File: data_processor.hpp

package info (click to toggle)
actor-framework 0.17.6-3.2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 9,008 kB
  • sloc: cpp: 77,684; sh: 674; python: 309; makefile: 13
file content (626 lines) | stat: -rw-r--r-- 18,677 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/******************************************************************************
 *                       ____    _    _____                                   *
 *                      / ___|  / \  |  ___|    C++                           *
 *                     | |     / _ \ | |_       Actor                         *
 *                     | |___ / ___ \|  _|      Framework                     *
 *                      \____/_/   \_|_|                                      *
 *                                                                            *
 * Copyright 2011-2018 Dominik Charousset                                     *
 *                                                                            *
 * Distributed under the terms and conditions of the BSD 3-Clause License or  *
 * (at your option) under the terms and conditions of the Boost Software      *
 * License 1.0. See accompanying files LICENSE and LICENSE_ALTERNATIVE.       *
 *                                                                            *
 * If you did not receive a copy of the license files, see                    *
 * http://opensource.org/licenses/BSD-3-Clause and                            *
 * http://www.boost.org/LICENSE_1_0.txt.                                      *
 ******************************************************************************/

#pragma once

#include <chrono>
#include <string>
#include <cstdint>
#include <cstddef> // size_t
#include <type_traits>
#include <iterator>

#include "caf/fwd.hpp"
#include "caf/atom.hpp"
#include "caf/error.hpp"
#include "caf/timestamp.hpp"
#include "caf/allowed_unsafe_message_type.hpp"

#include "caf/meta/annotation.hpp"
#include "caf/meta/save_callback.hpp"
#include "caf/meta/load_callback.hpp"

#include "caf/detail/type_list.hpp"
#include "caf/detail/apply_args.hpp"
#include "caf/detail/delegate_serialize.hpp"
#include "caf/detail/select_integer_type.hpp"

namespace caf {


/// A data processor translates an object into a format that can be
/// stored or vice versa. A data processor can be either in saving
/// or loading mode.
template <class Derived>
class data_processor {
public:
  // -- member types -----------------------------------------------------------

  /// Return type for `operator()`.
  using result_type = error;

  /// List of builtin types for data processors.
  using builtin_t =
    detail::type_list<
      int8_t,
      uint8_t,
      int16_t,
      uint16_t,
      int32_t,
      uint32_t,
      int64_t,
      uint64_t,
      float,
      double,
      long double,
      std::string,
      std::u16string,
      std::u32string
    >;

  // -- constructors, destructors, and assignment operators --------------------

  data_processor(const data_processor&) = delete;
  data_processor& operator=(const data_processor&) = delete;

  data_processor(execution_unit* ctx = nullptr) : context_(ctx) {
    // nop
  }

  virtual ~data_processor() {
    // nop
  }

  // -- pure virtual functions -------------------------------------------------

  /// Begins processing of an object. Saves the type information
  /// to the underlying storage when in saving mode, otherwise
  /// extracts them and sets both arguments accordingly.
  virtual error begin_object(uint16_t& typenr, std::string& name) = 0;

  /// Ends processing of an object.
  virtual error end_object() = 0;

  /// Begins processing of a sequence. Saves the size
  /// to the underlying storage when in saving mode, otherwise
  /// sets `num` accordingly.
  virtual error begin_sequence(size_t& num) = 0;

  /// Ends processing of a sequence.
  virtual error end_sequence() = 0;

  // -- getter -----------------------------------------------------------------

  /// Returns the actor system associated to this data processor.
  execution_unit* context() {
    return context_;
  }

  // -- apply functions --------------------------------------------------------

  /// Applies this processor to an arithmetic type.
  template <class T>
  typename std::enable_if<std::is_floating_point<T>::value, error>::type
  apply(T& x) {
    static constexpr auto tlindex = detail::tl_index_of<builtin_t, T>::value;
    static_assert(tlindex >= 0, "T not recognized as builtin type");
    return apply_impl(x);
  }

  template <class T>
  typename std::enable_if<
    std::is_integral<T>::value
    && !std::is_same<bool, T>::value,
    error
  >::type
  apply(T& x) {
    using type = detail::select_integer_type_t<sizeof(T),
                                               std::is_signed<T>::value>;
    return apply_impl(reinterpret_cast<type&>(x));
  }

  error apply(std::string& x) {
    return apply_impl(x);
  }

  error apply(std::u16string& x) {
    return apply_impl(x);
  }

  error apply(std::u32string& x) {
    return apply_impl(x);
  }

  template <class D, atom_value V>
  static error apply_atom_constant(D& self, atom_constant<V>&) {
    static_assert(!D::writes_state, "cannot deserialize an atom_constant");
    auto x = V;
    return self.apply(x);
  }

  template <atom_value V>
  error apply(atom_constant<V>& x) {
    return apply_atom_constant(dref(), x);
  }

