maximum Longitude (in decimal degrees):\n");
if (NULL == fgets(buffer, 20, stdin)){
maximum->lambda = 0;
printf("Unrecognized input default %lf used\n", maximum->lambda);
} else {
sscanf(buffer, "%lf", &maximum->lambda);
}
strcpy(buffer, "");
printf("Please Enter Step Size (in decimal degrees):\n");
if (NULL == fgets(buffer, 20, stdin)){
*step_size = fmax(maximum->phi - minimum->phi, maximum->lambda - minimum->lambda);
printf("Unrecognized input default %lf used\n", *step_size);
} else {
sscanf(buffer, "%lf", step_size);
}
strcpy(buffer, "");
printf("Select height (default : above MSL) \n1. Above Mean Sea Level\n2. Above WGS-84 Ellipsoid \n");
if (NULL == fgets(buffer, 20, stdin)) {
Geoid->UseGeoid = 1;
printf("Unrecognized option, height above MSL used.");
} else {
sscanf(buffer, "%d", &dummy);
if(dummy == 2) Geoid->UseGeoid = 0;
else Geoid->UseGeoid = 1;
}
strcpy(buffer, "");
if(Geoid->UseGeoid == 1)
{
printf("Please Enter Minimum Height above MSL (in km):\n");
if (NULL == fgets(buffer, 20, stdin)) {
minimum->HeightAboveGeoid = 0;
printf("Unrecognized input default %lf used\n", minimum->HeightAboveGeoid);
} else {
sscanf(buffer, "%lf", &minimum->HeightAboveGeoid);
}
strcpy(buffer, "");
printf("Please Enter Maximum Height above MSL (in km):\n");
if (NULL == fgets(buffer, 20, stdin)) {
maximum->HeightAboveGeoid = 0;
printf("Unrecognized input default %lf used\n", maximum->HeightAboveGeoid);
} else {
sscanf(buffer, "%lf", &maximum->HeightAboveGeoid);
}
strcpy(buffer, "");
} else
{
printf("Please Enter Minimum Height above the WGS-84 Ellipsoid (in km):\n");
if (NULL == fgets(buffer, 20, stdin))
{
minimum->HeightAboveGeoid = 0;
printf("Unrecognized input default %lf used\n", minimum->HeightAboveGeoid);
} else {
sscanf(buffer, "%lf", &minimum->HeightAboveGeoid);
}
minimum->HeightAboveEllipsoid = minimum->HeightAboveGeoid;
strcpy(buffer, "");
printf("Please Enter Maximum Height above the WGS-84 Ellipsoid (in km):\n");
if (NULL == fgets(buffer, 20, stdin)) {
maximum->HeightAboveGeoid = 0;
printf("Unrecognized input default %lf used\n", maximum->HeightAboveGeoid);
} else {
sscanf(buffer, "%lf", &maximum->HeightAboveGeoid);
}
maximum->HeightAboveEllipsoid = maximum->HeightAboveGeoid;
strcpy(buffer, "");
}
printf("Please Enter height step size (in km):\n");
if (NULL == fgets(buffer, 20, stdin)) {
*a_step_size = maximum->HeightAboveGeoid - minimum->HeightAboveGeoid;
printf("Unrecognized input default %lf used\n", *a_step_size);
} else {
sscanf(buffer, "%lf", a_step_size);
}
strcpy(buffer, "");
printf("\nPlease Enter the decimal year starting time:\n");
while (NULL == fgets(buffer, 20, stdin)) {
printf("\nUnrecognized input, please re-enter a decimal year\n");
}
sscanf(buffer, "%lf", &StartDate->DecimalYear);
strcpy(buffer, "");
printf("Please Enter the decimal year ending time:\n");
while (NULL == fgets(buffer, 20, stdin)) {
printf("\nUnrecognized input, please re-enter a decimal year\n");
}
sscanf(buffer, "%lf", &EndDate->DecimalYear);
strcpy(buffer, "");
printf("Please Enter the time step size:\n");
if (NULL == fgets(buffer, 20, stdin)) {
*step_time = EndDate->DecimalYear - StartDate->DecimalYear;
printf("Unrecognized input, default of %lf used\n", *step_time);
} else {
sscanf(buffer, "%lf", step_time);
}
strcpy(buffer, "");
printf("Enter a geomagnetic element to print. Your options are:\n");
printf(" 1. Declination 9. Ddot\n 2. Inclination 10. Idot\n 3. F 11. Fdot\n 4. H 12. Hdot\n 5. X 13. Xdot\n 6. Y 14. Ydot\n 7. Z 15. Zdot\n 8. GV 16. GVdot\nFor gradients enter: 17\n");
if (NULL == fgets(buffer, 20, stdin)) {
*ElementOption = 1;
printf("Unrecognized input, default of %d used\n", *ElementOption);
}
sscanf(buffer, "%d", ElementOption);
strcpy(buffer, "");
if(*ElementOption == 17)
{
printf("Enter a gradient element to print. Your options are:\n");
printf(" 1. dX/dphi \t2. dY/dphi \t3. dZ/dphi\n");
printf(" 4. dX/dlambda \t5. dY/dlambda \t6. dZ/dlambda\n");
printf(" 7. dX/dz \t8. dY/dz \t9. dZ/dz\n");
strcpy(buffer, "");
if (NULL == fgets(buffer, 20, stdin)) {
*ElementOption=1;
printf("Unrecognized input, default of %d used\n", *ElementOption);
} else {
sscanf(buffer, "%d", ElementOption);
}
strcpy(buffer, "");
*ElementOption+=16;
}
printf("Select output :\n");
printf(" 1. Print to a file \n 2. Print to Screen\n");
if (NULL ==fgets(buffer, 20, stdin)){
*PrintOption = 2;
printf("Unrecognized input, default of printing to screen\n");
} else {
sscanf(buffer, "%d", PrintOption);
}
strcpy(buffer, "");
fileout = fopen(filename, "a");
if(*PrintOption == 1)
{
printf("Please enter output filename\nfor default ('GridResults.txt') press enter:\n");
if(NULL==fgets(buffer, 20, stdin) || strlen(buffer) <= 1)
{
strcpy(OutputFile, "GridResults.txt");
fprintf(fileout, "\nResults printed in: GridResults.txt\n");
strcpy(OutputFile, "GridResults.txt");
} else
{
sscanf(buffer, "%s", OutputFile);
fprintf(fileout, "\nResults printed in: %s\n", OutputFile);
}
/*strcpy(OutputFile, buffer);*/
strcpy(buffer, "");
/*sscanf(buffer, "%s", OutputFile);*/
} else
fprintf(fileout, "\nResults printed in Console\n");
fprintf(fileout, "Minimum Latitude: %f\t\tMaximum Latitude: %f\t\tStep Size: %f\nMinimum Longitude: %f\t\tMaximum Longitude: %f\t\tStep Size: %f\n", minimum->phi, maximum->phi, *step_size, minimum->lambda, maximum->lambda, *step_size);
if(Geoid->UseGeoid == 1)
fprintf(fileout, "Minimum Altitude above MSL: %f\tMaximum Altitude above MSL: %f\tStep Size: %f\n", minimum->HeightAboveGeoid, maximum->HeightAboveGeoid, *a_step_size);
else
fprintf(fileout, "Minimum Altitude above WGS-84 Ellipsoid: %f\tMaximum Altitude above WGS-84 Ellipsoid: %f\tStep Size: %f\n", minimum->HeightAboveEllipsoid, maximum->HeightAboveEllipsoid, *a_step_size);
fprintf(fileout, "Starting Date: %f\t\tEnding Date: %f\t\tStep Time: %f\n\n\n", StartDate->DecimalYear, EndDate->DecimalYear, *step_time);
fclose(fileout);
return TRUE;
}
int MAG_GetUserInput(MAGtype_MagneticModel *MagneticModel, MAGtype_Geoid *Geoid, MAGtype_CoordGeodetic *CoordGeodetic, MAGtype_Date *MagneticDate)
/*
This prompts the user for coordinates, and accepts many entry formats.
It takes the MagneticModel and Geoid as input and outputs the Geographic coordinates and Date as objects.
Returns 0 when the user wants to exit and 1 if the user enters valid input data.
INPUT : MagneticModel : Data structure with the following elements used here
double epoch; Base time of Geomagnetic model epoch (yrs)
: Geoid Pointer to data structure MAGtype_Geoid (used for converting HeightAboveGeoid to HeightABoveEllipsoid
OUTPUT: CoordGeodetic : Pointer to data structure. Following elements are updated
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
MagneticDate : Pointer to data structure MAGtype_Date with the following elements updated
int Year; (If user directly enters decimal year this field is not populated)
int Month;(If user directly enters decimal year this field is not populated)
int Day; (If user directly enters decimal year this field is not populated)
double DecimalYear; decimal years
CALLS: MAG_DMSstringToDegree(buffer, &CoordGeodetic->lambda); (The program uses this to convert the string into a decimal longitude.)
MAG_ValidateDMSstringlong(buffer, Error_Message)
MAG_ValidateDMSstringlat(buffer, Error_Message)
MAG_Warnings
MAG_ConvertGeoidToEllipsoidHeight
MAG_DateToYear
*/
{
char Error_Message[255];
char buffer[40];
int i, j, a, b, c, done = 0;
double lat_bound[2] = {LAT_BOUND_MIN, LAT_BOUND_MAX};
double lon_bound[2] = {LON_BOUND_MIN, LON_BOUND_MAX};
int alt_bound[2] = {ALT_BOUND_MIN, NO_ALT_MAX};
char* Qstring = malloc(sizeof(char) * 1028);
strcpy(buffer, ""); /*Clear the input */
strcpy(Qstring, "\nPlease enter latitude\nNorth latitude positive, For example:\n30, 30, 30 (D,M,S) or 30.508 (Decimal Degrees) (both are north)\n");
MAG_GetDeg(Qstring, &CoordGeodetic->phi, lat_bound);
strcpy(buffer, ""); /*Clear the input*/
strcpy(Qstring,"\nPlease enter longitude\nEast longitude positive, West negative. For example:\n-100.5 or -100, 30, 0 for 100.5 degrees west\n");
MAG_GetDeg(Qstring, &CoordGeodetic->lambda, lon_bound);
strcpy(Qstring,"\nPlease enter height above mean sea level (in kilometers):\n[For height above WGS-84 ellipsoid prefix E, for example (E20.1)]\n");
if(MAG_GetAltitude(Qstring, Geoid, CoordGeodetic, alt_bound, FALSE)==USER_GAVE_UP)
return FALSE;
strcpy(buffer, "");
printf("\nPlease enter the decimal year or calendar date\n (YYYY.yyy, MM DD YYYY or MM/DD/YYYY):\n");
while (NULL == fgets(buffer, 40, stdin)) {
printf("\nPlease enter the decimal year or calendar date\n (YYYY.yyy, MM DD YYYY or MM/DD/YYYY):\n");
}
for(i = 0, done = 0; i <= 40 && !done; i++)
{
if(buffer[i] == '.')
{
j = sscanf(buffer, "%lf", &MagneticDate->DecimalYear);
if(j == 1)
done = 1;
else
buffer[i] = '\0';
}
if(buffer[i] == '/')
{
sscanf(buffer, "%d/%d/%d", &MagneticDate->Month, &MagneticDate->Day, &MagneticDate->Year);
if(!MAG_DateToYear(MagneticDate, Error_Message))
{
printf("%s", Error_Message);
printf("\nPlease re-enter Date in MM/DD/YYYY or MM DD YYYY format, or as a decimal year\n");
while (NULL == fgets(buffer, 40, stdin)) {
printf("\nPlease re-enter Date in MM/DD/YYYY or MM DD YYYY format, or as a decimal year\n");
}
i = 0;
} else
done = 1;
}
if((buffer[i] == ' ' && buffer[i + 1] != '/') || buffer[i] == '\0')
{
if(3 == sscanf(buffer, "%d %d %d", &a, &b, &c))
{
MagneticDate->Month = a;
MagneticDate->Day = b;
MagneticDate->Year = c;
MagneticDate->DecimalYear = 99999;
} else if(1 == sscanf(buffer, "%d %d %d", &a, &b, &c))
{
MagneticDate->DecimalYear = a;
done = 1;
}
if(!(MagneticDate->DecimalYear == a))
{
if(!MAG_DateToYear(MagneticDate, Error_Message))
{
printf("%s", Error_Message);
strcpy(buffer, "");
printf("\nError encountered, please re-enter Date in MM/DD/YYYY or MM DD YYYY format, or as a decimal year\n");
while( NULL== fgets(buffer, 40, stdin)){
printf("\nError encountered, please re-enter Date in MM/DD/YYYY or MM DD YYYY format, or as a decimal year\n");
}
i = -1;
} else
done = 1;
}
}
if(buffer[i] == '\0' && i != -1 && done != 1)
{
strcpy(buffer, "");
printf("\nError encountered, please re-enter as MM/DD/YYYY, MM DD YYYY, or as YYYY.yyy:\n");
while (NULL ==fgets(buffer, 40, stdin)) {
printf("\nError encountered, please re-enter as MM/DD/YYYY, MM DD YYYY, or as YYYY.yyy:\n");
}
i = -1;
}
if(done)
{
if(MagneticDate->DecimalYear > MagneticModel->CoefficientFileEndDate || MagneticDate->DecimalYear < MagneticModel->epoch)
{
switch(MAG_Warnings(4, MagneticDate->DecimalYear, MagneticModel)) {
case 0:
return 0;
case 1:
done = 0;
i = -1;
strcpy(buffer, "");
printf("\nPlease enter the decimal year or calendar date\n (YYYY.yyy, MM DD YYYY or MM/DD/YYYY):\n");
while(NULL == fgets(buffer, 40, stdin)){
printf("\nPlease enter the decimal year or calendar date\n (YYYY.yyy, MM DD YYYY or MM/DD/YYYY):\n");
}
break;
case 2:
break;
}
}
}
}
free(Qstring);
return TRUE;
} /*MAG_GetUserInput*/
void MAG_PrintGradient(MAGtype_Gradient Gradient)
{
printf("\nGradient\n");
printf("\n Northward Eastward Downward\n");
printf("X: %7.1f nT/km %9.1f nT/km %9.1f nT/km \n", Gradient.GradPhi.X, Gradient.GradLambda.X, Gradient.GradZ.X);
printf("Y: %7.1f nT/km %9.1f nT/km %9.1f nT/km \n", Gradient.GradPhi.Y, Gradient.GradLambda.Y, Gradient.GradZ.Y);
printf("Z: %7.1f nT/km %9.1f nT/km %9.1f nT/km \n", Gradient.GradPhi.Z, Gradient.GradLambda.Z, Gradient.GradZ.Z);
printf("H: %7.1f nT/km %9.1f nT/km %9.1f nT/km \n", Gradient.GradPhi.H, Gradient.GradLambda.H, Gradient.GradZ.H);
printf("F: %7.1f nT/km %9.1f nT/km %9.1f nT/km \n", Gradient.GradPhi.F, Gradient.GradLambda.F, Gradient.GradZ.F);
printf("Declination: %7.2f min/km %8.2f min/km %8.2f min/km \n", Gradient.GradPhi.Decl * 60, Gradient.GradLambda.Decl * 60, Gradient.GradZ.Decl * 60);
printf("Inclination: %7.2f min/km %8.2f min/km %8.2f min/km \n", Gradient.GradPhi.Incl * 60, Gradient.GradLambda.Incl * 60, Gradient.GradZ.Incl * 60);
}
void MAG_PrintUserData(MAGtype_GeoMagneticElements GeomagElements, MAGtype_CoordGeodetic SpaceInput, MAGtype_Date TimeInput, MAGtype_MagneticModel *MagneticModel, MAGtype_Geoid *Geoid)
/* This function prints the results in Geomagnetic Elements for a point calculation. It takes the calculated
* Geomagnetic elements "GeomagElements" as input.
* As well as the coordinates, date, and Magnetic Model.
