File: hwregs.c

package info (click to toggle)
acpica-unix 20181213-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 40,744 kB
  • sloc: ansic: 128,238; sh: 4,389; yacc: 4,184; makefile: 1,385; lex: 1,124
file content (904 lines) | stat: -rw-r--r-- 26,857 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/*******************************************************************************
 *
 * Module Name: hwregs - Read/write access functions for the various ACPI
 *                       control and status registers.
 *
 ******************************************************************************/

/*
 * Copyright (C) 2000 - 2018, Intel Corp.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon
 *    including a substantially similar Disclaimer requirement for further
 *    binary redistribution.
 * 3. Neither the names of the above-listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 */

#include "acpi.h"
#include "accommon.h"
#include "acevents.h"

#define _COMPONENT          ACPI_HARDWARE
        ACPI_MODULE_NAME    ("hwregs")


#if (!ACPI_REDUCED_HARDWARE)

/* Local Prototypes */

static UINT8
AcpiHwGetAccessBitWidth (
    UINT64                  Address,
    ACPI_GENERIC_ADDRESS    *Reg,
    UINT8                   MaxBitWidth);

static ACPI_STATUS
AcpiHwReadMultiple (
    UINT32                  *Value,
    ACPI_GENERIC_ADDRESS    *RegisterA,
    ACPI_GENERIC_ADDRESS    *RegisterB);

static ACPI_STATUS
AcpiHwWriteMultiple (
    UINT32                  Value,
    ACPI_GENERIC_ADDRESS    *RegisterA,
    ACPI_GENERIC_ADDRESS    *RegisterB);

#endif /* !ACPI_REDUCED_HARDWARE */


/******************************************************************************
 *
 * FUNCTION:    AcpiHwGetAccessBitWidth
 *
 * PARAMETERS:  Address             - GAS register address
 *              Reg                 - GAS register structure
 *              MaxBitWidth         - Max BitWidth supported (32 or 64)
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Obtain optimal access bit width
 *
 ******************************************************************************/

static UINT8
AcpiHwGetAccessBitWidth (
    UINT64                  Address,
    ACPI_GENERIC_ADDRESS    *Reg,
    UINT8                   MaxBitWidth)
{
    UINT8                   AccessBitWidth;


    /*
     * GAS format "register", used by FADT:
     *  1. Detected if BitOffset is 0 and BitWidth is 8/16/32/64;
     *  2. AccessSize field is ignored and BitWidth field is used for
     *     determining the boundary of the IO accesses.
     * GAS format "region", used by APEI registers:
     *  1. Detected if BitOffset is not 0 or BitWidth is not 8/16/32/64;
     *  2. AccessSize field is used for determining the boundary of the
     *     IO accesses;
     *  3. BitOffset/BitWidth fields are used to describe the "region".
     *
     * Note: This algorithm assumes that the "Address" fields should always
     *       contain aligned values.
     */
    if (!Reg->BitOffset && Reg->BitWidth &&
        ACPI_IS_POWER_OF_TWO (Reg->BitWidth) &&
        ACPI_IS_ALIGNED (Reg->BitWidth, 8))
    {
        AccessBitWidth = Reg->BitWidth;
    }
    else if (Reg->AccessWidth)
    {
        AccessBitWidth = ACPI_ACCESS_BIT_WIDTH (Reg->AccessWidth);
    }
    else
    {
        AccessBitWidth = ACPI_ROUND_UP_POWER_OF_TWO_8 (
            Reg->BitOffset + Reg->BitWidth);
        if (AccessBitWidth <= 8)
        {
            AccessBitWidth = 8;
        }
        else
        {
            while (!ACPI_IS_ALIGNED (Address, AccessBitWidth >> 3))
            {
                AccessBitWidth >>= 1;
            }
        }
    }

    /* Maximum IO port access bit width is 32 */

    if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_IO)
    {
        MaxBitWidth = 32;
    }