  /// Serializes enums using the underlying type
  /// if no user-defined serialization is defined.
  template <class T>
  typename std::enable_if<
    std::is_enum<T>::value
    && !detail::has_serialize<T>::value,
    error
  >::type
  apply(T& x) {
    using underlying = typename std::underlying_type<T>::type;
    struct {
      void operator()(T& lhs, underlying& rhs) const {
        lhs = static_cast<T>(rhs);
      }
      void operator()(underlying& lhs, T& rhs) const {
        lhs = static_cast<underlying>(rhs);
      }
    } assign;
    underlying tmp = 0;
    return convert_apply(dref(), x, tmp, assign);
  }

  /// Applies this processor to an empty type.
  template <class T>
  typename std::enable_if<
    std::is_empty<T>::value && !detail::is_inspectable<Derived, T>::value,
    error
  >::type
  apply(T&) {
    return none;
  }

  error apply(bool& x) {
    struct {
      void operator()(bool& lhs, uint8_t& rhs) const {
        lhs = rhs != 0;
      }
      void operator()(uint8_t& lhs, bool& rhs) const {
        lhs = rhs ? 1 : 0;
      }
    } assign;
    uint8_t tmp;
    return convert_apply(dref(), x, tmp, assign);
  }

  // Special case to avoid using 1 byte per bool
  error apply(std::vector<bool>& x) {
    auto len = x.size();
    auto err = begin_sequence(len);
    if (err || len == 0)
      return err;
    struct {
      size_t len;
      void operator()(std::vector<bool>& lhs, std::vector<uint8_t>& rhs) const {
        lhs.resize(len, false);
        size_t cpt = 0;
        for (auto v: rhs) {
          for (int k = 0; k < 8; ++k) {
            lhs[cpt] = ((v & (1 << k)) != 0);
            if (++cpt >= len)
              return;
          }
        }
      }
      void operator()(std::vector<uint8_t>& lhs, std::vector<bool>& rhs) const {
        size_t k = 0;
        lhs.resize((rhs.size() - 1) / 8 + 1, 0);
        for (bool b: rhs) {
          if (b)
            lhs[k / 8] |= static_cast<uint8_t>(1 << (k % 8));
          ++k;
        }
      }
    } assign;
    assign.len = len;
    std::vector<uint8_t> tmp;
    return convert_apply(dref(), x, tmp, assign);
  }

  template <class T>
  error consume_range(T& xs) {
    for (auto& x : xs) {
      using value_type = typename std::remove_reference<decltype(x)>::type;
      using mutable_type = typename std::remove_const<value_type>::type;
      if (auto err = dref().apply(const_cast<mutable_type&>(x)))
        return err;
    }
    return none;
  }

  /// Converts each element in `xs` to `U` before calling `apply`.
  template <class U, class T>
  error consume_range_c(T& xs) {
    for (U x : xs) {
      if (auto err = dref().apply(x))
        return err;
    }
    return none;
  }

  template <class T>
  error fill_range(T& xs, size_t num_elements) {
    xs.clear();
    auto insert_iter = std::inserter(xs, xs.end());
    for (size_t i = 0; i < num_elements; ++i) {
      typename std::remove_const<typename T::value_type>::type x;
      if (auto err = dref().apply(x))
        return err;
      *insert_iter++ = std::move(x);
    }
    return none;
  }

  /// Loads elements from type `U` before inserting to `xs`.
  template <class U, class T>
  error fill_range_c(T& xs, size_t num_elements) {
    xs.clear();
    auto insert_iter = std::inserter(xs, xs.end());
    for (size_t i = 0; i < num_elements; ++i) {
      U x;
      if (auto err = dref().apply(x))
        return err;
      *insert_iter++ = std::move(x);
    }
    return none;
  }
  // Applies this processor as Derived to `xs` in saving mode.
  template <class D, class T>
  static typename std::enable_if<
    D::reads_state && !detail::is_byte_sequence<T>::value,
    error
  >::type
  apply_sequence(D& self, T& xs) {
    auto s = xs.size();
    return error::eval([&] { return self.begin_sequence(s); },
                       [&] { return self.consume_range(xs); },
                       [&] { return self.end_sequence(); });
  }