INPUT : GeomagElements : Data structure MAGtype_GeoMagneticElements with the following elements
double Decl; (Angle between the magnetic field vector and true north, positive east)
double Incl; Angle between the magnetic field vector and the horizontal plane, positive down
double F; Magnetic Field Strength
double H; Horizontal Magnetic Field Strength
double X; Northern component of the magnetic field vector
double Y; Eastern component of the magnetic field vector
double Z; Downward component of the magnetic field vector4
double Decldot; Yearly Rate of change in declination
double Incldot; Yearly Rate of change in inclination
double Fdot; Yearly rate of change in Magnetic field strength
double Hdot; Yearly rate of change in horizontal field strength
double Xdot; Yearly rate of change in the northern component
double Ydot; Yearly rate of change in the eastern component
double Zdot; Yearly rate of change in the downward component
double GVdot;Yearly rate of chnage in grid variation
CoordGeodetic Pointer to the data structure with the following elements
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
TimeInput : data structure MAGtype_Date with the following elements
int Year;
int Month;
int Day;
double DecimalYear; decimal years
MagneticModel : data structure with the following elements
double EditionDate;
double epoch; Base time of Geomagnetic model epoch (yrs)
char ModelName[20];
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
int nMax; Maximum degree of spherical harmonic model
int nMaxSecVar; Maxumum degree of spherical harmonic secular model
int SecularVariationUsed; Whether or not the magnetic secular variation vector will be needed by program
OUTPUT : none
*/
{
char DeclString[100];
char InclString[100];
MAG_DegreeToDMSstring(GeomagElements.Incl, 2, InclString);
if(GeomagElements.H < 6000 && GeomagElements.H > 2000)
MAG_Warnings(1, GeomagElements.H, MagneticModel);
if(GeomagElements.H < 2000)
MAG_Warnings(2, GeomagElements.H, MagneticModel);
if(MagneticModel->SecularVariationUsed == TRUE)
{
MAG_DegreeToDMSstring(GeomagElements.Decl, 2, DeclString);
printf("\n Results For \n\n");
if(SpaceInput.phi < 0)
printf("Latitude %.2fS\n", -SpaceInput.phi);
else
printf("Latitude %.2fN\n", SpaceInput.phi);
if(SpaceInput.lambda < 0)
printf("Longitude %.2fW\n", -SpaceInput.lambda);
else
printf("Longitude %.2fE\n", SpaceInput.lambda);
if(Geoid->UseGeoid == 1)
printf("Altitude: %.2f Kilometers above mean sea level\n", SpaceInput.HeightAboveGeoid);
else
printf("Altitude: %.2f Kilometers above the WGS-84 ellipsoid\n", SpaceInput.HeightAboveEllipsoid);
printf("Date: %.1f\n", TimeInput.DecimalYear);
printf("\n Main Field\t\t\tSecular Change\n");
printf("F = %-9.1f nT\t\t Fdot = %.1f\tnT/yr\n", GeomagElements.F, GeomagElements.Fdot);
printf("H = %-9.1f nT\t\t Hdot = %.1f\tnT/yr\n", GeomagElements.H, GeomagElements.Hdot);
printf("X = %-9.1f nT\t\t Xdot = %.1f\tnT/yr\n", GeomagElements.X, GeomagElements.Xdot);
printf("Y = %-9.1f nT\t\t Ydot = %.1f\tnT/yr\n", GeomagElements.Y, GeomagElements.Ydot);
printf("Z = %-9.1f nT\t\t Zdot = %.1f\tnT/yr\n", GeomagElements.Z, GeomagElements.Zdot);
if(GeomagElements.Decl < 0)
printf("Decl =%20s (WEST)\t Ddot = %.1f\tMin/yr\n", DeclString, 60 * GeomagElements.Decldot);
else
printf("Decl =%20s (EAST)\t Ddot = %.1f\tMin/yr\n", DeclString, 60 * GeomagElements.Decldot);
if(GeomagElements.Incl < 0)
printf("Incl =%20s (UP)\t Idot = %.1f\tMin/yr\n", InclString, 60 * GeomagElements.Incldot);
else
printf("Incl =%20s (DOWN)\t Idot = %.1f\tMin/yr\n", InclString, 60 * GeomagElements.Incldot);
} else
{
MAG_DegreeToDMSstring(GeomagElements.Decl, 2, DeclString);
printf("\n Results For \n\n");
if(SpaceInput.phi < 0)
printf("Latitude %.2fS\n", -SpaceInput.phi);
else
printf("Latitude %.2fN\n", SpaceInput.phi);
if(SpaceInput.lambda < 0)
printf("Longitude %.2fW\n", -SpaceInput.lambda);
else
printf("Longitude %.2fE\n", SpaceInput.lambda);
if(Geoid->UseGeoid == 1)
printf("Altitude: %.2f Kilometers above MSL\n", SpaceInput.HeightAboveGeoid);
else
printf("Altitude: %.2f Kilometers above WGS-84 Ellipsoid\n", SpaceInput.HeightAboveEllipsoid);
printf("Date: %.1f\n", TimeInput.DecimalYear);
printf("\n Main Field\n");
printf("F = %-9.1f nT\n", GeomagElements.F);
printf("H = %-9.1f nT\n", GeomagElements.H);
printf("X = %-9.1f nT\n", GeomagElements.X);
printf("Y = %-9.1f nT\n", GeomagElements.Y);
printf("Z = %-9.1f nT\n", GeomagElements.Z);
if(GeomagElements.Decl < 0)
printf("Decl =%20s (WEST)\n", DeclString);
else
printf("Decl =%20s (EAST)\n", DeclString);
if(GeomagElements.Incl < 0)
printf("Incl =%20s (UP)\n", InclString);
else
printf("Incl =%20s (DOWN)\n", InclString);
}
if(SpaceInput.phi <= -55 || SpaceInput.phi >= 55)
/* Print Grid Variation */
{
MAG_DegreeToDMSstring(GeomagElements.GV, 2, InclString);
printf("\n\n Grid variation =%20s\n", InclString);
}
}/*MAG_PrintUserData*/
int MAG_ValidateDMSstring(char *input, int min, int max, char *Error)
/* Validates a latitude DMS string, and returns 1 for a success and returns 0 for a failure.
It copies an error message to the Error string in the event of a failure.
INPUT : input (DMS string)
OUTPUT : Error : Error string
CALLS : none
*/
{
int degree, minute, second, j = 0, n, max_minute = 60, max_second = 60;
int i;
degree = -1000;
minute = -1;
second = -1;
n = (int) strlen(input);
for(i = 0; i <= n - 1; i++) /*tests for legal characters*/
{
if((input[i] < '0' || input[i] > '9') && (input[i] != ',' && input[i] != ' ' && input[i] != '-' && input[i] != '\0' && input[i] != '\n'))
{
strcpy(Error, "\nError: Input contains an illegal character, legal characters for Degree, Minute, Second format are:\n '0-9' ',' '-' '[space]' '[Enter]'\n");
return FALSE;
}
if(input[i] == ',')
j++;
}
if(j == 2)
j = sscanf(input, "%d, %d, %d", °ree, &minute, &second); /*tests for legal formatting and range*/
else
j = sscanf(input, "%d %d %d", °ree, &minute, &second);
if(j == 1)
{
minute = 0;
second = 0;
j = 3;
}
if(j != 3)
{
strcpy(Error, "\nError: Not enough numbers used for Degrees, Minutes, Seconds format\n or they were incorrectly formatted\n The legal format is DD,MM,SS or DD MM SS\n");
return FALSE;
}
if(degree > max || degree < min)
{
sprintf(Error, "\nError: Degree input is outside legal range\n The legal range is from %d to %d\n", min, max);
return FALSE;
}
if(degree == max || degree == min)
max_minute = 0;
if(minute > max_minute || minute < 0)
{
strcpy(Error, "\nError: Minute input is outside legal range\n The legal minute range is from 0 to 60\n");
return FALSE;
}
if(minute == max_minute)
max_second = 0;
if(second > max_second || second < 0)
{
strcpy(Error, "\nError: Second input is outside legal range\n The legal second range is from 0 to 60\n");
return FALSE;
}
return TRUE;
} /*MAG_ValidateDMSstring*/
int MAG_Warnings(int control, double value, MAGtype_MagneticModel *MagneticModel)
/*Return value 0 means end program, Return value 1 means get new data, Return value 2 means continue.
This prints a warning to the screen determined by the control integer. It also takes the value of the parameter causing the warning as a double. This is unnecessary for some warnings.
It requires the MagneticModel to determine the current epoch.
INPUT control :int : (Warning number)
value : double: Magnetic field strength
MagneticModel
OUTPUT : none
CALLS : none
*/
{
char ans[20];
strcpy(ans, "");
switch(control) {
case 1:/* Horizontal Field strength low */
do {
printf("\nCaution: location is approaching the blackout zone around the magnetic pole as\n");
printf(" defined by the WMM military specification \n");
printf(" (https://www.ngdc.noaa.gov/geomag/WMM/data/MIL-PRF-89500B.pdf). Compass\n");
printf(" accuracy may be degraded in this region.\n");
printf("Press enter to continue...\n");
} while(NULL == fgets(ans, 20, stdin));
break;
case 2:/* Horizontal Field strength very low */
do {
printf("\nWarning: location is in the blackout zone around the magnetic pole as defined\n");
printf(" by the WMM military specification \n");
printf(" (https://www.ngdc.noaa.gov/geomag/WMM/data/MIL-PRF-89500B.pdf). Compass\n");
printf(" accuracy is highly degraded in this region.\n");
} while(NULL == fgets(ans, 20, stdin));
break;
case 3:/* Elevation outside the recommended range */
printf("\nWarning: The value you have entered of %.1f km for the elevation is outside of the recommended range.\n Elevations above -10.0 km are recommended for accurate results. \n", value);
while(1)
{
printf("\nPlease press 'C' to continue, 'G' to get new data or 'X' to exit...\n");
while( NULL == fgets(ans, 20, stdin)) {
printf("\nInvalid input\n");
}
switch(ans[0]) {
case 'X':
case 'x':
return 0;
case 'G':
case 'g':
return 1;
case 'C':
case 'c':
return 2;
default:
printf("\nInvalid input %c\n", ans[0]);
break;
}
}
break;
case 4:/*Date outside the recommended range*/
printf("\nWARNING - TIME EXTENDS BEYOND INTENDED USAGE RANGE\n CONTACT NCEI FOR PRODUCT UPDATES:\n");
printf(" National Centers for Environmental Information\n");
printf(" NOAA E/NE42\n");
printf(" 325 Broadway\n");
printf("\n Boulder, CO 80305 USA");
printf(" Attn: Manoj Nair or Arnaud Chulliat\n");
printf(" Phone: (303) 497-4642 or -6522\n");
printf(" Email: geomag.models@noaa.gov\n");
printf(" Web: http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml\n");
printf("\n VALID RANGE = %d - %d\n", (int) MagneticModel->epoch, (int) MagneticModel->CoefficientFileEndDate);
printf(" TIME = %f\n", value);
while(1)
{
printf("\nPlease press 'C' to continue, 'N' to enter new data or 'X' to exit...\n");
while (NULL ==fgets(ans, 20, stdin)){
printf("\nInvalid input\n");
}
switch(ans[0]) {
case 'X':
case 'x':
return 0;
case 'N':
case 'n':
return 1;
case 'C':
case 'c':
return 2;
default:
printf("\nInvalid input %c\n", ans[0]);
break;
}
}
break;
case 5:/*Elevation outside the allowable range*/
printf("\nError: The value you have entered of %f km for the elevation is outside of the recommended range.\n Elevations above -10.0 km are recommended for accurate results. \n", value);
while(1)
{
printf("\nPlease press 'C' to continue, 'G' to get new data or 'X' to exit...\n");
while (NULL ==fgets(ans, 20, stdin)){
printf("\nInvalid input\n");
}
switch(ans[0]) {
case 'X':
case 'x':
return 0;
case 'G':
case 'g':
return 1;
case 'C':
case 'c':
return 2;
default:
printf("\nInvalid input %c\n", ans[0]);
break;
}
}
break;
}
return 2;
} /*MAG_Warnings*/
/*End of User Interface functions*/
/******************************************************************************
********************************Memory and File Processing********************
* This grouping consists of functions that read coefficient files into the
* memory, allocate memory, free memory or print models into coefficient files.
******************************************************************************/
MAGtype_LegendreFunction *MAG_AllocateLegendreFunctionMemory(int NumTerms)
/* Allocate memory for Associated Legendre Function data types.
Should be called before computing Associated Legendre Functions.
INPUT: NumTerms : int : Total number of spherical harmonic coefficients in the model
OUTPUT: Pointer to data structure MAGtype_LegendreFunction with the following elements
double *Pcup; ( pointer to store Legendre Function )
double *dPcup; ( pointer to store Derivative of Legendre function )
FALSE: Failed to allocate memory
CALLS : none
*/
{
MAGtype_LegendreFunction *LegendreFunction;
LegendreFunction = (MAGtype_LegendreFunction *) calloc(1, sizeof (MAGtype_LegendreFunction));
if(!LegendreFunction)
{
MAG_Error(1);
return NULL;
}
LegendreFunction->Pcup = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(LegendreFunction->Pcup == 0)
{
MAG_Error(1);
return NULL;
}
LegendreFunction->dPcup = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(LegendreFunction->dPcup == 0)
{
MAG_Error(1);
return NULL;
}
return LegendreFunction;
} /*MAGtype_LegendreFunction*/
MAGtype_MagneticModel *MAG_AllocateModelMemory(int NumTerms)
/* Allocate memory for WMM Coefficients
* Should be called before reading the model file *
INPUT: NumTerms : int : Total number of spherical harmonic coefficients in the model
OUTPUT: Pointer to data structure MAGtype_MagneticModel with the following elements
double EditionDate;
double epoch; Base time of Geomagnetic model epoch (yrs)
char ModelName[20];
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
int nMax; Maximum degree of spherical harmonic model
int nMaxSecVar; Maxumum degree of spherical harmonic secular model
int SecularVariationUsed; Whether or not the magnetic secular variation vector will be needed by program
FALSE: Failed to allocate memory
CALLS : none
*/
{
MAGtype_MagneticModel *MagneticModel;
int i;
MagneticModel = (MAGtype_MagneticModel *) calloc(1, sizeof (MAGtype_MagneticModel));
if(MagneticModel == NULL)
{
MAG_Error(2);
return NULL;
}
MagneticModel->Main_Field_Coeff_G = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(MagneticModel->Main_Field_Coeff_G == NULL)
{
MAG_Error(2);
return NULL;
}
MagneticModel->Main_Field_Coeff_H = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(MagneticModel->Main_Field_Coeff_H == NULL)
{
MAG_Error(2);
return NULL;
}
MagneticModel->Secular_Var_Coeff_G = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(MagneticModel->Secular_Var_Coeff_G == NULL)
{
MAG_Error(2);
return NULL;
}
MagneticModel->Secular_Var_Coeff_H = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(MagneticModel->Secular_Var_Coeff_H == NULL)
{
MAG_Error(2);
return NULL;
}
MagneticModel->CoefficientFileEndDate = 0;
MagneticModel->EditionDate = 0;
strcpy(MagneticModel->ModelName, "");
MagneticModel->SecularVariationUsed = 0;
MagneticModel->epoch = 0;
MagneticModel->nMax = 0;
MagneticModel->nMaxSecVar = 0;
for(i=0; i<NumTerms; i++) {
MagneticModel->Main_Field_Coeff_G[i] = 0;
MagneticModel->Main_Field_Coeff_H[i] = 0;
MagneticModel->Secular_Var_Coeff_G[i] = 0;
MagneticModel->Secular_Var_Coeff_H[i] = 0;
}
return MagneticModel;
} /*MAG_AllocateModelMemory*/
MAGtype_SphericalHarmonicVariables* MAG_AllocateSphVarMemory(int nMax)
{
MAGtype_SphericalHarmonicVariables* SphVariables;
SphVariables = (MAGtype_SphericalHarmonicVariables*) calloc(1, sizeof(MAGtype_SphericalHarmonicVariables));
SphVariables->RelativeRadiusPower = (double *) malloc((nMax + 1) * sizeof ( double));
SphVariables->cos_mlambda = (double *) malloc((nMax + 1) * sizeof (double));
SphVariables->sin_mlambda = (double *) malloc((nMax + 1) * sizeof (double));
return SphVariables;
} /*MAG_AllocateSphVarMemory*/
void MAG_AssignHeaderValues(MAGtype_MagneticModel *model, char values[][MAXLINELENGTH])
{
/* MAGtype_Date releasedate; */
strcpy(model->ModelName, values[MODELNAME]);
/* releasedate.Year = 0;
releasedate.Day = 0;
releasedate.Month = 0;
releasedate.DecimalYear = 0;
sscanf(values[RELEASEDATE],"%d-%d-%d",&releasedate.Year,&releasedate.Month,&releasedate.Day);
if(MAG_DateToYear (&releasedate, NULL))
model->EditionDate = releasedate.DecimalYear;*/
model->epoch = atof(values[MODELSTARTYEAR]);
model->nMax = atoi(values[INTSTATICDEG]);
model->nMaxSecVar = atoi(values[INTSECVARDEG]);
model->CoefficientFileEndDate = atof(values[MODELENDYEAR]);
if(model->nMaxSecVar > 0)
model->SecularVariationUsed = 1;
else
model->SecularVariationUsed = 0;
}
void MAG_AssignMagneticModelCoeffs(MAGtype_MagneticModel *Assignee, MAGtype_MagneticModel *Source, int nMax, int nMaxSecVar)
/* This function assigns the first nMax degrees of the Source model to the Assignee model, leaving the other coefficients
untouched*/
{
int n, m, index;
assert(nMax <= Source->nMax);
assert(nMax <= Assignee->nMax);
assert(nMaxSecVar <= Source->nMaxSecVar);
assert(nMaxSecVar <= Assignee->nMaxSecVar);
for(n = 1; n <= nMaxSecVar; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
Assignee->Main_Field_Coeff_G[index] = Source->Main_Field_Coeff_G[index];
Assignee->Main_Field_Coeff_H[index] = Source->Main_Field_Coeff_H[index];
Assignee->Secular_Var_Coeff_G[index] = Source->Secular_Var_Coeff_G[index];
Assignee->Secular_Var_Coeff_H[index] = Source->Secular_Var_Coeff_H[index];
}
}
for(n = nMaxSecVar + 1; n <= nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
Assignee->Main_Field_Coeff_G[index] = Source->Main_Field_Coeff_G[index];
Assignee->Main_Field_Coeff_H[index] = Source->Main_Field_Coeff_H[index];
}
}
return;
} /*MAG_AssignMagneticModelCoeffs*/
int MAG_FreeMemory(MAGtype_MagneticModel *MagneticModel, MAGtype_MagneticModel *TimedMagneticModel, MAGtype_LegendreFunction *LegendreFunction)
/* Free memory used by WMM functions. Only to be called at the end of the main function.