    /*
     * Return access width according to the requested maximum access bit width,
     * as the caller should know the format of the register and may enforce
     * a 32-bit accesses.
     */
    if (AccessBitWidth < MaxBitWidth)
    {
        return (AccessBitWidth);
    }
    return (MaxBitWidth);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwValidateRegister
 *
 * PARAMETERS:  Reg                 - GAS register structure
 *              MaxBitWidth         - Max BitWidth supported (32 or 64)
 *              Address             - Pointer to where the gas->address
 *                                    is returned
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Validate the contents of a GAS register. Checks the GAS
 *              pointer, Address, SpaceId, BitWidth, and BitOffset.
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwValidateRegister (
    ACPI_GENERIC_ADDRESS    *Reg,
    UINT8                   MaxBitWidth,
    UINT64                  *Address)
{
    UINT8                   BitWidth;
    UINT8                   AccessWidth;


    /* Must have a valid pointer to a GAS structure */

    if (!Reg)
    {
        return (AE_BAD_PARAMETER);
    }

    /*
     * Copy the target address. This handles possible alignment issues.
     * Address must not be null. A null address also indicates an optional
     * ACPI register that is not supported, so no error message.
     */
    *Address =  Reg->Address;
    if (!(*Address))
    {
        return (AE_BAD_ADDRESS);
    }

    /* Validate the SpaceID */

    if ((Reg->SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) &&
        (Reg->SpaceId != ACPI_ADR_SPACE_SYSTEM_IO))
    {
        ACPI_ERROR ((AE_INFO,
            "Unsupported address space: 0x%X", Reg->SpaceId));
        return (AE_SUPPORT);
    }

    /* Validate the AccessWidth */

    if (Reg->AccessWidth > 4)
    {
        ACPI_ERROR ((AE_INFO,
            "Unsupported register access width: 0x%X", Reg->AccessWidth));
        return (AE_SUPPORT);
    }

    /* Validate the BitWidth, convert AccessWidth into number of bits */

    AccessWidth = AcpiHwGetAccessBitWidth (*Address, Reg, MaxBitWidth);
    BitWidth = ACPI_ROUND_UP (Reg->BitOffset + Reg->BitWidth, AccessWidth);
    if (MaxBitWidth < BitWidth)
    {
        ACPI_WARNING ((AE_INFO,
            "Requested bit width 0x%X is smaller than register bit width 0x%X",
            MaxBitWidth, BitWidth));
        return (AE_SUPPORT);
    }

    return (AE_OK);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwRead
 *
 * PARAMETERS:  Value               - Where the value is returned
 *              Reg                 - GAS register structure
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Read from either memory or IO space. This is a 64-bit max
 *              version of AcpiRead.
 *
 * LIMITATIONS: <These limitations also apply to AcpiHwWrite>
 *      SpaceID must be SystemMemory or SystemIO.
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwRead (
    UINT64                  *Value,
    ACPI_GENERIC_ADDRESS    *Reg)
{
    UINT64                  Address;
    UINT8                   AccessWidth;
    UINT32                  BitWidth;
    UINT8                   BitOffset;
    UINT64                  Value64;
    UINT32                  Value32;
    UINT8                   Index;
    ACPI_STATUS             Status;


    ACPI_FUNCTION_NAME (HwRead);


    /* Validate contents of the GAS register */

    Status = AcpiHwValidateRegister (Reg, 64, &Address);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }

    /*
     * Initialize entire 64-bit return value to zero, convert AccessWidth
     * into number of bits based
     */
    *Value = 0;
    AccessWidth = AcpiHwGetAccessBitWidth (Address, Reg, 64);
    BitWidth = Reg->BitOffset + Reg->BitWidth;
    BitOffset = Reg->BitOffset;

    /*
     * Two address spaces supported: Memory or IO. PCI_Config is
     * not supported here because the GAS structure is insufficient
     */
    Index = 0;
    while (BitWidth)
    {
        if (BitOffset >= AccessWidth)
        {
            Value64 = 0;
            BitOffset -= AccessWidth;
        }
        else
        {
            if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
            {
                Status = AcpiOsReadMemory ((ACPI_PHYSICAL_ADDRESS)
                    Address + Index * ACPI_DIV_8 (AccessWidth),
                    &Value64, AccessWidth);
            }
            else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
            {
                Status = AcpiHwReadPort ((ACPI_IO_ADDRESS)
                    Address + Index * ACPI_DIV_8 (AccessWidth),
                    &Value32, AccessWidth);
                Value64 = (UINT64) Value32;
            }
        }

