1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
%$Id: dc.tex,v 1.1 96/03/24 11:12:52 al Exp $
% man commands dc .
%------------------------------------------------------------------------
\section{{\tt DC} command}
\index{dc command}
\index{transfer characteristics}
\index{nonlinear transfer analysis}
%------------------------------------------------------------------------
\subsection{Syntax}
\begin{verse}
{\tt DC} {\it start stop stepsize} \{{\it options} ...\}\\
{\tt DC} {\it label start stop stepsize} \{{\it options} ...\}
\end{verse}
%------------------------------------------------------------------------
\subsection{Purpose}
Performs a nonlinear DC steady state analysis, and sweeps the signal input,
or a component value.
%------------------------------------------------------------------------
\subsection{Status}
Nesting of sweeps is not supported. (SPICE supports two
levels of nesting.)
%------------------------------------------------------------------------
\subsection{Comments}
The nodes to look at must have been previously selected by the {\tt print} or
{\tt plot} command.
If there are numeric arguments, without a part label, they represent a ramp
from the {\tt generator} function. They are the start value, stop value
and step size, in order. They are saved between commands, so no arguments
will repeat the previous sweep.
A single parameter represents a single input voltage. Two parameters
instruct the computer to analyze for those two points only.
In some cases, you will get one more step outside the specified range of
inputs due to internal rounding errors. The last input may be beyond the end
point.
This command also sets up a movable operating point for subsequent {\tt AC}
analysis, which can be helpful in distortion analysis.
The program will sweep any simple component, including resistors,
capacitors, and controlled sources. SPICE sweeps only fixed sources (types
{\tt V} and {\tt I}).
%------------------------------------------------------------------------
\subsection{Options}
\begin{description}
\item[{\tt *} {\it multiplier}] Log sweep. Multiply the
input by {\it multiplier} to get the next step. Do not
pass zero volts!!
\item[{\tt >} {\it file}] Send results of analysis to {\it file}.
\item[{\tt >>} {\it file}] Append results to {\it file}.
%%%\item[{\tt ACMAx}] Use worst case max values, per last
%%%{\tt AC} analysis.
%%%\item[{\tt ACMIn}] Use worst case min values, per last
%%%{\tt AC} analysis.
\item[{\tt BY} {\it stepsize}] Linear sweep. Add {\it
stepsize} to get the next step.
\item[{\tt Continue}] Use the last step of a {\tt OP},
{\tt DC} or {\tt Transient} analysis as the first guess.
%%%\item[{\tt DCMAx}] Use worst case max values, per last
%%%{\tt DC} or {\tt OP} analysis.
%%%\item[{\tt DCMIn}] Use worst case min values, per last
%%%{\tt DC} or {\tt OP} analysis.
\item[{\tt Decade} {\it steps}] Log sweep. Use {\it
steps} steps per decade.
%%%\item[{\tt Input} {\it volts}] Apply {\it volts} input to
%%%the circuit, instead of the sweep. It will not forget the
%%%old sweep parameters.
%%%\item[{\tt LAg}] Use worst case values, for lagging phase,
%%% per {\tt AC} analysis.
%%%\item[{\tt LEad}] Use worst case values, for leading
%%% phase, per {\tt AC} analysis.
\item[{\tt LOop}] Repeat the sweep, backwards.
%%%\item[{\tt MAx}] Use worst case max values, per same type
%%%({\tt OP} or {\tt DC}) analysis. (Same as {\tt DCMAx},
%%% here.)
%%%\item[{\tt MIn}] Use worst case min values, per same type
%%%({\tt OP} or {\tt DC}) analysis. (Same as {\tt DCMIn},
%%% here.)
%%%\item[{\tt MCarlo} {\it trials}] Monte-Carlo analysis.
%%% Simulate {\it trials} circuits; compile statistics. Hide
%%% individual trials.
\item[{\tt NOPlot}] Suppress plotting.
\item[{\tt PLot}] Graphic output, when plotting is
normally off.
\item[{\tt Print}] Send results to printer.
\item[{\tt Quiet}] Suppress console output.
%%%\item[{\tt Random} {\it trials}] Simulate {\it trials}
%%% circuits using random values.
\item[{\tt REverse}] Sweep in the opposite direction.
%%%\item[{\tt TAble}] Tabular output. Override default plot.
\item[{\tt TEmperature} {\it degrees}] Temperature,
degrees C.
\item[{\tt Times} {\it multiplier}] Log sweep. Multiply
the input by {\it multiplier} to get the next step. Do
not pass zero volts!!
\item[{\tt TRace} {\it n}] Show extended information during solution.
\begin{description}
\item[4] Show every iteration.
\item[5] Show extended diagnostics.
\end{description}
%%%\item[{\tt WOrstcase} {\it probe}] Worst case analysis, at
%%%{\it probe}.
\end{description}
%------------------------------------------------------------------------
\subsection{Examples}
\begin{description}
\item[{\tt dc 1}] Do a single point DC signal simulation, with {`1 volt'}
input.
\item[{\tt dc -10 15 1}] Sweep the circuit input from -10 to +15 in steps of
1. (usually volts.) Do a DC transfer simulation at each step.
\item[{\tt dc}] With no parameters, it uses the same ones as the last time.
In this case, from -10 to 15 in 1\ volt steps.
\item[{\tt dc 20 0 -2}] You can sweep downward, by asking for a negative
increment. Sometimes, this will result in better convergence, or even
different results! (For example, in the case of a bi-stable circuit.)
%%%\item[{\tt dc input 2.3}] Apply an input to the circuit of 2.3 volts. This
%%%overrides the sweep, for now. It isn't remembered for next time. Also,
%%%since it is a single point, you will get a table, rather than a plot.
\item[{\tt dc}] Since the last time used the {\tt input} option, go back one
more to find what the sweep parameters were. In this case, downward from 20
to 0 in steps of 2. (Because we did it 2 commands ago.)
\item[{\tt dc -2 2 .1 loop}] After the sweep, do it again in the opposite
direction. In this case, the sweep is -2 to +2 in steps of .1. After it
gets to +2, it will go back, and sweep from +2 to -2 in steps of -.1. The
plot will be superimposed on the up sweep. This way, you can see hysteresis
in the circuit.
\item[{\tt dc temperature 75}] Simulate at 75 degrees, this time. Since we
didn't specify new sweep parameters, do the same as last time. (Without the
loop.)
%%%\item[{\tt dc 1 worstcase v r12}] A worst case analysis
%%% for voltage across the resistor {\tt R12}, with input of 1.
\end{description}
%------------------------------------------------------------------------
%------------------------------------------------------------------------
|