INPUT : MagneticModel pointer to data structure with the following elements
double EditionDate;
double epoch; Base time of Geomagnetic model epoch (yrs)
char ModelName[20];
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
int nMax; Maximum degree of spherical harmonic model
int nMaxSecVar; Maxumum degree of spherical harmonic secular model
int SecularVariationUsed; Whether or not the magnetic secular variation vector will be needed by program
TimedMagneticModel Pointer to data structure similar to the first input.
LegendreFunction Pointer to data structure with the following elements
double *Pcup; ( pointer to store Legendre Function )
double *dPcup; ( pointer to store Derivative of Lagendre function )
OUTPUT none
CALLS : none
*/
{
if(MagneticModel->Main_Field_Coeff_G)
{
free(MagneticModel->Main_Field_Coeff_G);
MagneticModel->Main_Field_Coeff_G = NULL;
}
if(MagneticModel->Main_Field_Coeff_H)
{
free(MagneticModel->Main_Field_Coeff_H);
MagneticModel->Main_Field_Coeff_H = NULL;
}
if(MagneticModel->Secular_Var_Coeff_G)
{
free(MagneticModel->Secular_Var_Coeff_G);
MagneticModel->Secular_Var_Coeff_G = NULL;
}
if(MagneticModel->Secular_Var_Coeff_H)
{
free(MagneticModel->Secular_Var_Coeff_H);
MagneticModel->Secular_Var_Coeff_H = NULL;
}
if(MagneticModel)
{
free(MagneticModel);
MagneticModel = NULL;
}
if(TimedMagneticModel->Main_Field_Coeff_G)
{
free(TimedMagneticModel->Main_Field_Coeff_G);
TimedMagneticModel->Main_Field_Coeff_G = NULL;
}
if(TimedMagneticModel->Main_Field_Coeff_H)
{
free(TimedMagneticModel->Main_Field_Coeff_H);
TimedMagneticModel->Main_Field_Coeff_H = NULL;
}
if(TimedMagneticModel->Secular_Var_Coeff_G)
{
free(TimedMagneticModel->Secular_Var_Coeff_G);
TimedMagneticModel->Secular_Var_Coeff_G = NULL;
}
if(TimedMagneticModel->Secular_Var_Coeff_H)
{
free(TimedMagneticModel->Secular_Var_Coeff_H);
TimedMagneticModel->Secular_Var_Coeff_H = NULL;
}
if(TimedMagneticModel)
{
free(TimedMagneticModel);
TimedMagneticModel = NULL;
}
if(LegendreFunction->Pcup)
{
free(LegendreFunction->Pcup);
LegendreFunction->Pcup = NULL;
}
if(LegendreFunction->dPcup)
{
free(LegendreFunction->dPcup);
LegendreFunction->dPcup = NULL;
}
if(LegendreFunction)
{
free(LegendreFunction);
LegendreFunction = NULL;
}
return TRUE;
} /*MAG_FreeMemory */
int MAG_FreeMagneticModelMemory(MAGtype_MagneticModel *MagneticModel)
/* Free the magnetic model memory used by WMM functions.
INPUT : MagneticModel pointer to data structure with the following elements
double EditionDate;
double epoch; Base time of Geomagnetic model epoch (yrs)
char ModelName[20];
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
int nMax; Maximum degree of spherical harmonic model
int nMaxSecVar; Maxumum degree of spherical harmonic secular model
int SecularVariationUsed; Whether or not the magnetic secular variation vector will be needed by program
OUTPUT none
CALLS : none
*/
{
if(MagneticModel->Main_Field_Coeff_G)
{
free(MagneticModel->Main_Field_Coeff_G);
MagneticModel->Main_Field_Coeff_G = NULL;
}
if(MagneticModel->Main_Field_Coeff_H)
{
free(MagneticModel->Main_Field_Coeff_H);
MagneticModel->Main_Field_Coeff_H = NULL;
}
if(MagneticModel->Secular_Var_Coeff_G)
{
free(MagneticModel->Secular_Var_Coeff_G);
MagneticModel->Secular_Var_Coeff_G = NULL;
}
if(MagneticModel->Secular_Var_Coeff_H)
{
free(MagneticModel->Secular_Var_Coeff_H);
MagneticModel->Secular_Var_Coeff_H = NULL;
}
if(MagneticModel)
{
free(MagneticModel);
MagneticModel = NULL;
}
return TRUE;
} /*MAG_FreeMagneticModelMemory */
int MAG_FreeLegendreMemory(MAGtype_LegendreFunction *LegendreFunction)
/* Free the Legendre Coefficients memory used by the WMM functions.
INPUT : LegendreFunction Pointer to data structure with the following elements
double *Pcup; ( pointer to store Legendre Function )
double *dPcup; ( pointer to store Derivative of Lagendre function )
OUTPUT: none
CALLS : none
*/
{
if(LegendreFunction->Pcup)
{
free(LegendreFunction->Pcup);
LegendreFunction->Pcup = NULL;
}
if(LegendreFunction->dPcup)
{
free(LegendreFunction->dPcup);
LegendreFunction->dPcup = NULL;
}
if(LegendreFunction)
{
free(LegendreFunction);
LegendreFunction = NULL;
}
return TRUE;
} /*MAG_FreeLegendreMemory */
int MAG_FreeSphVarMemory(MAGtype_SphericalHarmonicVariables *SphVar)
/* Free the Spherical Harmonic Variable memory used by the WMM functions.
INPUT : LegendreFunction Pointer to data structure with the following elements
double *RelativeRadiusPower
double *cos_mlambda
double *sin_mlambda
OUTPUT: none
CALLS : none
*/
{
if(SphVar->RelativeRadiusPower)
{
free(SphVar->RelativeRadiusPower);
SphVar->RelativeRadiusPower = NULL;
}
if(SphVar->cos_mlambda)
{
free(SphVar->cos_mlambda);
SphVar->cos_mlambda = NULL;
}
if(SphVar->sin_mlambda)
{
free(SphVar->sin_mlambda);
SphVar->sin_mlambda = NULL;
}
if(SphVar)
{
free(SphVar);
SphVar = NULL;
}
return TRUE;
} /*MAG_FreeSphVarMemory*/
void MAG_PrintWMMFormat(char *filename, MAGtype_MagneticModel *MagneticModel)
{
int index, n, m;
FILE *OUT;
MAGtype_Date Date;
char Datestring[11];
Date.DecimalYear = MagneticModel->EditionDate;
MAG_YearToDate(&Date);
sprintf(Datestring, "%d/%d/%d", Date.Month, Date.Day, Date.Year);
OUT = fopen(filename, "w");
fprintf(OUT, " %.1f %s %s\n", MagneticModel->epoch, MagneticModel->ModelName, Datestring);
for(n = 1; n <= MagneticModel->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if(m != 0)
fprintf(OUT, " %2d %2d %9.4f %9.4f %9.4f %9.4f\n", n, m, MagneticModel->Main_Field_Coeff_G[index], MagneticModel->Main_Field_Coeff_H[index], MagneticModel->Secular_Var_Coeff_G[index], MagneticModel->Secular_Var_Coeff_H[index]);
else
fprintf(OUT, " %2d %2d %9.4f %9.4f %9.4f %9.4f\n", n, m, MagneticModel->Main_Field_Coeff_G[index], 0.0, MagneticModel->Secular_Var_Coeff_G[index], 0.0);
}
}
fclose(OUT);
} /*MAG_PrintWMMFormat*/
void MAG_PrintEMMFormat(char *filename, char *filenameSV, MAGtype_MagneticModel *MagneticModel)
{
int index, n, m;
FILE *OUT;
MAGtype_Date Date;
char Datestring[11];
Date.DecimalYear = MagneticModel->EditionDate;
MAG_YearToDate(&Date);
sprintf(Datestring, "%d/%d/%d", Date.Month, Date.Day, Date.Year);
OUT = fopen(filename, "w");
fprintf(OUT, " %.1f %s %s\n", MagneticModel->epoch, MagneticModel->ModelName, Datestring);
for(n = 1; n <= MagneticModel->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if(m != 0)
fprintf(OUT, " %2d %2d %9.4f %9.4f\n", n, m, MagneticModel->Main_Field_Coeff_G[index], MagneticModel->Main_Field_Coeff_H[index]);
else
fprintf(OUT, " %2d %2d %9.4f %9.4f\n", n, m, MagneticModel->Main_Field_Coeff_G[index], 0.0);
}
}
fclose(OUT);
OUT = fopen(filenameSV, "w");
for(n = 1; n <= MagneticModel->nMaxSecVar; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if(m != 0)
fprintf(OUT, " %2d %2d %9.4f %9.4f\n", n, m, MagneticModel->Secular_Var_Coeff_G[index], MagneticModel->Secular_Var_Coeff_H[index]);
else
fprintf(OUT, " %2d %2d %9.4f %9.4f\n", n, m, MagneticModel->Secular_Var_Coeff_G[index], 0.0);
}
}
fclose(OUT);
return;
} /*MAG_PrintEMMFormat*/
void MAG_PrintSHDFFormat(char *filename, MAGtype_MagneticModel *(*MagneticModel)[], int epochs)
{
int i, n, m, index, epochRange;
FILE *SHDF_file;
SHDF_file = fopen(filename, "w");
/*lines = (int)(UFM_DEGREE / 2.0 * (UFM_DEGREE + 3));*/
for(i = 0; i < epochs; i++)
{
if(i < epochs - 1) epochRange = (*MagneticModel)[i+1]->epoch - (*MagneticModel)[i]->epoch;
else epochRange = (*MagneticModel)[i]->epoch - (*MagneticModel)[i-1]->epoch;
fprintf(SHDF_file, "%%SHDF 16695 Definitive Geomagnetic Reference Field Model Coefficient File\n");
fprintf(SHDF_file, "%%ModelName: %s\n", (*MagneticModel)[i]->ModelName);
fprintf(SHDF_file, "%%Publisher: International Association of Geomagnetism and Aeronomy (IAGA), Working Group V-Mod\n");
fprintf(SHDF_file, "%%ReleaseDate: Some Number\n");
fprintf(SHDF_file, "%%DataCutOFF: Some Other Number\n");
fprintf(SHDF_file, "%%ModelStartYear: %d\n", (int)(*MagneticModel)[i]->epoch);
fprintf(SHDF_file, "%%ModelEndYear: %d\n", (int)(*MagneticModel)[i]->epoch+epochRange);
fprintf(SHDF_file, "%%Epoch: %.0f\n", (*MagneticModel)[i]->epoch);
fprintf(SHDF_file, "%%IntStaticDeg: %d\n", (*MagneticModel)[i]->nMax);
fprintf(SHDF_file, "%%IntSecVarDeg: %d\n", (*MagneticModel)[i]->nMaxSecVar);
fprintf(SHDF_file, "%%ExtStaticDeg: 0\n");
fprintf(SHDF_file, "%%ExtSecVarDeg: 0\n");
fprintf(SHDF_file, "%%Normalization: Schmidt semi-normailized\n");
fprintf(SHDF_file, "%%SpatBasFunc: spherical harmonics\n");
fprintf(SHDF_file, "# To synthesize the field for a given date:\n");
fprintf(SHDF_file, "# Use the sub-model of the epoch corresponding to each date\n");
fprintf(SHDF_file, "#\n#\n#\n#\n# I/E, n, m, Gnm, Hnm, SV-Gnm, SV-Hnm\n#\n");
n = 1;
m = 0;
for(n = 1; n <= (*MagneticModel)[i]->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n+1)) / 2 + m;
if(i < epochs - 1)
{
if(m != 0)
fprintf(SHDF_file, "I,%d,%d,%f,%f,%f,%f\n", n, m, (*MagneticModel)[i]->Main_Field_Coeff_G[index], (*MagneticModel)[i]->Main_Field_Coeff_H[index], (*MagneticModel)[i]->Secular_Var_Coeff_G[index], (*MagneticModel)[i]->Secular_Var_Coeff_H[index]);
else
fprintf(SHDF_file, "I,%d,%d,%f,,%f,\n", n, m, (*MagneticModel)[i]->Main_Field_Coeff_G[index], (*MagneticModel)[i]->Secular_Var_Coeff_G[index]);
}
else
{
if(m != 0)
fprintf(SHDF_file, "I,%d,%d,%f,%f,%f,%f\n", n, m, (*MagneticModel)[i]->Main_Field_Coeff_G[index], (*MagneticModel)[i]->Main_Field_Coeff_H[index], (*MagneticModel)[i]->Secular_Var_Coeff_G[index], (*MagneticModel)[i]->Secular_Var_Coeff_H[index]);
else
fprintf(SHDF_file, "I,%d,%d,%f,,%f,\n", n, m, (*MagneticModel)[i]->Main_Field_Coeff_G[index], (*MagneticModel)[i]->Secular_Var_Coeff_G[index]);
}
}
}
}
} /*MAG_PrintSHDFFormat*/
int MAG_readMagneticModel(char *filename, MAGtype_MagneticModel * MagneticModel)
{
/* READ WORLD Magnetic MODEL SPHERICAL HARMONIC COEFFICIENTS (WMM.cof)
INPUT : filename
MagneticModel : Pointer to the data structure with the following fields required as inputs
nMax : Number of static coefficients
UPDATES : MagneticModel : Pointer to the data structure with the following fields populated
char *ModelName;
double epoch; Base time of Geomagnetic model epoch (yrs)
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
CALLS : none
*/
FILE *MAG_COF_File;
char c_str[81], c_new[5]; /*these strings are used to read a line from coefficient file*/
int i, icomp, m, n, EOF_Flag = 0, index;
double epoch, gnm, hnm, dgnm, dhnm;
MAG_COF_File = fopen(filename, "r");
if(MAG_COF_File == NULL)
{
MAG_Error(20);
return FALSE;
/* should we have a standard error printing routine ?*/
}
MagneticModel->Main_Field_Coeff_H[0] = 0.0;
MagneticModel->Main_Field_Coeff_G[0] = 0.0;
MagneticModel->Secular_Var_Coeff_H[0] = 0.0;
MagneticModel->Secular_Var_Coeff_G[0] = 0.0;
fgets(c_str, 80, MAG_COF_File);
sscanf(c_str, "%lf%s", &epoch, MagneticModel->ModelName);
MagneticModel->epoch = epoch;
while(EOF_Flag == 0)
{
if (NULL == fgets(c_str, 80, MAG_COF_File)){
break;
}
/* CHECK FOR LAST LINE IN FILE */
for(i = 0; i < 4 && (c_str[i] != '\0'); i++)
{
c_new[i] = c_str[i];
c_new[i + 1] = '\0';
}
icomp = strcmp("9999", c_new);
if(icomp == 0)
{
EOF_Flag = 1;
break;
}
/* END OF FILE NOT ENCOUNTERED, GET VALUES */
sscanf(c_str, "%d%d%lf%lf%lf%lf", &n, &m, &gnm, &hnm, &dgnm, &dhnm);
if(m <= n)
{
index = (n * (n + 1) / 2 + m);
MagneticModel->Main_Field_Coeff_G[index] = gnm;
MagneticModel->Secular_Var_Coeff_G[index] = dgnm;
MagneticModel->Main_Field_Coeff_H[index] = hnm;
MagneticModel->Secular_Var_Coeff_H[index] = dhnm;
}
}
fclose(MAG_COF_File);
return TRUE;
} /*MAG_readMagneticModel*/
int MAG_readMagneticModel_Large(char *filename, char *filenameSV, MAGtype_MagneticModel *MagneticModel)
/* To read the high-degree model coefficients (for example, NGDC 720)
INPUT : filename file name for static coefficients
filenameSV file name for secular variation coefficients
MagneticModel : Pointer to the data structure with the following fields required as inputs
nMaxSecVar : Number of secular variation coefficients
nMax : Number of static coefficients
UPDATES : MagneticModel : Pointer to the data structure with the following fields populated
double epoch; Base time of Geomagnetic model epoch (yrs)
double *Main_Field_Coeff_G; C - Gauss coefficients of main geomagnetic model (nT)
double *Main_Field_Coeff_H; C - Gauss coefficients of main geomagnetic model (nT)
double *Secular_Var_Coeff_G; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
double *Secular_Var_Coeff_H; CD - Gauss coefficients of secular geomagnetic model (nT/yr)
CALLS : none
*/
{
FILE *MAG_COF_File;
FILE *MAG_COFSV_File;
char c_str[81], c_str2[81]; /* these strings are used to read a line from coefficient file */
int i, m, n, index, a, b;
double epoch, gnm, hnm, dgnm, dhnm;
MAG_COF_File = fopen(filename, "r");
MAG_COFSV_File = fopen(filenameSV, "r");
if(MAG_COF_File == NULL || MAG_COFSV_File == NULL)
{
MAG_Error(20);
return FALSE;
}
MagneticModel->Main_Field_Coeff_H[0] = 0.0;
MagneticModel->Main_Field_Coeff_G[0] = 0.0;
MagneticModel->Secular_Var_Coeff_H[0] = 0.0;
MagneticModel->Secular_Var_Coeff_G[0] = 0.0;
if (NULL == fgets(c_str, 80, MAG_COF_File)){
fclose(MAG_COF_File);
fclose(MAG_COFSV_File);
return FALSE;
}
sscanf(c_str, "%lf%s", &epoch, MagneticModel->ModelName);
MagneticModel->epoch = epoch;
a = CALCULATE_NUMTERMS(MagneticModel->nMaxSecVar);
b = CALCULATE_NUMTERMS(MagneticModel->nMax);
for(i = 0; i < a; i++)
{
if (NULL == fgets(c_str, 80, MAG_COF_File)){
fclose(MAG_COF_File);
fclose(MAG_COFSV_File);
return FALSE;
}
sscanf(c_str, "%d%d%lf%lf", &n, &m, &gnm, &hnm);
if (NULL == fgets(c_str2, 80, MAG_COFSV_File)){
fclose(MAG_COF_File);
fclose(MAG_COFSV_File);
return FALSE;
}
sscanf(c_str2, "%d%d%lf%lf", &n, &m, &dgnm, &dhnm);
if(m <= n)
{
index = (n * (n + 1) / 2 + m);
MagneticModel->Main_Field_Coeff_G[index] = gnm;
MagneticModel->Secular_Var_Coeff_G[index] = dgnm;
MagneticModel->Main_Field_Coeff_H[index] = hnm;
MagneticModel->Secular_Var_Coeff_H[index] = dhnm;
}
}
for(i = a; i < b; i++)
{
if (NULL == fgets(c_str, 80, MAG_COF_File)){
fclose(MAG_COF_File);
fclose(MAG_COFSV_File);
return FALSE;
}
sscanf(c_str, "%d%d%lf%lf", &n, &m, &gnm, &hnm);
if(m <= n)
{
index = (n * (n + 1) / 2 + m);
MagneticModel->Main_Field_Coeff_G[index] = gnm;
MagneticModel->Main_Field_Coeff_H[index] = hnm;
}
}
if(MAG_COF_File != NULL && MAG_COFSV_File != NULL)
{
fclose(MAG_COF_File);
fclose(MAG_COFSV_File);
}
return TRUE;
} /*MAG_readMagneticModel_Large*/
int MAG_readMagneticModel_SHDF(char *filename, MAGtype_MagneticModel *(*magneticmodels)[], int array_size)
/*
* MAG_readMagneticModels - Read the Magnetic Models from an SHDF format file
*
* Input:
* filename - Path to the SHDF format model file to be read
* array_size - Max No of models to be read from the file
*
* Output:
* magneticmodels[] - Array of magnetic models read from the file
*
* Return value:
* Returns the number of models read from the file.
