File: opencvalgorithms.cpp

package info (click to toggle)
actionaz 3.8.0-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 5,608 kB
  • ctags: 6,390
  • sloc: cpp: 44,713; ansic: 82; xml: 17; makefile: 14; sh: 10
file content (407 lines) | stat: -rw-r--r-- 14,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
	Actionaz
	Copyright (C) 2008-2014 Jonathan Mercier-Ganady

	Actionaz is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.

	Actionaz is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program. If not, see <http://www.gnu.org/licenses/>.

	Contact : jmgr@jmgr.info
*/

#include <QtGlobal>

#include <opencv2/opencv.hpp>

#include "opencvalgorithms.h"

#include <boost/bind.hpp>

#include <QtConcurrentRun>

namespace ActionTools
{
	OpenCVAlgorithms::OpenCVAlgorithms(QObject *parent)
		: QObject(parent),
		  mError(NoError)
	{
		qRegisterMetaType<MatchingPointList>("MatchingPointList");
	}

    bool OpenCVAlgorithms::findSubImageAsync(const QList<QImage> &sources,
                      const QImage &target,
                      int matchPercentage,
                      int maximumMatches,
                      int downPyrs,
                      int searchExpansion,
                      AlgorithmMethod method)
	{
		mError = NoError;
		mErrorString.clear();

		if(mFuture.isRunning())
		{
			mError = AlreadyRunningError;
			mErrorString = tr("FindSubImage is already running");

			return false;
		}

        QList<cv::Mat> sourcesMat;
        sourcesMat.reserve(sources.size());

        foreach(const QImage &source, sources)
            sourcesMat.append(toCVMat(source));

        cv::Mat targetMat = toCVMat(target);

        if(!checkInputImages(sourcesMat, targetMat))
			return false;

        connect(&mFutureWatcher, SIGNAL(finished()), this, SLOT(finished()));

        mFuture = QtConcurrent::run(boost::bind(&OpenCVAlgorithms::fastMatchTemplate, this, sourcesMat, targetMat, matchPercentage, maximumMatches, downPyrs, searchExpansion, method));
		mFutureWatcher.setFuture(mFuture);

		return true;
	}

    bool OpenCVAlgorithms::findSubImage(const QList<QImage> &sources,
                      const QImage &target,
                      MatchingPointList &matchingPoints,
                      int matchPercentage,
                      int maximumMatches,
                      int downPyrs,
                      int searchExpansion,
                      AlgorithmMethod method)
	{
		mError = NoError;
		mErrorString.clear();

        QList<cv::Mat> sourcesMat;
        sourcesMat.reserve(sources.size());

        foreach(const QImage &source, sources)
            sourcesMat.append(toCVMat(source));

        cv::Mat targetMat = toCVMat(target);

        if(!checkInputImages(sourcesMat, targetMat))
			return false;

        matchingPoints = OpenCVAlgorithms::fastMatchTemplate(sourcesMat, targetMat, matchPercentage, maximumMatches, downPyrs, searchExpansion, method);

        return true;
    }

    void OpenCVAlgorithms::cancelSearch()
    {
        mFutureWatcher.cancel();
        mFutureWatcher.disconnect();
    }

	void OpenCVAlgorithms::finished()
	{
		emit finished(mFutureWatcher.result());
	}

    bool OpenCVAlgorithms::checkInputImages(const QList<cv::Mat> &sources, const cv::Mat &target)
	{
        foreach(const cv::Mat &source, sources)
        {
            // make sure that the template image is smaller than the source
            if(target.size().width > source.size().width ||
               target.size().height > source.size().height)
            {
                mError = SourceImageSmallerThanTargerImageError;
                mErrorString = tr("Source images must be larger than target image");

                return false;
            }

            if(source.depth() != target.depth())
            {
                mError = NotSameDepthError;
                mErrorString = tr("Source images and target image must have same depth");

                return false;
            }

            if(source.channels() != target.channels())
            {
                mError = NotSameChannelCountError;
                mErrorString = tr("Source images and target image must have same number of channels");

                return false;
            }
        }

		return true;
	}

    MatchingPointList OpenCVAlgorithms::fastMatchTemplate(const QList<cv::Mat> &sources,
                                                                            const cv::Mat &target,
																			int matchPercentage,
																			int maximumMatches,
																			int downPyrs,
                                                                            int searchExpansion,
                                                                            AlgorithmMethod method)
	{
        MatchingPointList matchingPointList;
        int sourceIndex = 0;

        foreach(const cv::Mat &source, sources)
        {
            try
            {
                // create copies of the images to modify
                cv::Mat copyOfSource = source.clone();
                cv::Mat copyOfTarget = target.clone();

                cv::Size sourceSize = source.size();
                cv::Size targetSize = target.size();