        /*
         * Use offset style bit writes because "Index * AccessWidth" is
         * ensured to be less than 64-bits by AcpiHwValidateRegister().
         */
        ACPI_SET_BITS (Value, Index * AccessWidth,
            ACPI_MASK_BITS_ABOVE_64 (AccessWidth), Value64);

        BitWidth -= BitWidth > AccessWidth ? AccessWidth : BitWidth;
        Index++;
    }

    ACPI_DEBUG_PRINT ((ACPI_DB_IO,
        "Read:  %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n",
        ACPI_FORMAT_UINT64 (*Value), AccessWidth,
        ACPI_FORMAT_UINT64 (Address), AcpiUtGetRegionName (Reg->SpaceId)));

    return (Status);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwWrite
 *
 * PARAMETERS:  Value               - Value to be written
 *              Reg                 - GAS register structure
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Write to either memory or IO space. This is a 64-bit max
 *              version of AcpiWrite.
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwWrite (
    UINT64                  Value,
    ACPI_GENERIC_ADDRESS    *Reg)
{
    UINT64                  Address;
    UINT8                   AccessWidth;
    UINT32                  BitWidth;
    UINT8                   BitOffset;
    UINT64                  Value64;
    UINT8                   Index;
    ACPI_STATUS             Status;


    ACPI_FUNCTION_NAME (HwWrite);


    /* Validate contents of the GAS register */

    Status = AcpiHwValidateRegister (Reg, 64, &Address);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }

    /* Convert AccessWidth into number of bits based */

    AccessWidth = AcpiHwGetAccessBitWidth (Address, Reg, 64);
    BitWidth = Reg->BitOffset + Reg->BitWidth;
    BitOffset = Reg->BitOffset;

    /*
     * Two address spaces supported: Memory or IO. PCI_Config is
     * not supported here because the GAS structure is insufficient
     */
    Index = 0;
    while (BitWidth)
    {
        /*
         * Use offset style bit reads because "Index * AccessWidth" is
         * ensured to be less than 64-bits by AcpiHwValidateRegister().
         */
        Value64 = ACPI_GET_BITS (&Value, Index * AccessWidth,
            ACPI_MASK_BITS_ABOVE_64 (AccessWidth));

        if (BitOffset >= AccessWidth)
        {
            BitOffset -= AccessWidth;
        }
        else
        {
            if (Reg->SpaceId == ACPI_ADR_SPACE_SYSTEM_MEMORY)
            {
                Status = AcpiOsWriteMemory ((ACPI_PHYSICAL_ADDRESS)
                    Address + Index * ACPI_DIV_8 (AccessWidth),
                    Value64, AccessWidth);
            }
            else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
            {
                Status = AcpiHwWritePort ((ACPI_IO_ADDRESS)
                    Address + Index * ACPI_DIV_8 (AccessWidth),
                    (UINT32) Value64, AccessWidth);
            }
        }

        /*
         * Index * AccessWidth is ensured to be less than 32-bits by
         * AcpiHwValidateRegister().
         */
        BitWidth -= BitWidth > AccessWidth ? AccessWidth : BitWidth;
        Index++;
    }

    ACPI_DEBUG_PRINT ((ACPI_DB_IO,
        "Wrote: %8.8X%8.8X width %2d   to %8.8X%8.8X (%s)\n",
        ACPI_FORMAT_UINT64 (Value), AccessWidth,
        ACPI_FORMAT_UINT64 (Address), AcpiUtGetRegionName (Reg->SpaceId)));

    return (Status);
}


#if (!ACPI_REDUCED_HARDWARE)
/*******************************************************************************
 *
 * FUNCTION:    AcpiHwClearAcpiStatus
 *
 * PARAMETERS:  None
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Clears all fixed and general purpose status bits
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwClearAcpiStatus (
    void)
{
    ACPI_STATUS             Status;
    ACPI_CPU_FLAGS          LockFlags = 0;


    ACPI_FUNCTION_TRACE (HwClearAcpiStatus);


    ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %04X to %8.8X%8.8X\n",
        (UINT32) ACPI_BITMASK_ALL_FIXED_STATUS,
        ACPI_FORMAT_UINT64 (AcpiGbl_XPm1aStatus.Address)));