  // Applies this processor as Derived to `xs` in loading mode.
  template <class D, class T>
  static typename std::enable_if<
    !D::reads_state && !detail::is_byte_sequence<T>::value,
    error
  >::type
  apply_sequence(D& self, T& xs) {
    size_t s;
    return error::eval([&] { return self.begin_sequence(s); },
                       [&] { return self.fill_range(xs, s); },
                       [&] { return self.end_sequence(); });
  }

  // Optimized saving for contiguous byte sequences.
  template <class D, class T>
  static typename std::enable_if<
    D::reads_state && detail::is_byte_sequence<T>::value,
    error
  >::type
  apply_sequence(D& self, T& xs) {
    auto s = xs.size();
    return error::eval([&] { return self.begin_sequence(s); },
                       [&] { return s > 0 ? self.apply_raw(xs.size(), &xs[0])
                                          : none; },
                       [&] { return self.end_sequence(); });
  }

  // Optimized loading for contiguous byte sequences.
  template <class D, class T>
  static typename std::enable_if<
    !D::reads_state && detail::is_byte_sequence<T>::value,
    error
  >::type
  apply_sequence(D& self, T& xs) {
    size_t s;
    return error::eval([&] { return self.begin_sequence(s); },
                       [&] { xs.resize(s);
                             return s > 0 ? self.apply_raw(s, &xs[0])
                                          : none; },
                       [&] { return self.end_sequence(); });
  }

  /// Applies this processor to a sequence of values.
  template <class T>
  typename std::enable_if<
    detail::is_iterable<T>::value
    && !detail::has_serialize<T>::value
    && !detail::is_inspectable<Derived, T>::value,
    error
  >::type
  apply(T& xs) {
    return apply_sequence(dref(), xs);
  }

  /// Applies this processor to an array.
  template <class T, size_t S>
  typename std::enable_if<detail::is_serializable<T>::value, error>::type
  apply(std::array<T, S>& xs) {
    return consume_range(xs);
  }

  /// Applies this processor to an array.
  template <class T, size_t S>
  typename std::enable_if<detail::is_serializable<T>::value, error>::type
  apply(T (&xs) [S]) {
    return consume_range(xs);
  }

  template <class F, class S>
  typename std::enable_if<
    detail::is_serializable<typename std::remove_const<F>::type>::value
    && detail::is_serializable<S>::value,
    error
  >::type
  apply(std::pair<F, S>& xs) {
    using t0 = typename std::remove_const<F>::type;
    // This cast allows the data processor to cope with
    // `pair<const K, V>` value types used by `std::map`.
    if (auto err = dref().apply(const_cast<t0&>(xs.first)))
      return err;
    return dref().apply(xs.second);
  }

  template <class... Ts>
  typename std::enable_if<
    detail::conjunction<
      detail::is_serializable<Ts>::value...
    >::value,
    error
  >::type
  apply(std::tuple<Ts...>& xs) {
    //apply_helper f{*this};
    return detail::apply_args(*this, detail::get_indices(xs), xs);
  }

  template <class T>
  typename std::enable_if<
    !std::is_empty<T>::value
    && detail::has_serialize<T>::value,
    error
  >::type
  apply(T& x) {
    // throws on error
    detail::delegate_serialize(dref(), x);
    return none;
  }

  template <class Rep, class Period>
  typename std::enable_if<std::is_integral<Rep>::value, error>::type
  apply(std::chrono::duration<Rep, Period>& x) {
    using duration_type = std::chrono::duration<Rep, Period>;
    // always save/store durations as int64_t to work around possibly
    // different integer types on different plattforms for standard typedefs
    struct {
      void operator()(duration_type& lhs, Rep& rhs) const {
        duration_type tmp{rhs};
        lhs = tmp;
      }
      void operator()(Rep& lhs, duration_type& rhs) const {
        lhs = rhs.count();
      }
    } assign;
    Rep tmp;
    return convert_apply(dref(), x, tmp, assign);
  }

  template <class Rep, class Period>
  typename std::enable_if<std::is_floating_point<Rep>::value, error>::type
  apply(std::chrono::duration<Rep, Period>& x) {
    using duration_type = std::chrono::duration<Rep, Period>;
    // always save/store floating point durations
    // as doubles for the same reason as above
    struct {
      void operator()(duration_type& lhs, double& rhs) const {
        duration_type tmp{rhs};
        lhs = tmp;
      }
      void operator()(double& lhs, duration_type& rhs) const {
        lhs = rhs.count();
      }
    } assign;
    double tmp;
    return convert_apply(dref(), x, tmp, assign);
  }

  template <class Clock, class Duration>
  error apply(std::chrono::time_point<Clock, Duration>& t) {
    if (Derived::reads_state) {
      auto dur = t.time_since_epoch();
      return apply(dur);
    }
    if (Derived::writes_state) {
      Duration dur{};
      auto e = apply(dur);
      t = std::chrono::time_point<Clock, Duration>{dur};
      return e;
    }
  }