* -2 implies that internal or external static degree was not found in the file, hence memory cannot be allocated
* -1 implies some error during file processing (I/O)
* 0 implies no models were read from the file
* if ReturnValue > array_size then there were too many models in model file but only <array_size> number were read .
* if ReturnValue <= array_size then the function execution was successful.
*/
{
char paramkeys[NOOFPARAMS][MAXLINELENGTH] = {
"SHDF ",
"ModelName: ",
"Publisher: ",
"ReleaseDate: ",
"DataCutOff: ",
"ModelStartYear: ",
"ModelEndYear: ",
"Epoch: ",
"IntStaticDeg: ",
"IntSecVarDeg: ",
"ExtStaticDeg: ",
"ExtSecVarDeg: ",
"GeoMagRefRad: ",
"Normalization: ",
"SpatBasFunc: "
};
char paramvalues[NOOFPARAMS][MAXLINELENGTH];
char *line = (char *) malloc(MAXLINELENGTH);
char *ptrreset;
char paramvalue[MAXLINELENGTH];
int paramvaluelength = 0;
int paramkeylength = 0;
int i = 0, j = 0;
int newrecord = 1;
int header_index = -1;
int numterms;
int tempint;
int allocationflag = 0;
char coefftype; /* Internal or External (I/E) */
/* For reading coefficients */
int n, m;
double gnm, hnm, dgnm, dhnm, cutoff;
int index;
FILE *stream;
ptrreset = line;
stream = fopen(filename, READONLYMODE);
if(stream == NULL)
{
perror("File open error");
return header_index;
}
/* Read records from the model file and store header information. */
while(fgets(line, MAXLINELENGTH, stream) != NULL)
{
j++;
if(strlen(MAG_Trim(line)) == 0)
continue;
if(*line == '%')
{
line++;
if(newrecord)
{
if(header_index > -1)
{
MAG_AssignHeaderValues((*magneticmodels)[header_index], paramvalues);
}
header_index++;
if(header_index >= array_size)
{
fprintf(stderr, "Header limit exceeded - too many models in model file. (%d)\n", header_index);
return array_size + 1;
}
newrecord = 0;
allocationflag = 0;
}
for(i = 0; i < NOOFPARAMS; i++)
{
paramkeylength = strlen(paramkeys[i]);
if(!strncmp(line, paramkeys[i], paramkeylength))
{
paramvaluelength = strlen(line) - paramkeylength;
strncpy(paramvalue, line + paramkeylength, paramvaluelength);
paramvalue[paramvaluelength] = '\0';
strcpy(paramvalues[i], paramvalue);
if(!strcmp(paramkeys[i], paramkeys[INTSTATICDEG]) || !strcmp(paramkeys[i], paramkeys[EXTSTATICDEG]))
{
tempint = atoi(paramvalues[i]);
if(tempint > 0 && allocationflag == 0)
{
numterms = CALCULATE_NUMTERMS(tempint);
(*magneticmodels)[header_index] = MAG_AllocateModelMemory(numterms);
/* model = (*magneticmodels)[header_index]; */
allocationflag = 1;
}
}
break;
}
}
line--;
} else if(*line == '#')
{
/* process comments */
} else if(sscanf(line, "%c,%d,%d", &coefftype, &n, &m) == 3)
{
if(m == 0)
{
sscanf(line, "%c,%d,%d,%lf,,%lf,", &coefftype, &n, &m, &gnm, &dgnm);
hnm = 0;
dhnm = 0;
} else
sscanf(line, "%c,%d,%d,%lf,%lf,%lf,%lf", &coefftype, &n, &m, &gnm, &hnm, &dgnm, &dhnm);
newrecord = 1;
if(!allocationflag)
{
fprintf(stderr, "Degree not found in model. Memory cannot be allocated.\n");
return _DEGREE_NOT_FOUND;
}
if(m <= n)
{
index = (n * (n + 1) / 2 + m);
(*magneticmodels)[header_index]->Main_Field_Coeff_G[index] = gnm;
(*magneticmodels)[header_index]->Secular_Var_Coeff_G[index] = dgnm;
(*magneticmodels)[header_index]->Main_Field_Coeff_H[index] = hnm;
(*magneticmodels)[header_index]->Secular_Var_Coeff_H[index] = dhnm;
}
}
}
if(header_index > -1)
MAG_AssignHeaderValues((*magneticmodels)[header_index], paramvalues);
fclose(stream);
cutoff = (*magneticmodels)[array_size - 1]->CoefficientFileEndDate;
for(i = 0; i < array_size; i++) (*magneticmodels)[i]->CoefficientFileEndDate = cutoff;
free(ptrreset);
line = NULL;
ptrreset = NULL;
return header_index + 1;
}/*MAG_readMagneticModel_SHDF*/
char *MAG_Trim(char *str)
{
char *end;
while(isspace(*str))
str++;
if(*str == 0)
return str;
end = str + strlen(str) - 1;
while(end > str && isspace(*end))
end--;
*(end + 1) = 0;
return str;
}
/*End of Memory and File Processing functions*/
/******************************************************************************
*************Conversions, Transformations, and other Calculations**************
* This grouping consists of functions that perform unit conversions, coordinate
* transformations and other simple or straightforward calculations that are
* usually easily replicable with a typical scientific calculator.
******************************************************************************/
void MAG_BaseErrors(double DeclCoef, double DeclBaseline, double InclOffset, double FOffset, double Multiplier, double H, double* DeclErr, double* InclErr, double* FErr)
{
double declHorizontalAdjustmentSq;
declHorizontalAdjustmentSq = (DeclCoef/H) * (DeclCoef/H);
*DeclErr = sqrt(declHorizontalAdjustmentSq + DeclBaseline*DeclBaseline) * Multiplier;
*InclErr = InclOffset*Multiplier;
*FErr = FOffset*Multiplier;
}
int MAG_CalculateGeoMagneticElements(MAGtype_MagneticResults *MagneticResultsGeo, MAGtype_GeoMagneticElements *GeoMagneticElements)
/* Calculate all the Geomagnetic elements from X,Y and Z components
INPUT MagneticResultsGeo Pointer to data structure with the following elements
double Bx; ( North )
double By; ( East )
double Bz; ( Down )
OUTPUT GeoMagneticElements Pointer to data structure with the following elements
double Decl; (Angle between the magnetic field vector and true north, positive east)
double Incl; Angle between the magnetic field vector and the horizontal plane, positive down
double F; Magnetic Field Strength
double H; Horizontal Magnetic Field Strength
double X; Northern component of the magnetic field vector
double Y; Eastern component of the magnetic field vector
double Z; Downward component of the magnetic field vector
CALLS : none
*/
{
GeoMagneticElements->X = MagneticResultsGeo->Bx;
GeoMagneticElements->Y = MagneticResultsGeo->By;
GeoMagneticElements->Z = MagneticResultsGeo->Bz;
GeoMagneticElements->H = sqrt(MagneticResultsGeo->Bx * MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By);
GeoMagneticElements->F = sqrt(GeoMagneticElements->H * GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz);
GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X));
GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H));
return TRUE;
} /*MAG_CalculateGeoMagneticElements */
int MAG_CalculateGridVariation(MAGtype_CoordGeodetic location, MAGtype_GeoMagneticElements *elements)
/*Computes the grid variation for |latitudes| > MAG_MAX_LAT_DEGREE
Grivation (or grid variation) is the angle between grid north and
magnetic north. This routine calculates Grivation for the Polar Stereographic
projection for polar locations (Latitude => |55| deg). Otherwise, it computes the grid
variation in UTM projection system. However, the UTM projection codes may be used to compute
the grid variation at any latitudes.
INPUT location Data structure with the following elements
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
OUTPUT elements Data structure with the following elements updated
double GV; ( The Grid Variation )
CALLS : MAG_GetTransverseMercator
*/
{
MAGtype_UTMParameters UTMParameters;
if(location.phi >= MAG_PS_MAX_LAT_DEGREE)
{
elements->GV = elements->Decl - location.lambda;
return 1;
} else if(location.phi <= MAG_PS_MIN_LAT_DEGREE)
{
elements->GV = elements->Decl + location.lambda;
return 1;
} else
{
MAG_GetTransverseMercator(location, &UTMParameters);
elements->GV = elements->Decl - UTMParameters.ConvergenceOfMeridians;
}
return 0;
} /*MAG_CalculateGridVariation*/
void MAG_CalculateGradientElements(MAGtype_MagneticResults GradResults, MAGtype_GeoMagneticElements MagneticElements, MAGtype_GeoMagneticElements *GradElements)
{
GradElements->X = GradResults.Bx;
GradElements->Y = GradResults.By;
GradElements->Z = GradResults.Bz;
GradElements->H = (GradElements->X * MagneticElements.X + GradElements->Y * MagneticElements.Y) / MagneticElements.H;
GradElements->F = (GradElements->X * MagneticElements.X + GradElements->Y * MagneticElements.Y + GradElements->Z * MagneticElements.Z) / MagneticElements.F;
GradElements->Decl = 180.0 / M_PI * (MagneticElements.X * GradElements->Y - MagneticElements.Y * GradElements->X) / (MagneticElements.H * MagneticElements.H);
GradElements->Incl = 180.0 / M_PI * (MagneticElements.H * GradElements->Z - MagneticElements.Z * GradElements->H) / (MagneticElements.F * MagneticElements.F);
GradElements->GV = GradElements->Decl;
}
int MAG_CalculateSecularVariationElements(MAGtype_MagneticResults MagneticVariation, MAGtype_GeoMagneticElements *MagneticElements)
/*This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
INPUT MagneticVariation Data structure with the following elements
double Bx; ( North )
double By; ( East )
double Bz; ( Down )
OUTPUT MagneticElements Pointer to the data structure with the following elements updated
double Decldot; Yearly Rate of change in declination
double Incldot; Yearly Rate of change in inclination
double Fdot; Yearly rate of change in Magnetic field strength
double Hdot; Yearly rate of change in horizontal field strength
double Xdot; Yearly rate of change in the northern component
double Ydot; Yearly rate of change in the eastern component
double Zdot; Yearly rate of change in the downward component
double GVdot;Yearly rate of chnage in grid variation
CALLS : none
*/
{
MagneticElements->Xdot = MagneticVariation.Bx;
MagneticElements->Ydot = MagneticVariation.By;
MagneticElements->Zdot = MagneticVariation.Bz;
MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; /* See equation 19 in the WMM technical report */
MagneticElements->Fdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F;
MagneticElements->Decldot = 180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot - MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H);
MagneticElements->Incldot = 180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot - MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F);
MagneticElements->GVdot = MagneticElements->Decldot;
return TRUE;
} /*MAG_CalculateSecularVariationElements*/
void MAG_CartesianToGeodetic(MAGtype_Ellipsoid Ellip, double x, double y, double z, MAGtype_CoordGeodetic *CoordGeodetic)
{
/*This converts the Cartesian x, y, and z coordinates to Geodetic Coordinates
x is defined as the direction pointing out of the core toward the point defined
* by 0 degrees latitude and longitude.
y is defined as the direction from the core toward 90 degrees east longitude along
* the equator
z is defined as the direction from the core out the geographic north pole*/
double modified_b,r,e,f,p,q,d,v,g,t,zlong,rlat;
/*
* 1.0 compute semi-minor axis and set sign to that of z in order
* to get sign of Phi correct
*/
if (z < 0.0) modified_b = -Ellip.b;
else modified_b = Ellip.b;
/*
* 2.0 compute intermediate values for latitude
*/
r= sqrt( x*x + y*y );
e= ( modified_b*z - (Ellip.a*Ellip.a - modified_b*modified_b) ) / ( Ellip.a*r );
f= ( modified_b*z + (Ellip.a*Ellip.a - modified_b*modified_b) ) / ( Ellip.a*r );
/*
* 3.0 find solution to:
* t^4 + 2*E*t^3 + 2*F*t - 1 = 0
*/
p= (4.0 / 3.0) * (e*f + 1.0);
q= 2.0 * (e*e - f*f);
d= p*p*p + q*q;
if( d >= 0.0 )
{
v= pow( (sqrt( d ) - q), (1.0 / 3.0) )
- pow( (sqrt( d ) + q), (1.0 / 3.0) );
}
else
{
v= 2.0 * sqrt( -p )
* cos( acos( q/(p * sqrt( -p )) ) / 3.0 );
}
/*
* 4.0 improve v
* NOTE: not really necessary unless point is near pole
*/
if( v*v < fabs(p) ) {
v= -(v*v*v + 2.0*q) / (3.0*p);
}
g = (sqrt( e*e + v ) + e) / 2.0;
t = sqrt( g*g + (f - v*g)/(2.0*g - e) ) - g;
rlat =atan( (Ellip.a*(1.0 - t*t)) / (2.0*modified_b*t) );
CoordGeodetic->phi = RAD2DEG(rlat);
/*
* 5.0 compute height above ellipsoid
*/
CoordGeodetic->HeightAboveEllipsoid = (r - Ellip.a*t) * cos(rlat) + (z - modified_b) * sin(rlat);
/*
* 6.0 compute longitude east of Greenwich
*/
zlong = atan2( y, x );
if( zlong < 0.0 )
zlong= zlong + 2*M_PI;
CoordGeodetic->lambda = RAD2DEG(zlong);
while(CoordGeodetic->lambda > 180)
{
CoordGeodetic->lambda-=360;
}
}
MAGtype_CoordGeodetic MAG_CoordGeodeticAssign(MAGtype_CoordGeodetic CoordGeodetic)
{
MAGtype_CoordGeodetic Assignee;
Assignee.phi = CoordGeodetic.phi;
Assignee.lambda = CoordGeodetic.lambda;
Assignee.HeightAboveEllipsoid = CoordGeodetic.HeightAboveEllipsoid;
Assignee.HeightAboveGeoid = CoordGeodetic.HeightAboveGeoid;
Assignee.UseGeoid = CoordGeodetic.UseGeoid;
return Assignee;
}
int MAG_DateToYear(MAGtype_Date *CalendarDate, char *Error)
/* Converts a given calendar date into a decimal year,
it also outputs an error string if there is a problem
INPUT CalendarDate Pointer to the data structure with the following elements
int Year;
int Month;
int Day;
double DecimalYear; decimal years
OUTPUT CalendarDate Pointer to the data structure with the following elements updated
double DecimalYear; decimal years
Error pointer to an error string
CALLS : none
*/
{
int temp = 0; /*Total number of days */
int MonthDays[13];
int ExtraDay = 0;
int i;
if(CalendarDate->Month == 0)
{
CalendarDate->DecimalYear = CalendarDate->Year;
return TRUE;
}
if((CalendarDate->Year % 4 == 0 && CalendarDate->Year % 100 != 0) || CalendarDate->Year % 400 == 0)
ExtraDay = 1;
MonthDays[0] = 0;
MonthDays[1] = 31;
MonthDays[2] = 28 + ExtraDay;
MonthDays[3] = 31;
MonthDays[4] = 30;
MonthDays[5] = 31;
MonthDays[6] = 30;
MonthDays[7] = 31;
MonthDays[8] = 31;
MonthDays[9] = 30;
MonthDays[10] = 31;
MonthDays[11] = 30;
MonthDays[12] = 31;
/******************Validation********************************/
if(CalendarDate->Month <= 0 || CalendarDate->Month > 12)
{
strcpy(Error, "\nError: The Month entered is invalid, valid months are '1 to 12'\n");
return 0;
}
if(CalendarDate->Day <= 0 || CalendarDate->Day > MonthDays[CalendarDate->Month])
{
printf("\nThe number of days in month %d is %d\n", CalendarDate->Month, MonthDays[CalendarDate->Month]);
strcpy(Error, "\nError: The day entered is invalid\n");
return 0;
}
/****************Calculation of t***************************/
for(i = 1; i <= CalendarDate->Month; i++)
temp += MonthDays[i - 1];
temp += CalendarDate->Day;
CalendarDate->DecimalYear = CalendarDate->Year + (temp - 1) / (365.0 + ExtraDay);
return TRUE;
} /*MAG_DateToYear*/
void MAG_DegreeToDMSstring(double DegreesOfArc, int UnitDepth, char *DMSstring)
/*This converts a given decimal degree into a DMS string.