    LockFlags = AcpiOsAcquireLock (AcpiGbl_HardwareLock);

    /* Clear the fixed events in PM1 A/B */

    Status = AcpiHwRegisterWrite (ACPI_REGISTER_PM1_STATUS,
        ACPI_BITMASK_ALL_FIXED_STATUS);

    AcpiOsReleaseLock (AcpiGbl_HardwareLock, LockFlags);

    if (ACPI_FAILURE (Status))
    {
        goto Exit;
    }

    /* Clear the GPE Bits in all GPE registers in all GPE blocks */

    Status = AcpiEvWalkGpeList (AcpiHwClearGpeBlock, NULL);

Exit:
    return_ACPI_STATUS (Status);
}


/*******************************************************************************
 *
 * FUNCTION:    AcpiHwGetBitRegisterInfo
 *
 * PARAMETERS:  RegisterId          - Index of ACPI Register to access
 *
 * RETURN:      The bitmask to be used when accessing the register
 *
 * DESCRIPTION: Map RegisterId into a register bitmask.
 *
 ******************************************************************************/

ACPI_BIT_REGISTER_INFO *
AcpiHwGetBitRegisterInfo (
    UINT32                  RegisterId)
{
    ACPI_FUNCTION_ENTRY ();


    if (RegisterId > ACPI_BITREG_MAX)
    {
        ACPI_ERROR ((AE_INFO, "Invalid BitRegister ID: 0x%X", RegisterId));
        return (NULL);
    }

    return (&AcpiGbl_BitRegisterInfo[RegisterId]);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwWritePm1Control
 *
 * PARAMETERS:  Pm1aControl         - Value to be written to PM1A control
 *              Pm1bControl         - Value to be written to PM1B control
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Write the PM1 A/B control registers. These registers are
 *              different than than the PM1 A/B status and enable registers
 *              in that different values can be written to the A/B registers.
 *              Most notably, the SLP_TYP bits can be different, as per the
 *              values returned from the _Sx predefined methods.
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwWritePm1Control (
    UINT32                  Pm1aControl,
    UINT32                  Pm1bControl)
{
    ACPI_STATUS             Status;


    ACPI_FUNCTION_TRACE (HwWritePm1Control);


    Status = AcpiHwWrite (Pm1aControl, &AcpiGbl_FADT.XPm1aControlBlock);
    if (ACPI_FAILURE (Status))
    {
        return_ACPI_STATUS (Status);
    }

    if (AcpiGbl_FADT.XPm1bControlBlock.Address)
    {
        Status = AcpiHwWrite (Pm1bControl, &AcpiGbl_FADT.XPm1bControlBlock);
    }
    return_ACPI_STATUS (Status);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwRegisterRead
 *
 * PARAMETERS:  RegisterId          - ACPI Register ID
 *              ReturnValue         - Where the register value is returned
 *
 * RETURN:      Status and the value read.
 *
 * DESCRIPTION: Read from the specified ACPI register
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwRegisterRead (
    UINT32                  RegisterId,
    UINT32                  *ReturnValue)
{
    UINT32                  Value = 0;
    UINT64                  Value64;
    ACPI_STATUS             Status;


    ACPI_FUNCTION_TRACE (HwRegisterRead);


    switch (RegisterId)
    {
    case ACPI_REGISTER_PM1_STATUS:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
            &AcpiGbl_XPm1aStatus,
            &AcpiGbl_XPm1bStatus);
        break;

    case ACPI_REGISTER_PM1_ENABLE:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
            &AcpiGbl_XPm1aEnable,
            &AcpiGbl_XPm1bEnable);
        break;

    case ACPI_REGISTER_PM1_CONTROL:          /* PM1 A/B: 16-bit access each */

        Status = AcpiHwReadMultiple (&Value,
            &AcpiGbl_FADT.XPm1aControlBlock,
            &AcpiGbl_FADT.XPm1bControlBlock);