                // down pyramid the images
                for(int ii = 0; ii < downPyrs; ii++)
                {
                    // start with the source image
                    sourceSize.width  = (sourceSize.width  + 1) / 2;
                    sourceSize.height = (sourceSize.height + 1) / 2;

                    cv::Mat smallSource(sourceSize, source.type());
                    cv::pyrDown(copyOfSource, smallSource);

                    // prepare for next loop, if any
                    copyOfSource = smallSource.clone();

                    // next, do the target
                    targetSize.width  = (targetSize.width  + 1) / 2;
                    targetSize.height = (targetSize.height + 1) / 2;

                    cv::Mat smallTarget(targetSize, target.type());
                    pyrDown(copyOfTarget, smallTarget);

                    // prepare for next loop, if any
                    copyOfTarget = smallTarget.clone();
                }

                // perform the match on the shrunken images
                cv::Size smallTargetSize = copyOfTarget.size();
                cv::Size smallSourceSize = copyOfSource.size();

                cv::Size resultSize;
                resultSize.width = smallSourceSize.width - smallTargetSize.width + 1;
                resultSize.height = smallSourceSize.height - smallTargetSize.height + 1;

                cv::Mat result(resultSize, CV_32FC1);
                cv::matchTemplate(copyOfSource, copyOfTarget, result, toOpenCVMethod(method));

                // find the top match locations
                QVector<QPoint> locations = multipleMinMaxLoc(result, maximumMatches, method);

                // search the large images at the returned locations
                sourceSize = source.size();
                targetSize = target.size();

                int twoPowerNumDownPyrs = std::pow(2.0f, downPyrs);

                // create a copy of the source in order to adjust its ROI for searching
                for(int currMax = 0; currMax < maximumMatches; ++currMax)
                {
                    // transform the point to its corresponding point in the larger image
                    QPoint &currMaxLocation = locations[currMax];
                    currMaxLocation *= twoPowerNumDownPyrs;
                    currMaxLocation.setX(currMaxLocation.x() + targetSize.width / 2);
                    currMaxLocation.setY(currMaxLocation.y() + targetSize.height / 2);

                    const QPoint &searchPoint = locations.at(currMax);

                    // if we are searching for multiple targets and we have found a target or
                    //  multiple targets, we don't want to search in the same location(s) again
                    if(maximumMatches > 1 && !matchingPointList.isEmpty())
                    {
                        bool thisTargetFound = false;

                        for(int currPoint = 0; currPoint < matchingPointList.size(); currPoint++)
                        {
                            const QPoint &foundPoint = matchingPointList.at(currPoint).position;
                            if(std::abs(searchPoint.x() - foundPoint.x()) <= searchExpansion * 2 &&
                               std::abs(searchPoint.y() - foundPoint.y()) <= searchExpansion * 2)
                            {
                                thisTargetFound = true;
                                break;
                            }
                        }

                        // if the current target has been found, continue onto the next point
                        if(thisTargetFound)
                            continue;
                    }

                    // set the source image's ROI to slightly larger than the target image,
                    //  centred at the current point
                    cv::Rect searchRoi;
                    searchRoi.x = searchPoint.x() - (target.size().width) / 2 - searchExpansion;
                    searchRoi.y = searchPoint.y() - (target.size().height) / 2 - searchExpansion;
                    searchRoi.width = target.size().width + searchExpansion * 2;
                    searchRoi.height = target.size().height + searchExpansion * 2;

                    // make sure ROI doesn't extend outside of image
                    if(searchRoi.x < 0)
                        searchRoi.x = 0;

                    if(searchRoi.y < 0)
                        searchRoi.y = 0;

                    if((searchRoi.x + searchRoi.width) > (sourceSize.width - 1))
                    {
                        int numPixelsOver = (searchRoi.x + searchRoi.width) - (sourceSize.width - 1);

                        searchRoi.width -= numPixelsOver;
                    }

                    if((searchRoi.y + searchRoi.height) > (sourceSize.height - 1))
                    {
                        int numPixelsOver = (searchRoi.y + searchRoi.height) - (sourceSize.height - 1);