INPUT DegreesOfArc decimal degree
UnitDepth How many iterations should be printed,
1 = Degrees
2 = Degrees, Minutes
3 = Degrees, Minutes, Seconds
OUPUT DMSstring pointer to DMSString. Must be at least 30 characters.
CALLS : none
*/
{
int DMS[3], i;
double temp = DegreesOfArc;
char tempstring[36] = "";
char tempstring2[32] = "";
strcpy(DMSstring, "");
if(UnitDepth > 3)
MAG_Error(21);
for(i = 0; i < UnitDepth; i++)
{
DMS[i] = (int) temp;
switch(i) {
case 0:
strcpy(tempstring2, "Deg");
break;
case 1:
strcpy(tempstring2, "Min");
break;
case 2:
strcpy(tempstring2, "Sec");
break;
}
temp = (temp - DMS[i])*60;
if(i == UnitDepth - 1 && temp >= 30)
DMS[i]++;
else if(i == UnitDepth - 1 && temp <= -30)
DMS[i]--;
sprintf(tempstring, "%4d%4s", DMS[i], tempstring2);
strcat(DMSstring, tempstring);
}
} /*MAG_DegreeToDMSstring*/
void MAG_DMSstringToDegree(char *DMSstring, double *DegreesOfArc)
/*This converts a given DMS string into decimal degrees.
INPUT DMSstring pointer to DMSString
OUTPUT DegreesOfArc decimal degree
CALLS : none
*/
{
int second, minute, degree, sign = 1, j = 0;
j = sscanf(DMSstring, "%d, %d, %d", °ree, &minute, &second);
if(j != 3)
sscanf(DMSstring, "%d %d %d", °ree, &minute, &second);
if(degree < 0)
sign = -1;
degree = degree * sign;
*DegreesOfArc = sign * (degree + minute / 60.0 + second / 3600.0);
} /*MAG_DMSstringToDegree*/
void MAG_ErrorCalc(MAGtype_GeoMagneticElements B, MAGtype_GeoMagneticElements* Errors)
{
/*Errors.Decl, Errors.Incl, Errors.F are all assumed to exist*/
double cos2D, cos2I, sin2D, sin2I, EDSq, EISq, eD, eI;
cos2D = cos(DEG2RAD(B.Decl))*cos(DEG2RAD(B.Decl));
cos2I = cos(DEG2RAD(B.Incl))*cos(DEG2RAD(B.Incl));
sin2D = sin(DEG2RAD(B.Decl))*sin(DEG2RAD(B.Decl));
sin2I = sin(DEG2RAD(B.Incl))*sin(DEG2RAD(B.Incl));
eD = DEG2RAD(Errors->Decl);
eI = DEG2RAD(Errors->Incl);
EDSq = eD*eD;
EISq = eI*eI;
Errors->X = sqrt(cos2D*cos2I*Errors->F*Errors->F+B.F*B.F*sin2D*cos2I*EDSq+B.F*B.F*cos2D*sin2I*EISq);
Errors->Y = sqrt(sin2D*cos2I*Errors->F*Errors->F+B.F*B.F*cos2D*cos2I*EDSq+B.F*B.F*sin2D*sin2I*EISq);
Errors->Z = sqrt(sin2I*Errors->F*Errors->F+B.F*B.F*cos2I*EISq);
Errors->H = sqrt(cos2I*Errors->F*Errors->F+B.F*B.F*sin2I*EISq);
}
int MAG_GeodeticToSpherical(MAGtype_Ellipsoid Ellip, MAGtype_CoordGeodetic CoordGeodetic, MAGtype_CoordSpherical *CoordSpherical)
/* Converts Geodetic coordinates to Spherical coordinates
INPUT Ellip data structure with the following elements
double a; semi-major axis of the ellipsoid
double b; semi-minor axis of the ellipsoid
double fla; flattening
double epssq; first eccentricity squared
double eps; first eccentricity
double re; mean radius of ellipsoid
CoordGeodetic Pointer to the data structure with the following elements updates
double lambda; ( longitude )
double phi; ( geodetic latitude )
double HeightAboveEllipsoid; ( height above the WGS84 ellipsoid (HaE) )
double HeightAboveGeoid; (height above the EGM96 Geoid model )
OUTPUT CoordSpherical Pointer to the data structure with the following elements
double lambda; ( longitude)
double phig; ( geocentric latitude )
double r; ( distance from the center of the ellipsoid)
CALLS : none
*/
{
double CosLat, SinLat, rc, xp, zp; /*all local variables */
/*
** Convert geodetic coordinates, (defined by the WGS-84
** reference ellipsoid), to Earth Centered Earth Fixed Cartesian
** coordinates, and then to spherical coordinates.
*/
CosLat = cos(DEG2RAD(CoordGeodetic.phi));
SinLat = sin(DEG2RAD(CoordGeodetic.phi));
/* compute the local radius of curvature on the WGS-84 reference ellipsoid */
rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat);
/* compute ECEF Cartesian coordinates of specified point (for longitude=0) */
xp = (rc + CoordGeodetic.HeightAboveEllipsoid) * CosLat;
zp = (rc * (1.0 - Ellip.epssq) + CoordGeodetic.HeightAboveEllipsoid) * SinLat;
/* compute spherical radius and angle lambda and phi of specified point */
CoordSpherical->r = sqrt(xp * xp + zp * zp);
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); /* geocentric latitude */
CoordSpherical->lambda = CoordGeodetic.lambda; /* longitude */
return TRUE;
}/*MAG_GeodeticToSpherical*/
MAGtype_GeoMagneticElements MAG_GeoMagneticElementsAssign(MAGtype_GeoMagneticElements Elements)
{
MAGtype_GeoMagneticElements Assignee;
Assignee.X = Elements.X;
Assignee.Y = Elements.Y;
Assignee.Z = Elements.Z;
Assignee.H = Elements.H;
Assignee.F = Elements.F;
Assignee.Decl = Elements.Decl;
Assignee.Incl = Elements.Incl;
Assignee.GV = Elements.GV;
Assignee.Xdot = Elements.Xdot;
Assignee.Ydot = Elements.Ydot;
Assignee.Zdot = Elements.Zdot;
Assignee.Hdot = Elements.Hdot;
Assignee.Fdot = Elements.Fdot;
Assignee.Decldot = Elements.Decldot;
Assignee.Incldot = Elements.Incldot;
Assignee.GVdot = Elements.GVdot;
return Assignee;
}
MAGtype_GeoMagneticElements MAG_GeoMagneticElementsScale(MAGtype_GeoMagneticElements Elements, double factor)
{
/*This function scales all the geomagnetic elements to scale a vector use
MAG_MagneticResultsScale*/
MAGtype_GeoMagneticElements product;
product.X = Elements.X * factor;
product.Y = Elements.Y * factor;
product.Z = Elements.Z * factor;
product.H = Elements.H * factor;
product.F = Elements.F * factor;
product.Incl = Elements.Incl * factor;
product.Decl = Elements.Decl * factor;
product.GV = Elements.GV * factor;
product.Xdot = Elements.Xdot * factor;
product.Ydot = Elements.Ydot * factor;
product.Zdot = Elements.Zdot * factor;
product.Hdot = Elements.Hdot * factor;
product.Fdot = Elements.Fdot * factor;
product.Incldot = Elements.Incldot * factor;
product.Decldot = Elements.Decldot * factor;
product.GVdot = Elements.GVdot * factor;
return product;
}
MAGtype_GeoMagneticElements MAG_GeoMagneticElementsSubtract(MAGtype_GeoMagneticElements minuend, MAGtype_GeoMagneticElements subtrahend)
{
/*This algorithm does not result in the difference of F being derived from
the Pythagorean theorem. This function should be used for computing residuals
or changes in elements.*/
MAGtype_GeoMagneticElements difference;
difference.X = minuend.X - subtrahend.X;
difference.Y = minuend.Y - subtrahend.Y;
difference.Z = minuend.Z - subtrahend.Z;
difference.H = minuend.H - subtrahend.H;
difference.F = minuend.F - subtrahend.F;
difference.Decl = minuend.Decl - subtrahend.Decl;
difference.Incl = minuend.Incl - subtrahend.Incl;
difference.Xdot = minuend.Xdot - subtrahend.Xdot;
difference.Ydot = minuend.Ydot - subtrahend.Ydot;
difference.Zdot = minuend.Zdot - subtrahend.Zdot;
difference.Hdot = minuend.Hdot - subtrahend.Hdot;
difference.Fdot = minuend.Fdot - subtrahend.Fdot;
difference.Decldot = minuend.Decldot - subtrahend.Decldot;
difference.Incldot = minuend.Incldot - subtrahend.Incldot;
difference.GV = minuend.GV - subtrahend.GV;
difference.GVdot = minuend.GVdot - subtrahend.GVdot;
return difference;
}
int MAG_GetTransverseMercator(MAGtype_CoordGeodetic CoordGeodetic, MAGtype_UTMParameters *UTMParameters)
/* Gets the UTM Parameters for a given Latitude and Longitude.
INPUT: CoordGeodetic : Data structure MAGtype_CoordGeodetic.
OUTPUT : UTMParameters : Pointer to data structure MAGtype_UTMParameters with the following elements
double Easting; (X) in meters
double Northing; (Y) in meters
int Zone; UTM Zone
char HemiSphere ;
double CentralMeridian; Longitude of the Central Meridian of the UTM Zone
double ConvergenceOfMeridians; Convergence of Meridians
double PointScale;
*/
{
double Eps, Epssq;
double Acoeff[8];
double Lam0, K0, falseE, falseN;
double K0R4, K0R4oa;
double Lambda, Phi;
int XYonly;
double X, Y, pscale, CoM;
int Zone;
char Hemisphere;
/* Get the map projection parameters */
Lambda = DEG2RAD(CoordGeodetic.lambda);
Phi = DEG2RAD(CoordGeodetic.phi);
MAG_GetUTMParameters(Phi, Lambda, &Zone, &Hemisphere, &Lam0);
K0 = 0.9996;
if(Hemisphere == 'n' || Hemisphere == 'N')
{
falseN = 0;
}
if(Hemisphere == 's' || Hemisphere == 'S')
{
falseN = 10000000;
}
falseE = 500000;
/* WGS84 ellipsoid */
Eps = 0.081819190842621494335;
Epssq = 0.0066943799901413169961;
K0R4 = 6367449.1458234153093*K0;
K0R4oa = K0R4/6378137;
Acoeff[0] = 8.37731820624469723600E-04;
Acoeff[1] = 7.60852777357248641400E-07;
Acoeff[2] = 1.19764550324249124400E-09;
Acoeff[3] = 2.42917068039708917100E-12;
Acoeff[4] = 5.71181837042801392800E-15;
Acoeff[5] = 1.47999793137966169400E-17;
Acoeff[6] = 4.10762410937071532000E-20;
Acoeff[7] = 1.21078503892257704200E-22;
/* WGS84 ellipsoid */
/* Execution of the forward T.M. algorithm */
XYonly = 0;
MAG_TMfwd4(Eps, Epssq, K0R4, K0R4oa, Acoeff,
Lam0, K0, falseE, falseN,
XYonly,
Lambda, Phi,
&X, &Y, &pscale, &CoM);
/* Report results */
UTMParameters->Easting = X; /* UTM Easting (X) in meters*/
UTMParameters->Northing = Y; /* UTM Northing (Y) in meters */
UTMParameters->Zone = Zone; /*UTM Zone*/
UTMParameters->HemiSphere = Hemisphere;
UTMParameters->CentralMeridian = RAD2DEG(Lam0); /* Central Meridian of the UTM Zone */
UTMParameters->ConvergenceOfMeridians = RAD2DEG(CoM); /* Convergence of meridians of the UTM Zone and location */
UTMParameters->PointScale = pscale;
return 0;
} /*MAG_GetTransverseMercator*/
int MAG_GetUTMParameters(double Latitude,
double Longitude,
int *Zone,
char *Hemisphere,
double *CentralMeridian)
{
/*
* The function MAG_GetUTMParameters converts geodetic (latitude and
* longitude) coordinates to UTM projection parameters (zone, hemisphere and central meridian)
* If any errors occur, the error code(s) are returned
* by the function, otherwise TRUE is returned.
*
* Latitude : Latitude in radians (input)
* Longitude : Longitude in radians (input)
* Zone : UTM zone (output)
* Hemisphere : North or South hemisphere (output)
* CentralMeridian : Central Meridian of the UTM Zone in radians (output)
*/
long Lat_Degrees;
long Long_Degrees;
long temp_zone;
int Error_Code = 0;
if((Latitude < DEG2RAD(MAG_UTM_MIN_LAT_DEGREE)) || (Latitude > DEG2RAD(MAG_UTM_MAX_LAT_DEGREE)))
{ /* Latitude out of range */
MAG_Error(23);
Error_Code = 1;
}
if((Longitude < -M_PI) || (Longitude > (2 * M_PI)))
{ /* Longitude out of range */
MAG_Error(24);
Error_Code = 1;
}
if(!Error_Code)
{ /* no errors */
if(Longitude < 0)
Longitude += (2 * M_PI) + 1.0e-10;
Lat_Degrees = (long) (Latitude * 180.0 / M_PI);
Long_Degrees = (long) (Longitude * 180.0 / M_PI);
if(Longitude < M_PI)
temp_zone = (long) (31 + ((Longitude * 180.0 / M_PI) / 6.0));
else
temp_zone = (long) (((Longitude * 180.0 / M_PI) / 6.0) - 29);
if(temp_zone > 60)
temp_zone = 1;
/* UTM special cases */
if((Lat_Degrees > 55) && (Lat_Degrees < 64) && (Long_Degrees > -1)
&& (Long_Degrees < 3))
temp_zone = 31;
if((Lat_Degrees > 55) && (Lat_Degrees < 64) && (Long_Degrees > 2)
&& (Long_Degrees < 12))
temp_zone = 32;
if((Lat_Degrees > 71) && (Long_Degrees > -1) && (Long_Degrees < 9))
temp_zone = 31;
if((Lat_Degrees > 71) && (Long_Degrees > 8) && (Long_Degrees < 21))
temp_zone = 33;
if((Lat_Degrees > 71) && (Long_Degrees > 20) && (Long_Degrees < 33))
temp_zone = 35;
if((Lat_Degrees > 71) && (Long_Degrees > 32) && (Long_Degrees < 42))
temp_zone = 37;
if(!Error_Code)
{
if(temp_zone >= 31)
*CentralMeridian = (6 * temp_zone - 183) * M_PI / 180.0;
else
*CentralMeridian = (6 * temp_zone + 177) * M_PI / 180.0;
*Zone = temp_zone;
if(Latitude < 0) *Hemisphere = 'S';
else *Hemisphere = 'N';
}
} /* END OF if (!Error_Code) */
return (Error_Code);
} /* MAG_GetUTMParameters */
int MAG_isNaN(double d)
{
return d != d;
}
int MAG_RotateMagneticVector(MAGtype_CoordSpherical CoordSpherical, MAGtype_CoordGeodetic CoordGeodetic, MAGtype_MagneticResults MagneticResultsSph, MAGtype_MagneticResults *MagneticResultsGeo)
/* Rotate the Magnetic Vectors to Geodetic Coordinates
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
Equation 16, WMM Technical report
INPUT : CoordSpherical : Data structure MAGtype_CoordSpherical with the following elements
double lambda; ( longitude)
double phig; ( geocentric latitude )
double r; ( distance from the center of the ellipsoid)
CoordGeodetic : Data structure MAGtype_CoordGeodetic with the following elements
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
MagneticResultsSph : Data structure MAGtype_MagneticResults with the following elements
double Bx; North
double By; East
double Bz; Down
OUTPUT: MagneticResultsGeo Pointer to the data structure MAGtype_MagneticResults, with the following elements
double Bx; North
double By; East
double Bz; Down
CALLS : none
*/
{
double Psi;
/* Difference between the spherical and Geodetic latitudes */
Psi = (M_PI / 180) * (CoordSpherical.phig - CoordGeodetic.phi);
/* Rotate spherical field components to the Geodetic system */
MagneticResultsGeo->Bz = MagneticResultsSph.Bx * sin(Psi) + MagneticResultsSph.Bz * cos(Psi);
MagneticResultsGeo->Bx = MagneticResultsSph.Bx * cos(Psi) - MagneticResultsSph.Bz * sin(Psi);
MagneticResultsGeo->By = MagneticResultsSph.By;
return TRUE;
} /*MAG_RotateMagneticVector*/
void MAG_SphericalToCartesian(MAGtype_CoordSpherical CoordSpherical, double *x, double *y, double *z)
{
double radphi;
double radlambda;
radphi = CoordSpherical.phig * (M_PI / 180);
radlambda = CoordSpherical.lambda * (M_PI / 180);
*x = CoordSpherical.r * cos(radphi) * cos(radlambda);
*y = CoordSpherical.r * cos(radphi) * sin(radlambda);
*z = CoordSpherical.r * sin(radphi);
return;
}
void MAG_SphericalToGeodetic(MAGtype_Ellipsoid Ellip, MAGtype_CoordSpherical CoordSpherical, MAGtype_CoordGeodetic *CoordGeodetic)
{
/*This converts spherical coordinates back to geodetic coordinates. It is not used in the WMM but
may be necessary for some applications, such as geomagnetic coordinates*/
double x,y,z;
MAG_SphericalToCartesian(CoordSpherical, &x,&y,&z);
MAG_CartesianToGeodetic(Ellip, x,y,z,CoordGeodetic);
}
void MAG_TMfwd4(double Eps, double Epssq, double K0R4, double K0R4oa,
double Acoeff[], double Lam0, double K0, double falseE,
double falseN, int XYonly, double Lambda, double Phi,
double *X, double *Y, double *pscale, double *CoM)
{
/* Transverse Mercator forward equations including point-scale and CoM
=--------- =------- =--=--= ---------
Algorithm developed by: C. Rollins August 7, 2006
C software written by: K. Robins
Constants fixed by choice of ellipsoid and choice of projection parameters
---------------
Eps Eccentricity (epsilon) of the ellipsoid
Epssq Eccentricity squared
( R4 Meridional isoperimetric radius )
( K0 Central scale factor )
K0R4 K0 times R4
K0R4oa K0 times Ratio of R4 over semi-major axis
Acoeff Trig series coefficients, omega as a function of chi
Lam0 Longitude of the central meridian in radians
K0 Central scale factor, for example, 0.9996 for UTM
falseE False easting, for example, 500000 for UTM
falseN False northing
Processing option
---------- ------
XYonly If one (1), then only X and Y will be properly
computed. Values returned for point-scale
and CoM will merely be the trivial values for
points on the central meridian
Input items that identify the point to be converted
----- -----
Lambda Longitude (from Greenwich) in radians
Phi Latitude in radians
Output items
------ -----
X X coordinate (Easting) in meters
Y Y coordinate (Northing) in meters
pscale point-scale (dimensionless)
CoM Convergence-of-meridians in radians
*/
double Lam, CLam, SLam, CPhi, SPhi;
double P, part1, part2, denom, CChi, SChi;
double U, V;
double T, Tsq, denom2;
double c2u, s2u, c4u, s4u, c6u, s6u, c8u, s8u;
double c2v, s2v, c4v, s4v, c6v, s6v, c8v, s8v;
double Xstar, Ystar;
double sig1, sig2, comroo;
/*
Ellipsoid to sphere
--------- -- ------
Convert longitude (Greenwhich) to longitude from the central meridian
It is unnecessary to find the (-Pi, Pi] equivalent of the result.