        /*
         * Zero the write-only bits. From the ACPI specification, "Hardware
         * Write-Only Bits": "Upon reads to registers with write-only bits,
         * software masks out all write-only bits."
         */
        Value &= ~ACPI_PM1_CONTROL_WRITEONLY_BITS;
        break;

    case ACPI_REGISTER_PM2_CONTROL:          /* 8-bit access */

        Status = AcpiHwRead (&Value64, &AcpiGbl_FADT.XPm2ControlBlock);
        if (ACPI_SUCCESS (Status))
        {
            Value = (UINT32) Value64;
        }
        break;

    case ACPI_REGISTER_PM_TIMER:             /* 32-bit access */

        Status = AcpiHwRead (&Value64, &AcpiGbl_FADT.XPmTimerBlock);
        if (ACPI_SUCCESS (Status))
        {
            Value = (UINT32) Value64;
        }

        break;

    case ACPI_REGISTER_SMI_COMMAND_BLOCK:    /* 8-bit access */

        Status = AcpiHwReadPort (AcpiGbl_FADT.SmiCommand, &Value, 8);
        break;

    default:

        ACPI_ERROR ((AE_INFO, "Unknown Register ID: 0x%X",
            RegisterId));
        Status = AE_BAD_PARAMETER;
        break;
    }

    if (ACPI_SUCCESS (Status))
    {
        *ReturnValue = (UINT32) Value;
    }

    return_ACPI_STATUS (Status);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwRegisterWrite
 *
 * PARAMETERS:  RegisterId          - ACPI Register ID
 *              Value               - The value to write
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Write to the specified ACPI register
 *
 * NOTE: In accordance with the ACPI specification, this function automatically
 * preserves the value of the following bits, meaning that these bits cannot be
 * changed via this interface:
 *
 * PM1_CONTROL[0] = SCI_EN
 * PM1_CONTROL[9]
 * PM1_STATUS[11]
 *
 * ACPI References:
 * 1) Hardware Ignored Bits: When software writes to a register with ignored
 *      bit fields, it preserves the ignored bit fields
 * 2) SCI_EN: OSPM always preserves this bit position
 *
 ******************************************************************************/

ACPI_STATUS
AcpiHwRegisterWrite (
    UINT32                  RegisterId,
    UINT32                  Value)
{
    ACPI_STATUS             Status;
    UINT32                  ReadValue;
    UINT64                  ReadValue64;


    ACPI_FUNCTION_TRACE (HwRegisterWrite);


    switch (RegisterId)
    {
    case ACPI_REGISTER_PM1_STATUS:           /* PM1 A/B: 16-bit access each */
        /*
         * Handle the "ignored" bit in PM1 Status. According to the ACPI
         * specification, ignored bits are to be preserved when writing.
         * Normally, this would mean a read/modify/write sequence. However,
         * preserving a bit in the status register is different. Writing a
         * one clears the status, and writing a zero preserves the status.
         * Therefore, we must always write zero to the ignored bit.
         *
         * This behavior is clarified in the ACPI 4.0 specification.
         */
        Value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;

        Status = AcpiHwWriteMultiple (Value,
            &AcpiGbl_XPm1aStatus,
            &AcpiGbl_XPm1bStatus);
        break;

    case ACPI_REGISTER_PM1_ENABLE:           /* PM1 A/B: 16-bit access each */

        Status = AcpiHwWriteMultiple (Value,
            &AcpiGbl_XPm1aEnable,
            &AcpiGbl_XPm1bEnable);
        break;

    case ACPI_REGISTER_PM1_CONTROL:          /* PM1 A/B: 16-bit access each */
        /*
         * Perform a read first to preserve certain bits (per ACPI spec)
         * Note: This includes SCI_EN, we never want to change this bit
         */
        Status = AcpiHwReadMultiple (&ReadValue,
            &AcpiGbl_FADT.XPm1aControlBlock,
            &AcpiGbl_FADT.XPm1bControlBlock);
        if (ACPI_FAILURE (Status))
        {
            goto Exit;
        }

        /* Insert the bits to be preserved */

        ACPI_INSERT_BITS (Value, ACPI_PM1_CONTROL_PRESERVED_BITS, ReadValue);

