1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <libacpi.h>
#include "error.h"
void emit_ts(void)
{
time_t now = time(NULL);
printf("%s", ctime(&now));
}
void header(char *header_shown)
{
if (!*header_shown)
{
emit_ts();
*header_shown = 1;
}
}
void emit_battery(global_t *globals, char *header_shown)
{
int loop;
static int *prevs = NULL;
if (!prevs)
{
int bytes = sizeof(int) * globals -> batt_count;
prevs = malloc(bytes);
memset(prevs, 0x00, bytes);
}
for(loop=0; loop<globals -> batt_count; loop++)
{
int rc = read_acpi_batt(loop);
if (rc == ITEM_EXCEED)
break;
if (rc == ALLOC_ERR)
error_exit("reac_acpi_batt(%d) failed\n", loop);
if (prevs[loop] != batteries[loop].percentage)
{
header(header_shown);
printf("%s remaining capacity: %d%% (%d minutes)\n", batteries[loop].name, batteries[loop].percentage, batteries[loop].remaining_time);
prevs[loop] = batteries[loop].percentage;
}
}
}
char * power_state_str(power_state_t ps)
{
switch(ps)
{
case P_AC:
return "AC";
case P_BATT:
return "batteries";
case P_ERR:
return "error";
}
return "?";
}
void emit_acstate(global_t *globals, char *header_shown)
{
static int prev_state = -1;
read_acpi_acstate(globals);
if (prev_state != globals -> adapt.ac_state)
{
header(header_shown);
printf("Adapter %s: %s\n", globals -> adapt.name, power_state_str(globals -> adapt.ac_state));
prev_state = globals -> adapt.ac_state;
}
}
char * thermal_state_str(thermal_state_t ts)
{
switch(ts)
{
case T_CRIT:
return "critical temperature, will switch to S4";
case T_HOT:
return "high temperature, will shutdown immediately";
case T_PASS:
return "passive cooling";
case T_ACT:
return "active cooling";
case T_OK:
return "ok";
case T_ERR:
return "error";
}
return "?";
}
void emit_zone(global_t *globals, char *header_shown)
{
int loop;
static int *prevs = NULL;
static int *prevs_ts = NULL;
if (!prevs)
{
int bytes = sizeof(int) * globals -> thermal_count;
prevs = malloc(bytes);
prevs_ts = malloc(bytes);
memset(prevs, 0x00, bytes);
memset(prevs_ts, 0x00, bytes);
}
for(loop=0; loop<globals -> thermal_count; loop++)
{
int rc = read_acpi_zone(loop, globals);
if (rc == ITEM_EXCEED)
break;
if (rc == ALLOC_ERR)
error_exit("reac_acpi_zone(%d) failed\n", loop);
if (prevs[loop] != thermals[loop].temperature ||
prevs_ts[loop] != thermals[loop].therm_state)
{
header(header_shown);
printf("temperature %s: %d (%s)\n", thermals[loop].name, thermals[loop].temperature, thermal_state_str(thermals[loop].therm_state));
prevs[loop] = thermals[loop].temperature;
prevs_ts[loop] = thermals[loop].therm_state;
}
}
}
char * fan_state_str(fan_state_t fs)
{
switch(fs)
{
case F_ON:
return "on";
case F_OFF:
return "off";
case F_ERR:
return "error state";
}
return "?";
}
void emit_fan(global_t *globals, char *header_shown)
{
int loop;
static int *prevs = NULL;
if (!prevs)
{
int bytes = sizeof(int) * globals -> fan_count;
prevs = malloc(bytes);
memset(prevs, 0x00, bytes);
}
for(loop=0; loop<globals -> fan_count; loop++)
{
int rc = read_acpi_fan(loop);
if (rc == ITEM_EXCEED)
break;
if (rc == ALLOC_ERR)
error_exit("reac_acpi_fan(%d) failed\n", loop);
if (prevs[loop] != fans[loop].fan_state)
{
header(header_shown);
printf("fan %s: %s\n", fans[loop].name, fan_state_str(fans[loop].fan_state));
prevs[loop] = fans[loop].fan_state;
}
}
}
|