Compute its cosine and sine.
*/
Lam = Lambda - Lam0;
CLam = cos(Lam);
SLam = sin(Lam);
/* Latitude */
CPhi = cos(Phi);
SPhi = sin(Phi);
/* Convert geodetic latitude, Phi, to conformal latitude, Chi
Only the cosine and sine of Chi are actually needed. */
P = exp(Eps * ATanH(Eps * SPhi));
part1 = (1 + SPhi) / P;
part2 = (1 - SPhi) * P;
denom = 1 / (part1 + part2);
CChi = 2 * CPhi * denom;
SChi = (part1 - part2) * denom;
/*
Sphere to first plane
------ -- ----- -----
Apply spherical theory of transverse Mercator to get (u,v) coordinates
Note the order of the arguments in Fortran's version of ArcTan, i.e.
atan2(y, x) = ATan(y/x)
The two argument form of ArcTan is needed here.
*/
T = CChi * SLam;
U = ATanH(T);
V = atan2(SChi, CChi * CLam);
/*
Trigonometric multiple angles
------------- -------- ------
Compute Cosh of even multiples of U
Compute Sinh of even multiples of U
Compute Cos of even multiples of V
Compute Sin of even multiples of V
*/
Tsq = T * T;
denom2 = 1 / (1 - Tsq);
c2u = (1 + Tsq) * denom2;
s2u = 2 * T * denom2;
c2v = (-1 + CChi * CChi * (1 + CLam * CLam)) * denom2;
s2v = 2 * CLam * CChi * SChi * denom2;
c4u = 1 + 2 * s2u * s2u;
s4u = 2 * c2u * s2u;
c4v = 1 - 2 * s2v * s2v;
s4v = 2 * c2v * s2v;
c6u = c4u * c2u + s4u * s2u;
s6u = s4u * c2u + c4u * s2u;
c6v = c4v * c2v - s4v * s2v;
s6v = s4v * c2v + c4v * s2v;
c8u = 1 + 2 * s4u * s4u;
s8u = 2 * c4u * s4u;
c8v = 1 - 2 * s4v * s4v;
s8v = 2 * c4v * s4v;
/* First plane to second plane
----- ----- -- ------ -----
Accumulate terms for X and Y
*/
Xstar = Acoeff[3] * s8u * c8v;
Xstar = Xstar + Acoeff[2] * s6u * c6v;
Xstar = Xstar + Acoeff[1] * s4u * c4v;
Xstar = Xstar + Acoeff[0] * s2u * c2v;
Xstar = Xstar + U;
Ystar = Acoeff[3] * c8u * s8v;
Ystar = Ystar + Acoeff[2] * c6u * s6v;
Ystar = Ystar + Acoeff[1] * c4u * s4v;
Ystar = Ystar + Acoeff[0] * c2u * s2v;
Ystar = Ystar + V;
/* Apply isoperimetric radius, scale adjustment, and offsets */
*X = K0R4 * Xstar + falseE;
*Y = K0R4 * Ystar + falseN;
/* Point-scale and CoM
----- ----- --- --- */
if(XYonly == 1)
{
*pscale = K0;
*CoM = 0;
} else
{
sig1 = 8 * Acoeff[3] * c8u * c8v;
sig1 = sig1 + 6 * Acoeff[2] * c6u * c6v;
sig1 = sig1 + 4 * Acoeff[1] * c4u * c4v;
sig1 = sig1 + 2 * Acoeff[0] * c2u * c2v;
sig1 = sig1 + 1;
sig2 = 8 * Acoeff[3] * s8u * s8v;
sig2 = sig2 + 6 * Acoeff[2] * s6u * s6v;
sig2 = sig2 + 4 * Acoeff[1] * s4u * s4v;
sig2 = sig2 + 2 * Acoeff[0] * s2u * s2v;
/* Combined square roots */
comroo = sqrt((1 - Epssq * SPhi * SPhi) * denom2 *
(sig1 * sig1 + sig2 * sig2));
*pscale = K0R4oa * 2 * denom * comroo;
*CoM = atan2(SChi * SLam, CLam) + atan2(sig2, sig1);
}
} /*MAG_TMfwd4*/
int MAG_YearToDate(MAGtype_Date *CalendarDate)
/* Converts a given Decimal year into a Year, Month and Date
it also outputs an error string if there is a problem
INPUT CalendarDate Pointer to the data structure with the following elements
double DecimalYear; decimal years
OUTPUT CalendarDate Pointer to the data structure with the following elements updated
* int Year
* int Month
* int Day
Error pointer to an error string
CALLS : none
*/
{
int MonthDays[13], CumulativeDays = 0;
int ExtraDay = 0;
int i, DayOfTheYear;
if(CalendarDate->DecimalYear == 0)
{
CalendarDate->Year = 0;
CalendarDate->Month = 0;
CalendarDate->Day = 0;
return FALSE;
}
CalendarDate->Year = (int) floor(CalendarDate->DecimalYear);
if((CalendarDate->Year % 4 == 0 && CalendarDate->Year % 100 != 0) || CalendarDate->Year % 400 == 0)
ExtraDay = 1;
DayOfTheYear = floor((CalendarDate->DecimalYear - (double) CalendarDate->Year) * (365.0 + (double) ExtraDay)+0.5) + 1;
/*The above floor is used for rounding, this only works for positive integers*/
MonthDays[0] = 0;
MonthDays[1] = 31;
MonthDays[2] = 28 + ExtraDay;
MonthDays[3] = 31;
MonthDays[4] = 30;
MonthDays[5] = 31;
MonthDays[6] = 30;
MonthDays[7] = 31;
MonthDays[8] = 31;
MonthDays[9] = 30;
MonthDays[10] = 31;
MonthDays[11] = 30;
MonthDays[12] = 31;
for(i = 1; i <= 12; i++)
{
CumulativeDays = CumulativeDays + MonthDays[i];
if(DayOfTheYear <= CumulativeDays)
{
CalendarDate->Month = i;
CalendarDate->Day = MonthDays[i] - (CumulativeDays - DayOfTheYear);
break;
}
}
return TRUE;
} /*MAG_YearToDate*/
/******************************************************************************
********************************Spherical Harmonics***************************
* This grouping consists of functions that together take gauss coefficients
* and return a magnetic vector for an input location in spherical coordinates
******************************************************************************/
int MAG_AssociatedLegendreFunction(MAGtype_CoordSpherical CoordSpherical, int nMax, MAGtype_LegendreFunction *LegendreFunction)
/* Computes all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax. If nMax <= 16, function MAG_PcupLow is used.
Otherwise MAG_PcupHigh is called.
INPUT CoordSpherical A data structure with the following elements
double lambda; ( longitude)
double phig; ( geocentric latitude )
double r; ( distance from the center of the ellipsoid)
nMax integer ( Maxumum degree of spherical harmonic secular model)
LegendreFunction Pointer to data structure with the following elements
double *Pcup; ( pointer to store Legendre Function )
double *dPcup; ( pointer to store Derivative of Lagendre function )
OUTPUT LegendreFunction Calculated Legendre variables in the data structure
*/
{
double sin_phi;
int FLAG = 1;
sin_phi = sin(DEG2RAD(CoordSpherical.phig)); /* sin (geocentric latitude) */
if(nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */
FLAG = MAG_PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
else FLAG = MAG_PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
if(FLAG == 0) /* Error while computing Legendre variables*/
return FALSE;
return TRUE;
} /*MAG_AssociatedLegendreFunction */
int MAG_CheckGeographicPole(MAGtype_CoordGeodetic *CoordGeodetic)
/* Check if the latitude is equal to -90 or 90. If it is,
offset it by 1e-5 to avoid division by zero. This is not currently used in the Geomagnetic
main function. This may be used to avoid calling MAG_SummationSpecial.
The function updates the input data structure.
INPUT CoordGeodetic Pointer to the data structure with the following elements
double lambda; (longitude)
double phi; ( geodetic latitude)
double HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
double HeightAboveGeoid;(height above the Geoid )
OUTPUT CoordGeodetic Pointer to the data structure with the following elements updates
double phi; ( geodetic latitude)
CALLS : none
*/
{
CoordGeodetic->phi = CoordGeodetic->phi < (-90.0 + MAG_GEO_POLE_TOLERANCE) ? (-90.0 + MAG_GEO_POLE_TOLERANCE) : CoordGeodetic->phi;
CoordGeodetic->phi = CoordGeodetic->phi > (90.0 - MAG_GEO_POLE_TOLERANCE) ? (90.0 - MAG_GEO_POLE_TOLERANCE) : CoordGeodetic->phi;
return TRUE;
} /*MAG_CheckGeographicPole*/
int MAG_ComputeSphericalHarmonicVariables(MAGtype_Ellipsoid Ellip, MAGtype_CoordSpherical CoordSpherical, int nMax, MAGtype_SphericalHarmonicVariables *SphVariables)
/* Computes Spherical variables
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic
summations. (Equations 10-12 in the WMM Technical Report)
INPUT Ellip data structure with the following elements
double a; semi-major axis of the ellipsoid
double b; semi-minor axis of the ellipsoid
double fla; flattening
double epssq; first eccentricity squared
double eps; first eccentricity
double re; mean radius of ellipsoid
CoordSpherical A data structure with the following elements
double lambda; ( longitude)
double phig; ( geocentric latitude )
double r; ( distance from the center of the ellipsoid)
nMax integer ( Maxumum degree of spherical harmonic secular model)\
OUTPUT SphVariables Pointer to the data structure with the following elements
double RelativeRadiusPower[MAG_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n
double cos_mlambda[MAG_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude)
double sin_mlambda[MAG_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude)
CALLS : none
*/
{
double cos_lambda, sin_lambda;
int m, n;
cos_lambda = cos(DEG2RAD(CoordSpherical.lambda));
sin_lambda = sin(DEG2RAD(CoordSpherical.lambda));
/* for n = 0 ... model_order, compute (Radius of Earth / Spherical radius r)^(n+2)
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */
SphVariables->RelativeRadiusPower[0] = (Ellip.re / CoordSpherical.r) * (Ellip.re / CoordSpherical.r);
for(n = 1; n <= nMax; n++)
{
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip.re / CoordSpherical.r);
}
/*
Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b)
*/
SphVariables->cos_mlambda[0] = 1.0;
SphVariables->sin_mlambda[0] = 0.0;
SphVariables->cos_mlambda[1] = cos_lambda;
SphVariables->sin_mlambda[1] = sin_lambda;
for(m = 2; m <= nMax; m++)
{
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda;
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda;
}
return TRUE;
} /*MAG_ComputeSphericalHarmonicVariables*/
void MAG_GradY(MAGtype_Ellipsoid Ellip, MAGtype_CoordSpherical CoordSpherical, MAGtype_CoordGeodetic CoordGeodetic,
MAGtype_MagneticModel *TimedMagneticModel, MAGtype_GeoMagneticElements GeoMagneticElements, MAGtype_GeoMagneticElements *GradYElements)
{
MAGtype_LegendreFunction *LegendreFunction;
MAGtype_SphericalHarmonicVariables *SphVariables;
int NumTerms;
MAGtype_MagneticResults GradYResultsSph, GradYResultsGeo;
NumTerms = ((TimedMagneticModel->nMax + 1) * (TimedMagneticModel->nMax + 2) / 2);
LegendreFunction = MAG_AllocateLegendreFunctionMemory(NumTerms); /* For storing the ALF functions */
SphVariables = MAG_AllocateSphVarMemory(TimedMagneticModel->nMax);
MAG_ComputeSphericalHarmonicVariables(Ellip, CoordSpherical, TimedMagneticModel->nMax, SphVariables); /* Compute Spherical Harmonic variables */
MAG_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); /* Compute ALF */
MAG_GradYSummation(LegendreFunction, TimedMagneticModel, *SphVariables, CoordSpherical, &GradYResultsSph); /* Accumulate the spherical harmonic coefficients*/
MAG_RotateMagneticVector(CoordSpherical, CoordGeodetic, GradYResultsSph, &GradYResultsGeo); /* Map the computed Magnetic fields to Geodetic coordinates */
MAG_CalculateGradientElements(GradYResultsGeo, GeoMagneticElements, GradYElements); /* Calculate the Geomagnetic elements, Equation 18 , WMM Technical report */
MAG_FreeLegendreMemory(LegendreFunction);
MAG_FreeSphVarMemory(SphVariables);
}
void MAG_GradYSummation(MAGtype_LegendreFunction *LegendreFunction, MAGtype_MagneticModel *MagneticModel, MAGtype_SphericalHarmonicVariables SphVariables, MAGtype_CoordSpherical CoordSpherical, MAGtype_MagneticResults *GradY)
{
int m, n, index;
double cos_phi;
GradY->Bz = 0.0;
GradY->By = 0.0;
GradY->Bx = 0.0;
for(n = 1; n <= MagneticModel->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
GradY->Bz -= SphVariables.RelativeRadiusPower[n] *
(-1 * MagneticModel->Main_Field_Coeff_G[index] * SphVariables.sin_mlambda[m] +
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.cos_mlambda[m])
* (double) (n + 1) * (double) (m) * LegendreFunction-> Pcup[index] * (1/CoordSpherical.r);
GradY->By += SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Main_Field_Coeff_G[index] * SphVariables.cos_mlambda[m] +
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.sin_mlambda[m])
* (double) (m * m) * LegendreFunction-> Pcup[index] * (1/CoordSpherical.r);
GradY->Bx -= SphVariables.RelativeRadiusPower[n] *
(-1 * MagneticModel->Main_Field_Coeff_G[index] * SphVariables.sin_mlambda[m] +
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.cos_mlambda[m])
* (double) (m) * LegendreFunction-> dPcup[index] * (1/CoordSpherical.r);
}
}
cos_phi = cos(DEG2RAD(CoordSpherical.phig));
if(fabs(cos_phi) > 1.0e-10)
{
GradY->By = GradY->By / (cos_phi * cos_phi);
GradY->Bx = GradY->Bx / (cos_phi);
GradY->Bz = GradY->Bz / (cos_phi);
} else
/* Special calculation for component - By - at Geographic poles.
* If the user wants to avoid using this function, please make sure that
* the latitude is not exactly +/-90. An option is to make use the function
* MAG_CheckGeographicPoles.
*/
{
/* MAG_SummationSpecial(MagneticModel, SphVariables, CoordSpherical, GradY); */
}
}
int MAG_PcupHigh(double *Pcup, double *dPcup, double x, int nMax)
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax. The functions are initially scaled by
10^280 sin^m in order to minimize the effects of underflow at large m
near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299).