        /* Now we can write the data */

        Status = AcpiHwWriteMultiple (Value,
            &AcpiGbl_FADT.XPm1aControlBlock,
            &AcpiGbl_FADT.XPm1bControlBlock);
        break;

    case ACPI_REGISTER_PM2_CONTROL:          /* 8-bit access */
        /*
         * For control registers, all reserved bits must be preserved,
         * as per the ACPI spec.
         */
        Status = AcpiHwRead (&ReadValue64, &AcpiGbl_FADT.XPm2ControlBlock);
        if (ACPI_FAILURE (Status))
        {
            goto Exit;
        }
        ReadValue = (UINT32) ReadValue64;

        /* Insert the bits to be preserved */

        ACPI_INSERT_BITS (Value, ACPI_PM2_CONTROL_PRESERVED_BITS, ReadValue);

        Status = AcpiHwWrite (Value, &AcpiGbl_FADT.XPm2ControlBlock);
        break;

    case ACPI_REGISTER_PM_TIMER:             /* 32-bit access */

        Status = AcpiHwWrite (Value, &AcpiGbl_FADT.XPmTimerBlock);
        break;

    case ACPI_REGISTER_SMI_COMMAND_BLOCK:    /* 8-bit access */

        /* SMI_CMD is currently always in IO space */

        Status = AcpiHwWritePort (AcpiGbl_FADT.SmiCommand, Value, 8);
        break;

    default:

        ACPI_ERROR ((AE_INFO, "Unknown Register ID: 0x%X",
            RegisterId));
        Status = AE_BAD_PARAMETER;
        break;
    }

Exit:
    return_ACPI_STATUS (Status);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwReadMultiple
 *
 * PARAMETERS:  Value               - Where the register value is returned
 *              RegisterA           - First ACPI register (required)
 *              RegisterB           - Second ACPI register (optional)
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B)
 *
 ******************************************************************************/

static ACPI_STATUS
AcpiHwReadMultiple (
    UINT32                  *Value,
    ACPI_GENERIC_ADDRESS    *RegisterA,
    ACPI_GENERIC_ADDRESS    *RegisterB)
{
    UINT32                  ValueA = 0;
    UINT32                  ValueB = 0;
    UINT64                  Value64;
    ACPI_STATUS             Status;


    /* The first register is always required */

    Status = AcpiHwRead (&Value64, RegisterA);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }
    ValueA = (UINT32) Value64;

    /* Second register is optional */

    if (RegisterB->Address)
    {
        Status = AcpiHwRead (&Value64, RegisterB);
        if (ACPI_FAILURE (Status))
        {
            return (Status);
        }
        ValueB = (UINT32) Value64;
    }

    /*
     * OR the two return values together. No shifting or masking is necessary,
     * because of how the PM1 registers are defined in the ACPI specification:
     *
     * "Although the bits can be split between the two register blocks (each
     * register block has a unique pointer within the FADT), the bit positions
     * are maintained. The register block with unimplemented bits (that is,
     * those implemented in the other register block) always returns zeros,
     * and writes have no side effects"
     */
    *Value = (ValueA | ValueB);
    return (AE_OK);
}


/******************************************************************************
 *
 * FUNCTION:    AcpiHwWriteMultiple
 *
 * PARAMETERS:  Value               - The value to write
 *              RegisterA           - First ACPI register (required)
 *              RegisterB           - Second ACPI register (optional)
 *
 * RETURN:      Status
 *
 * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B)
 *
 ******************************************************************************/

static ACPI_STATUS
AcpiHwWriteMultiple (
    UINT32                  Value,
    ACPI_GENERIC_ADDRESS    *RegisterA,
    ACPI_GENERIC_ADDRESS    *RegisterB)
{
    ACPI_STATUS             Status;


    /* The first register is always required */

    Status = AcpiHwWrite (Value, RegisterA);
    if (ACPI_FAILURE (Status))
    {
        return (Status);
    }

    /*
     * Second register is optional
     *
     * No bit shifting or clearing is necessary, because of how the PM1
     * registers are defined in the ACPI specification:
     *
     * "Although the bits can be split between the two register blocks (each
     * register block has a unique pointer within the FADT), the bit positions
     * are maintained. The register block with unimplemented bits (that is,
     * those implemented in the other register block) always returns zeros,
     * and writes have no side effects"
     */
    if (RegisterB->Address)
    {
        Status = AcpiHwWrite (Value, RegisterB);
    }

    return (Status);
}

#endif /* !ACPI_REDUCED_HARDWARE */