                        searchRoi.height -= numPixelsOver;
                    }

                    cv::Mat searchImage(source, searchRoi);

                    // perform the search on the large images
                    resultSize.width = searchRoi.width - target.size().width + 1;
                    resultSize.height = searchRoi.height - target.size().height + 1;

                    result = cv::Mat(resultSize, CV_32FC1);
                    cv::matchTemplate(searchImage, target, result, toOpenCVMethod(method));

                    // find the best match location
                    double minValue;
                    double maxValue;
                    cv::Point minLoc;
                    cv::Point maxLoc;

                    cv::minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc);

                    double &value = (method == SquaredDifferenceMethod) ? minValue : maxValue;
                    cv::Point &loc = (method == SquaredDifferenceMethod) ? minLoc : maxLoc;

                    value *= 100.0;

                    // transform point back to original image
                    loc.x += searchRoi.x + target.size().width / 2;
                    loc.y += searchRoi.y + target.size().height / 2;

                    if(method == SquaredDifferenceMethod)
                        value = 100.0f - value;

                    if(value >= matchPercentage)
                    {
                        // add the point to the list
                        matchingPointList.append(MatchingPoint(QPoint(loc.x, loc.y), value, sourceIndex));

                        // if we are only looking for a single target, we have found it, so we
                        //  can return
                        if(maximumMatches <= 1)
                            break;
                    }
                    else
                        break; // skip the rest
                }
            }
            catch(const cv::Exception &e)
            {
                mError = OpenCVException;
                mErrorString = tr("OpenCV exception: %1").arg(e.what());

                return MatchingPointList();
            }

            ++sourceIndex;
        }

		return matchingPointList;
	}

    QVector<QPoint> OpenCVAlgorithms::multipleMinMaxLoc(const cv::Mat &image, int maximumMatches, AlgorithmMethod method)
	{
		QVector<QPoint> locations(maximumMatches);
        QVector<float> matches(maximumMatches, (method == SquaredDifferenceMethod) ? std::numeric_limits<float>::max() : -std::numeric_limits<float>::max());
		cv::Size size = image.size();

		// extract the raw data for analysis
		for(int y = 0; y < size.height; ++y)
		{
			for(int x = 0; x < size.width; ++x)
			{
				float data = image.at<float>(y, x);

				// insert the data value into the array if it is greater than any of the
				//  other array values, and bump the other values below it, down
				for(int j = 0; j < maximumMatches; ++j)
				{
					// require at least 50% confidence on the sub-sampled image
					// in order to make this as fast as possible
                    if((method == SquaredDifferenceMethod && data < 0.5f && data < matches.at(j)) ||
                       (method != SquaredDifferenceMethod && data > 0.5f && data > matches.at(j)))
					{
						// move the maxima down
						for(int k = maximumMatches - 1; k > j; --k)
						{
                            matches[k] = matches.at(k-1);
							locations[k] = locations.at(k-1);
						}

						// insert the value
                        matches[j] = data;
						locations[j].setX(x);
						locations[j].setY(y);
						break;
					}
				}
			}
		}

		return locations;
	}

    QImage OpenCVAlgorithms::toQImage(const cv::Mat &image)
	{
		return QImage(image.data, image.size().width, image.size().height, image.step, QImage::Format_RGB888).rgbSwapped();
	}

    cv::Mat OpenCVAlgorithms::toCVMat(const QImage &image)
    {
        cv::Mat mat(image.height(), image.width(), CV_8UC4, const_cast<uchar *>(image.bits()), image.bytesPerLine());
        cv::Mat back(mat.rows, mat.cols, CV_8UC3);
        int from_to[] = {0,0,  1,1,  2,2};

        cv::mixChannels(&mat, 1, &back, 1, from_to, 3);

        return back;
    }

    int OpenCVAlgorithms::toOpenCVMethod(OpenCVAlgorithms::AlgorithmMethod method)
    {
        switch(method)
        {
        default:
        case ActionTools::OpenCVAlgorithms::CorrelationCoefficientMethod:
            return CV_TM_CCOEFF_NORMED;
        case ActionTools::OpenCVAlgorithms::CrossCorrelationMethod:
            return CV_TM_CCORR_NORMED;
        case ActionTools::OpenCVAlgorithms::SquaredDifferenceMethod:
            return CV_TM_SQDIFF_NORMED;
        }
    }
}