1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
// This program is a distributed version of the math_actor example.
// Client and server use a stateless request/response protocol and the client
// is failure resilient by using a FIFO request queue.
// The client auto-reconnects and also allows for server reconfiguration.
//
// Run server at port 4242:
// - ./build/bin/distributed_math_actor -s -p 4242
//
// Run client at the same host:
// - ./build/bin/distributed_math_actor -c -p 4242
#include <array>
#include <cassert>
#include <functional>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "caf/all.hpp"
#include "caf/io/all.hpp"
using std::cerr;
using std::cout;
using std::endl;
using std::string;
using namespace caf;
namespace {
constexpr auto task_timeout = std::chrono::seconds(10);
// our "service"
behavior calculator_fun() {
return {
[](add_atom, int a, int b) { return a + b; },
[](sub_atom, int a, int b) { return a - b; },
};
}
// State transition of the client for connecting to the server:
//
// +-------------+
// | init |
// +-------------+
// |
// V
// +-------------+
// | unconnected |<------------------+
// +-------------+ |
// | |
// | {connect Host Port} |
// | |
// V |
// +-------------+ {error} |
// +-------------->| connecting |-------------------+
// | +-------------+ |
// | | |
// | | {ok, Calculator} |
// |{connect Host Port} | |
// | V |
// | +-------------+ {DOWN server} |
// +---------------| running |-------------------+
// +-------------+
namespace client {
// a simple calculator task: operation + operands
struct task {
caf::variant<add_atom, sub_atom> op;
int lhs;
int rhs;
};
// the client queues pending tasks
struct state {
strong_actor_ptr current_server;
std::vector<task> tasks;
};
// prototype definition for unconnected state
behavior unconnected(stateful_actor<state>*);
// prototype definition for transition to `connecting` with Host and Port
void connecting(stateful_actor<state>*, const std::string& host, uint16_t port);
// prototype definition for transition to `running` with Calculator
behavior running(stateful_actor<state>*, const actor& calculator);
// starting point of our FSM
behavior init(stateful_actor<state>* self) {
// transition to `unconnected` on server failure
self->set_down_handler([=](const down_msg& dm) {
if (dm.source == self->state.current_server) {
aout(self) << "*** lost connection to server" << endl;
self->state.current_server = nullptr;
self->become(unconnected(self));
}
});
return unconnected(self);
}
behavior unconnected(stateful_actor<state>* self) {
return {
[=](add_atom op, int x, int y) {
self->state.tasks.emplace_back(task{op, x, y});
},
[=](sub_atom op, int x, int y) {
self->state.tasks.emplace_back(task{op, x, y});
},
[=](connect_atom, const std::string& host, uint16_t port) {
connecting(self, host, port);
},
};
}
void connecting(stateful_actor<state>* self, const std::string& host,
uint16_t port) {
// make sure we are not pointing to an old server
self->state.current_server = nullptr;
// use request().await() to suspend regular behavior until MM responded
auto mm = self->system().middleman().actor_handle();
self->request(mm, infinite, connect_atom_v, host, port)
.await(
[=](const node_id&, strong_actor_ptr serv,
const std::set<std::string>& ifs) {
if (!serv) {
aout(self) << R"(*** no server found at ")" << host << R"(":)" << port
<< endl;
return;
}
if (!ifs.empty()) {
aout(self) << R"(*** typed actor found at ")" << host << R"(":)"
<< port << ", but expected an untyped actor " << endl;
return;
}
aout(self) << "*** successfully connected to server" << endl;
self->state.current_server = serv;
auto hdl = actor_cast<actor>(serv);
self->monitor(hdl);
self->become(running(self, hdl));
},
[=](const error& err) {
aout(self) << R"(*** cannot connect to ")" << host << R"(":)" << port
<< " => " << to_string(err) << endl;
self->become(unconnected(self));
});
}
// prototype definition for transition to `running` with Calculator
behavior running(stateful_actor<state>* self, const actor& calculator) {
auto send_task = [=](atom_value op, int x, int y) {
self->request(calculator, task_timeout, op, x, y)
.then(
[=](int result) {
const char* op_str = op == add_atom_v ? " + " : " - ";