Note that this function performs the same operation as MAG_PcupLow.
However this function also can be used for high degree (large nMax) models.
Calling Parameters:
INPUT
nMax: Maximum spherical harmonic degree to compute.
x: cos(colatitude) or sin(latitude).
OUTPUT
Pcup: A vector of all associated Legendgre polynomials evaluated at
x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2.
dPcup: Derivative of Pcup(x) with respect to latitude
CALLS : none
Notes:
Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005.
Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov
Change from the previous version
The prevous version computes the derivatives as
dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ).
However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude.
Hence the derivatives are multiplied by sin(latitude).
Removed the options for CS phase and normalizations.
Note: In geomagnetism, the derivatives of ALF are usually found with
respect to the colatitudes. Here the derivatives are found with respect
to the latitude. The difference is a sign reversal for the derivative of
the Associated Legendre Functions.
The derivatives can't be computed for latitude = |90| degrees.
*/
{
double pm2, pm1, pmm, plm, rescalem, z, scalef;
double *f1, *f2, *PreSqr;
int k, kstart, m, n, NumTerms;
NumTerms = ((nMax + 1) * (nMax + 2) / 2);
if(fabs(x) == 1.0)
{
printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
return FALSE;
}
f1 = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(f1 == NULL)
{
MAG_Error(18);
return FALSE;
}
PreSqr = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(PreSqr == NULL)
{
MAG_Error(18);
return FALSE;
}
f2 = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(f2 == NULL)
{
MAG_Error(18);
return FALSE;
}
scalef = 1.0e-280;
for(n = 0; n <= 2 * nMax + 1; ++n)
{
PreSqr[n] = sqrt((double) (n));
}
k = 2;
for(n = 2; n <= nMax; n++)
{
k = k + 1;
f1[k] = (double) (2 * n - 1) / (double) (n);
f2[k] = (double) (n - 1) / (double) (n);
for(m = 1; m <= n - 2; m++)
{
k = k + 1;
f1[k] = (double) (2 * n - 1) / PreSqr[n + m] / PreSqr[n - m];
f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m];
}
k = k + 2;
}
/*z = sin (geocentric latitude) */
z = sqrt((1.0 - x)*(1.0 + x));
pm2 = 1.0;
Pcup[0] = 1.0;
dPcup[0] = 0.0;
if(nMax == 0)
return FALSE;
pm1 = x;
Pcup[1] = pm1;
dPcup[1] = z;
k = 1;
for(n = 2; n <= nMax; n++)
{
k = k + n;
plm = f1[k] * x * pm1 - f2[k] * pm2;
Pcup[k] = plm;
dPcup[k] = (double) (n) * (pm1 - x * plm) / z;
pm2 = pm1;
pm1 = plm;
}
pmm = PreSqr[2] * scalef;
rescalem = 1.0 / scalef;
kstart = 0;
for(m = 1; m <= nMax - 1; ++m)
{
rescalem = rescalem*z;
/* Calculate Pcup(m,m)*/
kstart = kstart + m + 1;
pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m];
Pcup[kstart] = pmm * rescalem / PreSqr[2 * m + 1];
dPcup[kstart] = -((double) (m) * x * Pcup[kstart] / z);
pm2 = pmm / PreSqr[2 * m + 1];
/* Calculate Pcup(m+1,m)*/
k = kstart + m + 1;
pm1 = x * PreSqr[2 * m + 1] * pm2;
Pcup[k] = pm1*rescalem;
dPcup[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - x * (double) (m + 1) * Pcup[k]) / z;
/* Calculate Pcup(n,m)*/
for(n = m + 2; n <= nMax; ++n)
{
k = k + n;
plm = x * f1[k] * pm1 - f2[k] * pm2;
Pcup[k] = plm*rescalem;
dPcup[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (double) (n) * x * Pcup[k]) / z;
pm2 = pm1;
pm1 = plm;
}
}
/* Calculate Pcup(nMax,nMax)*/
rescalem = rescalem*z;
kstart = kstart + m + 1;
pmm = pmm / PreSqr[2 * nMax];
Pcup[kstart] = pmm * rescalem;
dPcup[kstart] = -(double) (nMax) * x * Pcup[kstart] / z;
free(f1);
free(PreSqr);
free(f2);
return TRUE;
} /* MAG_PcupHigh */
int MAG_PcupLow(double *Pcup, double *dPcup, double x, int nMax)
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
functions up to degree nMax.
Calling Parameters:
INPUT
nMax: Maximum spherical harmonic degree to compute.
x: cos(colatitude) or sin(latitude).
OUTPUT
Pcup: A vector of all associated Legendgre polynomials evaluated at
x up to nMax.
dPcup: Derivative of Pcup(x) with respect to latitude
Notes: Overflow may occur if nMax > 20 , especially for high-latitudes.
Use MAG_PcupHigh for large nMax.
Written by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov.
Note: In geomagnetism, the derivatives of ALF are usually found with
respect to the colatitudes. Here the derivatives are found with respect
to the latitude. The difference is a sign reversal for the derivative of
the Associated Legendre Functions.
*/
{
int n, m, index, index1, index2, NumTerms;
double k, z, *schmidtQuasiNorm;
Pcup[0] = 1.0;
dPcup[0] = 0.0;
/*sin (geocentric latitude) - sin_phi */
z = sqrt((1.0 - x) * (1.0 + x));
NumTerms = ((nMax + 1) * (nMax + 2) / 2);
schmidtQuasiNorm = (double *) malloc((NumTerms + 1) * sizeof ( double));
if(schmidtQuasiNorm == NULL)
{
MAG_Error(19);
return FALSE;
}
/* First, Compute the Gauss-normalized associated Legendre functions*/
for(n = 1; n <= nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if(n == m)
{
index1 = (n - 1) * n / 2 + m - 1;
Pcup [index] = z * Pcup[index1];
dPcup[index] = z * dPcup[index1] + x * Pcup[index1];
} else if(n == 1 && m == 0)
{
index1 = (n - 1) * n / 2 + m;
Pcup[index] = x * Pcup[index1];
dPcup[index] = x * dPcup[index1] - z * Pcup[index1];
} else if(n > 1 && n != m)
{
index1 = (n - 2) * (n - 1) / 2 + m;
index2 = (n - 1) * n / 2 + m;
if(m > n - 2)
{
Pcup[index] = x * Pcup[index2];
dPcup[index] = x * dPcup[index2] - z * Pcup[index2];
} else
{
k = (double) (((n - 1) * (n - 1)) - (m * m)) / (double) ((2 * n - 1) * (2 * n - 3));
Pcup[index] = x * Pcup[index2] - k * Pcup[index1];
dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1];
}
}
}
}
/* Compute the ration between the the Schmidt quasi-normalized associated Legendre
* functions and the Gauss-normalized version. */
schmidtQuasiNorm[0] = 1.0;
for(n = 1; n <= nMax; n++)
{
index = (n * (n + 1) / 2);
index1 = (n - 1) * n / 2;
/* for m = 0 */
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (double) (2 * n - 1) / (double) n;
for(m = 1; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
index1 = (n * (n + 1) / 2 + m - 1);
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((double) ((n - m + 1) * (m == 1 ? 2 : 1)) / (double) (n + m));
}
}
/* Converts the Gauss-normalized associated Legendre
functions to the Schmidt quasi-normalized version using pre-computed
relation stored in the variable schmidtQuasiNorm */
for(n = 1; n <= nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index];
dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index];
/* The sign is changed since the new WMM routines use derivative with respect to latitude
insted of co-latitude */
}
}
if(schmidtQuasiNorm)
free(schmidtQuasiNorm);
return TRUE;
} /*MAG_PcupLow */
int MAG_SecVarSummation(MAGtype_LegendreFunction *LegendreFunction, MAGtype_MagneticModel *MagneticModel, MAGtype_SphericalHarmonicVariables SphVariables, MAGtype_CoordSpherical CoordSpherical, MAGtype_MagneticResults *MagneticResults)
{
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector.
INPUT : LegendreFunction
MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
CALLS : MAG_SecVarSummationSpecial
*/
int m, n, index;
double cos_phi;
MagneticModel->SecularVariationUsed = TRUE;
MagneticResults->Bz = 0.0;
MagneticResults->By = 0.0;
MagneticResults->Bx = 0.0;
for(n = 1; n <= MagneticModel->nMaxSecVar; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
/* nMax (n+2) n m m m
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
n=1 m=0 n n n */
/* Derivative with respect to radius.*/
MagneticResults->Bz -= SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Secular_Var_Coeff_G[index] * SphVariables.cos_mlambda[m] +
MagneticModel->Secular_Var_Coeff_H[index] * SphVariables.sin_mlambda[m])
* (double) (n + 1) * LegendreFunction-> Pcup[index];
/* 1 nMax (n+2) n m m m
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Derivative with respect to longitude, divided by radius. */
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Secular_Var_Coeff_G[index] * SphVariables.sin_mlambda[m] -
MagneticModel->Secular_Var_Coeff_H[index] * SphVariables.cos_mlambda[m])
* (double) (m) * LegendreFunction-> Pcup[index];
/* nMax (n+2) n m m m
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Derivative with respect to latitude, divided by radius. */
MagneticResults->Bx -= SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Secular_Var_Coeff_G[index] * SphVariables.cos_mlambda[m] +
MagneticModel->Secular_Var_Coeff_H[index] * SphVariables.sin_mlambda[m])
* LegendreFunction-> dPcup[index];
}
}
cos_phi = cos(DEG2RAD(CoordSpherical.phig));
if(fabs(cos_phi) > 1.0e-10)
{
MagneticResults->By = MagneticResults->By / cos_phi;
} else
/* Special calculation for component By at Geographic poles */
{
MAG_SecVarSummationSpecial(MagneticModel, SphVariables, CoordSpherical, MagneticResults);
}
return TRUE;
} /*MAG_SecVarSummation*/
int MAG_SecVarSummationSpecial(MAGtype_MagneticModel *MagneticModel, MAGtype_SphericalHarmonicVariables SphVariables, MAGtype_CoordSpherical CoordSpherical, MAGtype_MagneticResults *MagneticResults)
{
/*Special calculation for the secular variation summation at the poles.
INPUT: MagneticModel
SphVariables
CoordSpherical
OUTPUT: MagneticResults
CALLS : none
*/
int n, index;
double k, sin_phi, *PcupS, schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
PcupS = (double *) malloc((MagneticModel->nMaxSecVar + 1) * sizeof (double));
if(PcupS == NULL)
{
MAG_Error(15);
return FALSE;
}
PcupS[0] = 1;
schmidtQuasiNorm1 = 1.0;
MagneticResults->By = 0.0;
sin_phi = sin(DEG2RAD(CoordSpherical.phig));
for(n = 1; n <= MagneticModel->nMaxSecVar; n++)
{
index = (n * (n + 1) / 2 + 1);
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double) (2 * n - 1) / (double) n;
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double) (n * 2) / (double) (n + 1));
schmidtQuasiNorm1 = schmidtQuasiNorm2;
if(n == 1)
{
PcupS[n] = PcupS[n - 1];
} else
{
k = (double) (((n - 1) * (n - 1)) - 1) / (double) ((2 * n - 1) * (2 * n - 3));
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
}
/* 1 nMax (n+2) n m m m
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Derivative with respect to longitude, divided by radius. */
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Secular_Var_Coeff_G[index] * SphVariables.sin_mlambda[1] -
MagneticModel->Secular_Var_Coeff_H[index] * SphVariables.cos_mlambda[1])
* PcupS[n] * schmidtQuasiNorm3;
}
if(PcupS)
free(PcupS);
return TRUE;
}/*SecVarSummationSpecial*/
int MAG_Summation(MAGtype_LegendreFunction *LegendreFunction, MAGtype_MagneticModel *MagneticModel, MAGtype_SphericalHarmonicVariables SphVariables, MAGtype_CoordSpherical CoordSpherical, MAGtype_MagneticResults *MagneticResults)
{
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using
spherical harmonic summation.
The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential
The gradient in spherical coordinates is given by:
dV ^ 1 dV ^ 1 dV ^
grad V = -- r + - -- t + -------- -- p
dr r dt r sin(t) dp
INPUT : LegendreFunction
MagneticModel
SphVariables
CoordSpherical
OUTPUT : MagneticResults
CALLS : MAG_SummationSpecial
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
*/
int m, n, index;
double cos_phi;
MagneticResults->Bz = 0.0;
MagneticResults->By = 0.0;
MagneticResults->Bx = 0.0;
for(n = 1; n <= MagneticModel->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
/* nMax (n+2) n m m m
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
n=1 m=0 n n n */
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/
MagneticResults->Bz -= SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Main_Field_Coeff_G[index] * SphVariables.cos_mlambda[m] +
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.sin_mlambda[m])
* (double) (n + 1) * LegendreFunction-> Pcup[index];
/* 1 nMax (n+2) n m m m
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Main_Field_Coeff_G[index] * SphVariables.sin_mlambda[m] -
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.cos_mlambda[m])
* (double) (m) * LegendreFunction-> Pcup[index];
/* nMax (n+2) n m m m
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */
MagneticResults->Bx -= SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Main_Field_Coeff_G[index] * SphVariables.cos_mlambda[m] +
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.sin_mlambda[m])
* LegendreFunction-> dPcup[index];
}
}
cos_phi = cos(DEG2RAD(CoordSpherical.phig));
if(fabs(cos_phi) > 1.0e-10)
{
MagneticResults->By = MagneticResults->By / cos_phi;
} else
/* Special calculation for component - By - at Geographic poles.
* If the user wants to avoid using this function, please make sure that
* the latitude is not exactly +/-90. An option is to make use the function
* MAG_CheckGeographicPoles.
*/
{
MAG_SummationSpecial(MagneticModel, SphVariables, CoordSpherical, MagneticResults);
}
return TRUE;
}/*MAG_Summation */
int MAG_SummationSpecial(MAGtype_MagneticModel *MagneticModel, MAGtype_SphericalHarmonicVariables SphVariables, MAGtype_CoordSpherical CoordSpherical, MAGtype_MagneticResults *MagneticResults)
/* Special calculation for the component By at Geographic poles.
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov
INPUT: MagneticModel
SphVariables
CoordSpherical
OUTPUT: MagneticResults
CALLS : none
See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report
*/
{
int n, index;
double k, sin_phi, *PcupS, schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3;
PcupS = (double *) malloc((MagneticModel->nMax + 1) * sizeof (double));
if(PcupS == 0)
{
MAG_Error(14);
return FALSE;
}
PcupS[0] = 1;
schmidtQuasiNorm1 = 1.0;
MagneticResults->By = 0.0;
sin_phi = sin(DEG2RAD(CoordSpherical.phig));
for(n = 1; n <= MagneticModel->nMax; n++)
{
/*Compute the ration between the Gauss-normalized associated Legendre
functions and the Schmidt quasi-normalized version. This is equivalent to
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
index = (n * (n + 1) / 2 + 1);
schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double) (2 * n - 1) / (double) n;
schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double) (n * 2) / (double) (n + 1));
schmidtQuasiNorm1 = schmidtQuasiNorm2;
if(n == 1)
{
PcupS[n] = PcupS[n - 1];
} else
{
k = (double) (((n - 1) * (n - 1)) - 1) / (double) ((2 * n - 1) * (2 * n - 3));
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
}
/* 1 nMax (n+2) n m m m
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
n=1 m=0 n n n */
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
MagneticResults->By += SphVariables.RelativeRadiusPower[n] *
(MagneticModel->Main_Field_Coeff_G[index] * SphVariables.sin_mlambda[1] -
MagneticModel->Main_Field_Coeff_H[index] * SphVariables.cos_mlambda[1])
* PcupS[n] * schmidtQuasiNorm3;
}
if(PcupS)
free(PcupS);
return TRUE;
}/*MAG_SummationSpecial */
int MAG_TimelyModifyMagneticModel(MAGtype_Date UserDate, MAGtype_MagneticModel *MagneticModel, MAGtype_MagneticModel *TimedMagneticModel)
/* Time change the Model coefficients from the base year of the model using secular variation coefficients.
Store the coefficients of the static model with their values advanced from epoch t0 to epoch t.
Copy the SV coefficients. If input "t�" is the same as "t0", then this is merely a copy operation.
If the address of "TimedMagneticModel" is the same as the address of "MagneticModel", then this procedure overwrites
the given item "MagneticModel".
INPUT: UserDate
MagneticModel
OUTPUT:TimedMagneticModel
CALLS : none
*/
{
int n, m, index, a, b;
TimedMagneticModel->EditionDate = MagneticModel->EditionDate;
TimedMagneticModel->epoch = MagneticModel->epoch;
TimedMagneticModel->nMax = MagneticModel->nMax;
TimedMagneticModel->nMaxSecVar = MagneticModel->nMaxSecVar;
a = TimedMagneticModel->nMaxSecVar;
b = (a * (a + 1) / 2 + a);
strcpy(TimedMagneticModel->ModelName, MagneticModel->ModelName);
for(n = 1; n <= MagneticModel->nMax; n++)
{
for(m = 0; m <= n; m++)
{
index = (n * (n + 1) / 2 + m);
if(index <= b)
{
TimedMagneticModel->Main_Field_Coeff_H[index] = MagneticModel->Main_Field_Coeff_H[index] + (UserDate.DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_H[index];
TimedMagneticModel->Main_Field_Coeff_G[index] = MagneticModel->Main_Field_Coeff_G[index] + (UserDate.DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_G[index];
TimedMagneticModel->Secular_Var_Coeff_H[index] = MagneticModel->Secular_Var_Coeff_H[index]; /* We need a copy of the secular var coef to calculate secular change */
TimedMagneticModel->Secular_Var_Coeff_G[index] = MagneticModel->Secular_Var_Coeff_G[index];
} else
{
TimedMagneticModel->Main_Field_Coeff_H[index] = MagneticModel->Main_Field_Coeff_H[index];
TimedMagneticModel->Main_Field_Coeff_G[index] = MagneticModel->Main_Field_Coeff_G[index];
}
}
}
return TRUE;
} /* MAG_TimelyModifyMagneticModel */
/*End of Spherical Harmonic Functions*/
/******************************************************************************
*************************************Geoid************************************
* This grouping consists of functions that make calculations to adjust
* ellipsoid height to height above the geoid (Height above MSL).