aout(self) << x << op_str << y << " = " << result << endl;
},
[=](const error&) {
// simply try again by enqueueing the task to the mailbox again
self->send(self, op, x, y);
});
};
for (auto& x : self->state.tasks) {
auto f = [&](atom_value op) { send_task(op, x.lhs, x.rhs); };
caf::visit(f, x.op);
}
self->state.tasks.clear();
return {
[=](add_atom op, int x, int y) { send_task(op, x, y); },
[=](sub_atom op, int x, int y) { send_task(op, x, y); },
[=](connect_atom, const std::string& host, uint16_t port) {
connecting(self, host, port);
},
};
}
} // namespace client
// removes leading and trailing whitespaces
string trim(std::string s) {
auto not_space = [](char c) { return isspace(c) == 0; };
// trim left
s.erase(s.begin(), find_if(s.begin(), s.end(), not_space));
// trim right
s.erase(find_if(s.rbegin(), s.rend(), not_space).base(), s.end());
return s;
}
// tries to convert `str` to an int
optional<int> toint(const string& str) {
char* end;
auto result = static_cast<int>(strtol(str.c_str(), &end, 10));
if (end == str.c_str() + str.size())
return result;
return none;
}
// --(rst-config-begin)--
class config : public actor_system_config {
public:
uint16_t port = 0;
std::string host = "localhost";
bool server_mode = false;
config() {
opt_group{custom_options_, "global"}
.add(port, "port,p", "set port")
.add(host, "host,H", "set host (ignored in server mode)")
.add(server_mode, "server-mode,s", "enable server mode");
}
};
// --(rst-config-end)--
void client_repl(actor_system& system, const config& cfg) {
// keeps track of requests and tries to reconnect on server failures
auto usage = [] {
cout << "Usage:" << endl
<< " quit : terminates the program" << endl
<< " connect <host> <port> : connects to a remote actor" << endl
<< " <x> + <y> : adds two integers" << endl
<< " <x> - <y> : subtracts two integers" << endl
<< endl;
};
usage();
bool done = false;
auto client = system.spawn(client::init);
if (!cfg.host.empty() && cfg.port > 0)
anon_send(client, connect_atom_v, cfg.host, cfg.port);
else
cout << "*** no server received via config, "
<< R"(please use "connect <host> <port>" before using the calculator)"
<< endl;
// defining the handler outside the loop is more efficient as it avoids
// re-creating the same object over and over again
message_handler eval{
[&](const string& cmd) {
if (cmd != "quit")
return;
anon_send_exit(client, exit_reason::user_shutdown);
done = true;
},
[&](string& arg0, string& arg1, string& arg2) {
if (arg0 == "connect") {
char* end = nullptr;
auto lport = strtoul(arg2.c_str(), &end, 10);
if (end != arg2.c_str() + arg2.size())
cout << R"(")" << arg2 << R"(" is not an unsigned integer)" << endl;
else if (lport > std::numeric_limits<uint16_t>::max())
cout << R"(")" << arg2 << R"(" > )"
<< std::numeric_limits<uint16_t>::max() << endl;
else
anon_send(client, connect_atom_v, move(arg1),
static_cast<uint16_t>(lport));
} else {
auto x = toint(arg0);
auto y = toint(arg2);
if (x && y) {
if (arg1 == "+")
anon_send(client, add_atom_v, *x, *y);
else if (arg1 == "-")
anon_send(client, sub_atom_v, *x, *y);
}
}
}};
// read next line, split it, and feed to the eval handler
string line;
while (!done && std::getline(std::cin, line)) {
line = trim(std::move(line)); // ignore leading and trailing whitespaces
std::vector<string> words;
split(words, line, is_any_of(" "), token_compress_on);
auto msg = message_builder(words.begin(), words.end()).move_to_message();
if (!eval(msg))
usage();
}
}
void run_server(actor_system& system, const config& cfg) {
auto calc = system.spawn(calculator_fun);
// try to publish math actor at given port
cout << "*** try publish at port " << cfg.port << endl;
auto expected_port = io::publish(calc, cfg.port);
if (!expected_port) {
std::cerr << "*** publish failed: " << to_string(expected_port.error())
<< endl;
return;
}
cout << "*** server successfully published at port " << *expected_port << endl
<< "*** press [enter] to quit" << endl;
string dummy;
std::getline(std::cin, dummy);
cout << "... cya" << endl;
anon_send_exit(calc, exit_reason::user_shutdown);
}
void caf_main(actor_system& system, const config& cfg) {
auto f = cfg.server_mode ? run_server : client_repl;
f(system, cfg);
}
} // namespace
CAF_MAIN(io::middleman)
|