******************************************************************************
******************************************************************************/
int MAG_ConvertGeoidToEllipsoidHeight(MAGtype_CoordGeodetic *CoordGeodetic, MAGtype_Geoid *Geoid)
/*
* The function Convert_Geoid_To_Ellipsoid_Height converts the specified WGS84
* Geoid height at the specified geodetic coordinates to the equivalent
* ellipsoid height, using the EGM96 gravity model.
*
* CoordGeodetic->phi : Geodetic latitude in degress (input)
* CoordGeodetic->lambda : Geodetic longitude in degrees (input)
* CoordGeodetic->HeightAboveEllipsoid : Ellipsoid height, in kilometers (output)
* CoordGeodetic->HeightAboveGeoid: Geoid height, in kilometers (input)
*
CALLS : MAG_GetGeoidHeight (
*/
{
double DeltaHeight;
int Error_Code;
double lat, lon;
if(Geoid->UseGeoid == 1)
{ /* Geoid correction required */
/* To ensure that latitude is less than 90 call MAG_EquivalentLatLon() */
MAG_EquivalentLatLon(CoordGeodetic->phi, CoordGeodetic->lambda, &lat, &lon);
Error_Code = MAG_GetGeoidHeight(lat, lon, &DeltaHeight, Geoid);
CoordGeodetic->HeightAboveEllipsoid = CoordGeodetic->HeightAboveGeoid + DeltaHeight / 1000; /* Input and output should be kilometers,
However MAG_GetGeoidHeight returns Geoid height in meters - Hence division by 1000 */
} else /* Geoid correction not required, copy the MSL height to Ellipsoid height */
{
CoordGeodetic->HeightAboveEllipsoid = CoordGeodetic->HeightAboveGeoid;
Error_Code = TRUE;
}
return ( Error_Code);
} /* MAG_ConvertGeoidToEllipsoidHeight*/
int MAG_GetGeoidHeight(double Latitude,
double Longitude,
double *DeltaHeight,
MAGtype_Geoid *Geoid)
/*
* The function MAG_GetGeoidHeight returns the height of the
* EGM96 geiod above or below the WGS84 ellipsoid,
* at the specified geodetic coordinates,
* using a grid of height adjustments from the EGM96 gravity model.
*
* Latitude : Geodetic latitude in radians (input)
* Longitude : Geodetic longitude in radians (input)
* DeltaHeight : Height Adjustment, in meters. (output)
* Geoid : MAGtype_Geoid with Geoid grid (input)
CALLS : none
*/
{
long Index;
double DeltaX, DeltaY;
double ElevationSE, ElevationSW, ElevationNE, ElevationNW;
double OffsetX, OffsetY;
double PostX, PostY;
double UpperY, LowerY;
int Error_Code = 0;
if(!Geoid->Geoid_Initialized)
{
MAG_Error(5);
return (FALSE);
}
if((Latitude < -90) || (Latitude > 90))
{ /* Latitude out of range */
Error_Code |= 1;
}
if((Longitude < -180) || (Longitude > 360))
{ /* Longitude out of range */
Error_Code |= 1;
}
if(!Error_Code)
{ /* no errors */
/* Compute X and Y Offsets into Geoid Height Array: */
if(Longitude < 0.0)
{
OffsetX = (Longitude + 360.0) * Geoid->ScaleFactor;
} else
{
OffsetX = Longitude * Geoid->ScaleFactor;
}
OffsetY = (90.0 - Latitude) * Geoid->ScaleFactor;
/* Find Four Nearest Geoid Height Cells for specified Latitude, Longitude; */
/* Assumes that (0,0) of Geoid Height Array is at Northwest corner: */
PostX = floor(OffsetX);
if((PostX + 1) == Geoid->NumbGeoidCols)
PostX--;
PostY = floor(OffsetY);
if((PostY + 1) == Geoid->NumbGeoidRows)
PostY--;
Index = (long) (PostY * Geoid->NumbGeoidCols + PostX);
ElevationNW = (double) Geoid->GeoidHeightBuffer[ Index ];
ElevationNE = (double) Geoid->GeoidHeightBuffer[ Index + 1 ];
Index = (long) ((PostY + 1) * Geoid->NumbGeoidCols + PostX);
ElevationSW = (double) Geoid->GeoidHeightBuffer[ Index ];
ElevationSE = (double) Geoid->GeoidHeightBuffer[ Index + 1 ];
/* Perform Bi-Linear Interpolation to compute Height above Ellipsoid: */
DeltaX = OffsetX - PostX;
DeltaY = OffsetY - PostY;
UpperY = ElevationNW + DeltaX * (ElevationNE - ElevationNW);
LowerY = ElevationSW + DeltaX * (ElevationSE - ElevationSW);
*DeltaHeight = UpperY + DeltaY * (LowerY - UpperY);
} else
{
MAG_Error(17);
return (FALSE);
}
return TRUE;
} /*MAG_GetGeoidHeight*/
void MAG_EquivalentLatLon(double lat, double lon, double *repairedLat, double *repairedLon)
/*This function takes a latitude and longitude that are ordinarily out of range
and gives in range values that are equivalent on the Earth's surface. This is
required to get correct values for the geoid function.*/
{
double colat;
colat = 90 - lat;
*repairedLon = lon;
if (colat < 0)
colat = -colat;
while(colat > 360) {
colat-=360;
}
if (colat > 180) {
colat-=180;
*repairedLon = *repairedLon+180;
}
*repairedLat = 90 - colat;
if (*repairedLon > 360)
*repairedLon-=360;
if (*repairedLon < -180)
*repairedLon+=360;
}
/*End of Geoid Functions*/
/*New Error Functions*/
void MAG_WMMErrorCalc(double H, MAGtype_GeoMagneticElements *Uncertainty)
{
double decl_variable, decl_constant;
Uncertainty->F = WMM_UNCERTAINTY_F;
Uncertainty->H = WMM_UNCERTAINTY_H;
Uncertainty->X = WMM_UNCERTAINTY_X;
Uncertainty->Z = WMM_UNCERTAINTY_Z;
Uncertainty->Incl = WMM_UNCERTAINTY_I;
Uncertainty->Y = WMM_UNCERTAINTY_Y;
decl_variable = (WMM_UNCERTAINTY_D_COEF / H);
decl_constant = (WMM_UNCERTAINTY_D_OFFSET);
Uncertainty->Decl = sqrt(decl_constant*decl_constant + decl_variable*decl_variable);
if (Uncertainty->Decl > 180) {
Uncertainty->Decl = 180;
}
}
void MAG_PrintUserDataWithUncertainty(MAGtype_GeoMagneticElements GeomagElements,
MAGtype_GeoMagneticElements Errors,
MAGtype_CoordGeodetic SpaceInput,
MAGtype_Date TimeInput,
MAGtype_MagneticModel *MagneticModel,
MAGtype_Geoid *Geoid)
{
char DeclString[100];
char InclString[100];
MAG_DegreeToDMSstring(GeomagElements.Incl, 2, InclString);
if(GeomagElements.H < 6000 && GeomagElements.H > 2000)
MAG_Warnings(1, GeomagElements.H, MagneticModel);
if(GeomagElements.H < 2000)
MAG_Warnings(2, GeomagElements.H, MagneticModel);
if(MagneticModel->SecularVariationUsed == TRUE)
{
MAG_DegreeToDMSstring(GeomagElements.Decl, 2, DeclString);
printf("\n Results For \n\n");
if(SpaceInput.phi < 0)
printf("Latitude %.2fS\n", -SpaceInput.phi);
else
printf("Latitude %.2fN\n", SpaceInput.phi);
if(SpaceInput.lambda < 0)
printf("Longitude %.2fW\n", -SpaceInput.lambda);
else
printf("Longitude %.2fE\n", SpaceInput.lambda);
if(Geoid->UseGeoid == 1)
printf("Altitude: %.2f Kilometers above mean sea level\n", SpaceInput.HeightAboveGeoid);
else
printf("Altitude: %.2f Kilometers above the WGS-84 ellipsoid\n", SpaceInput.HeightAboveEllipsoid);
printf("Date: %.1f\n", TimeInput.DecimalYear);
printf("\n Main Field\t\t\tSecular Change\n");
printf("F = %9.1f +/- %5.1f nT\t\t Fdot = %5.1f\tnT/yr\n", GeomagElements.F, Errors.F, GeomagElements.Fdot);
printf("H = %9.1f +/- %5.1f nT\t\t Hdot = %5.1f\tnT/yr\n", GeomagElements.H, Errors.H, GeomagElements.Hdot);
printf("X = %9.1f +/- %5.1f nT\t\t Xdot = %5.1f\tnT/yr\n", GeomagElements.X, Errors.X, GeomagElements.Xdot);
printf("Y = %9.1f +/- %5.1f nT\t\t Ydot = %5.1f\tnT/yr\n", GeomagElements.Y, Errors.Y, GeomagElements.Ydot);
printf("Z = %9.1f +/- %5.1f nT\t\t Zdot = %5.1f\tnT/yr\n", GeomagElements.Z, Errors.Z, GeomagElements.Zdot);
if(GeomagElements.Decl < 0)
printf("Decl =%20s (WEST) +/-%3.0f Min Ddot = %.1f\tMin/yr\n", DeclString, 60 * Errors.Decl, 60 * GeomagElements.Decldot);
else
printf("Decl =%20s (EAST) +/-%3.0f Min Ddot = %.1f\tMin/yr\n", DeclString, 60 * Errors.Decl, 60 * GeomagElements.Decldot);
if(GeomagElements.Incl < 0)
printf("Incl =%20s (UP) +/-%3.0f Min Idot = %.1f\tMin/yr\n", InclString, 60 * Errors.Incl, 60 * GeomagElements.Incldot);
else
printf("Incl =%20s (DOWN) +/-%3.0f Min Idot = %.1f\tMin/yr\n", InclString, 60 * Errors.Incl, 60 * GeomagElements.Incldot);
} else
{
MAG_DegreeToDMSstring(GeomagElements.Decl, 2, DeclString);
printf("\n Results For \n\n");
if(SpaceInput.phi < 0)
printf("Latitude %.2fS\n", -SpaceInput.phi);
else
printf("Latitude %.2fN\n", SpaceInput.phi);
if(SpaceInput.lambda < 0)
printf("Longitude %.2fW\n", -SpaceInput.lambda);
else
printf("Longitude %.2fE\n", SpaceInput.lambda);
if(Geoid->UseGeoid == 1)
printf("Altitude: %.2f Kilometers above MSL\n", SpaceInput.HeightAboveGeoid);
else
printf("Altitude: %.2f Kilometers above WGS-84 Ellipsoid\n", SpaceInput.HeightAboveEllipsoid);
printf("Date: %.1f\n", TimeInput.DecimalYear);
printf("\n Main Field\n");
printf("F = %-9.1f +/-%5.1f nT\n", GeomagElements.F, Errors.F);
printf("H = %-9.1f +/-%5.1f nT\n", GeomagElements.H, Errors.H);
printf("X = %-9.1f +/-%5.1f nT\n", GeomagElements.X, Errors.X);
printf("Y = %-9.1f +/-%5.1f nT\n", GeomagElements.Y, Errors.Y);
printf("Z = %-9.1f +/-%5.1f nT\n", GeomagElements.Z, Errors.Z);
if(GeomagElements.Decl < 0)
printf("Decl =%20s (WEST)+/-%4f\n", DeclString, 60 * Errors.Decl);
else
printf("Decl =%20s (EAST)+/-%4f\n", DeclString, 60 * Errors.Decl);
if(GeomagElements.Incl < 0)
printf("Incl =%20s (UP)+/-%4f\n", InclString, 60 * Errors.Incl);
else
printf("Incl =%20s (DOWN)+/-%4f\n", InclString, 60 * Errors.Incl);
}
if(SpaceInput.phi <= -55 || SpaceInput.phi >= 55)
/* Print Grid Variation */
{
MAG_DegreeToDMSstring(GeomagElements.GV, 2, InclString);
printf("\n\n Grid variation =%20s\n", InclString);
}
}/*MAG_PrintUserDataWithUncertainty*/
void MAG_GetDeg(char* Query_String, double* latitude, double bounds[2]) {
/*Gets a degree value from the user using the standard input*/
char buffer[64], Error_Message[255];
int done, i, j;
printf("%s", Query_String);
while (NULL == fgets(buffer, 64, stdin)){
printf("%s", Query_String);
}
for(i = 0, done = 0, j = 0; i <= 64 && !done; i++)
{
if(buffer[i] == '.')
{
j = sscanf(buffer, "%lf", latitude);
if(j == 1)
done = 1;
else
done = -1;
}
if(buffer[i] == ',')
{
if(MAG_ValidateDMSstring(buffer, bounds[0], bounds[1], Error_Message))
{
MAG_DMSstringToDegree(buffer, latitude);
done = 1;
} else
done = -1;
}
if(buffer[i] == ' ')/* This detects if there is a ' ' somewhere in the string,
if there is the program tries to interpret the input as Degrees Minutes Seconds.*/
{
if(MAG_ValidateDMSstring(buffer, bounds[0], bounds[1], Error_Message))
{
MAG_DMSstringToDegree(buffer, latitude);
done = 1;
} else
done = -1;
}
if(buffer[i] == '\0' || done == -1)
{
if(MAG_ValidateDMSstring(buffer, bounds[0], bounds[1], Error_Message) && done != -1)
{
sscanf(buffer, "%lf", latitude);
done = 1;
} else
{
printf("%s", Error_Message);
strcpy(buffer, "");
printf("\nError encountered, please re-enter as '(-)DDD,MM,SS' or in Decimal Degrees DD.ddd:\n");
while(NULL == fgets(buffer, 40, stdin)) {
printf("\nError encountered, please re-enter as '(-)DDD,MM,SS' or in Decimal Degrees DD.ddd:\n");
}
i = -1;
done = 0;
}
}
}
}
int MAG_GetAltitude(char* Query_String, MAGtype_Geoid *Geoid, MAGtype_CoordGeodetic* coords, int bounds[2], int AltitudeSetting){
int done, j, UpBoundOn;
char tmp;
char buffer[64];
double value;
done = 0;
if(bounds[1] != NO_ALT_MAX){
UpBoundOn = TRUE;
} else {
UpBoundOn = FALSE;
}
printf("%s", Query_String);
while(!done)
{
strcpy(buffer, "");
while(NULL == fgets(buffer, 40, stdin)) {
printf("%s", Query_String);
}
j = 0;
if((AltitudeSetting != MSLON) && (buffer[0] == 'e' || buffer[0] == 'E' || AltitudeSetting == WGS84ON)) /* User entered height above WGS-84 ellipsoid, copy it to CoordGeodetic->HeightAboveEllipsoid */
{
if(buffer[0]=='e' || buffer[0]=='E') {
j = sscanf(buffer, "%c%lf", &tmp, &coords->HeightAboveEllipsoid);
} else {
j = sscanf(buffer, "%lf", &coords->HeightAboveEllipsoid);
}
if(j == 2)
j = 1;
Geoid->UseGeoid = 0;
coords->HeightAboveGeoid = coords->HeightAboveEllipsoid;
value = coords->HeightAboveEllipsoid;
} else /* User entered height above MSL, convert it to the height above WGS-84 ellipsoid */
{
Geoid->UseGeoid = 1;
j = sscanf(buffer, "%lf", &coords->HeightAboveGeoid);
MAG_ConvertGeoidToEllipsoidHeight(coords, Geoid);
value = coords->HeightAboveGeoid;
}
if(j == 1)
done = 1;
else
printf("\nIllegal Format, please re-enter as '(-)HHH.hhh:'\n");
if((value < bounds[0] || (value > bounds[1] && UpBoundOn)) && done == 1) {
if(UpBoundOn) {
done = 0;
printf("\nWarning: The value you have entered of %f km for the elevation is outside of the required range.\n", value);
printf(" An elevation between %d km and %d km is needed. \n", bounds[0], bounds[1]);
if (AltitudeSetting == WGS84ON){
printf("Please enter height above WGS-84 Ellipsoid (in kilometers):\n");
} else if (AltitudeSetting==MSLON){
printf("Please enter height above mean sea level (in kilometers):\n");
} else {
printf("Please enter height in kilometers (prepend E for height above WGS-84 Ellipsoid):");
}
} else {
switch(MAG_Warnings(3, value, NULL)) {
case 0:
return USER_GAVE_UP;
case 1:
done = 0;
printf("Please enter height above sea level (in kilometers):\n");
break;
case 2:
break;
}
}
}
}
return 0;
}
|