  /// Applies this processor to a raw block of data of size `num_bytes`.
  virtual error apply_raw(size_t num_bytes, void* data) = 0;

  template <class T>
  typename std::enable_if<
    detail::is_inspectable<Derived, T>::value
      && !detail::has_serialize<T>::value,
    decltype(inspect(std::declval<Derived&>(), std::declval<T&>()))
  >::type
  apply(T& x) {
    return inspect(dref(), x);
  }

  // -- operator() -------------------------------------------------------------

  error operator()() {
    return none;
  }

#if defined(__cpp_fold_expressions) && defined(__cpp_if_constexpr)

  template <class... Ts>
  error operator()(Ts&&... xs) {
    error result;
    auto f = [&result, this](auto&& x) {
      using type = detail::decay_t<decltype(x)>;
      if constexpr (meta::is_save_callback<type>::value) {
        if constexpr (Derived::reads_state)
          if (auto err = x.fun()) {
            result = std::move(err);
            return false;
          }
      } else if constexpr (meta::is_load_callback<type>::value) {
        if constexpr (Derived::writes_state)
          if (auto err = x.fun()) {
            result = std::move(err);
            return false;
          }
      } else if constexpr (meta::is_annotation<type>::value
                           || is_allowed_unsafe_message_type<type>::value) {
        // skip element
      } else {
        if (auto err = dref().apply(deconst(x))) {
          result = std::move(err);
          return false;
        }
      }
      return true;
    };
    if ((f(std::forward<Ts>(xs)) && ...))
      return none;
    return result;
  }

#else // defined(__cpp_fold_expressions) && defined(__cpp_if_constexpr)

  template <class F, class... Ts>
  error operator()(meta::save_callback_t<F> x, Ts&&... xs) {
    // TODO: use `if constexpr` when switching to C++17.
    if (Derived::reads_state)
      if (auto err = x.fun())
        return err;
    return dref()(std::forward<Ts>(xs)...);
  }

  template <class F, class... Ts>
  error operator()(meta::load_callback_t<F> x, Ts&&... xs) {
    // TODO: use `if constexpr` when switching to C++17.
    if (Derived::writes_state)
      if (auto err = x.fun())
        return err;
    return dref()(std::forward<Ts>(xs)...);
  }

  template <class... Ts>
  error operator()(const meta::annotation&, Ts&&... xs) {
    return dref()(std::forward<Ts>(xs)...);
  }

  template <class T, class... Ts>
  typename std::enable_if<
    is_allowed_unsafe_message_type<T>::value,
    error
  >::type
  operator()(const T&, Ts&&... xs) {
    return dref()(std::forward<Ts>(xs)...);
  }

  template <class T, class... Ts>
  typename std::enable_if<
    !meta::is_annotation<T>::value
    && !is_allowed_unsafe_message_type<T>::value,
    error
  >::type
  operator()(T&& x, Ts&&... xs) {
    static_assert(Derived::reads_state
                  || (!std::is_rvalue_reference<T&&>::value
                      && !std::is_const<
                             typename std::remove_reference<T>::type
                           >::value),
                  "a loading inspector requires mutable lvalue references");
    if (auto err = apply(deconst(x)))
      return err;
    return dref()(std::forward<Ts>(xs)...);
  }

#endif // defined(__cpp_fold_expressions) && defined(__cpp_if_constexpr)

protected:
  virtual error apply_impl(int8_t&) = 0;

  virtual error apply_impl(uint8_t&) = 0;

  virtual error apply_impl(int16_t&) = 0;

  virtual error apply_impl(uint16_t&) = 0;

  virtual error apply_impl(int32_t&) = 0;

  virtual error apply_impl(uint32_t&) = 0;

  virtual error apply_impl(int64_t&) = 0;

  virtual error apply_impl(uint64_t&) = 0;

  virtual error apply_impl(float&) = 0;

  virtual error apply_impl(double&) = 0;

  virtual error apply_impl(long double&) = 0;

  virtual error apply_impl(std::string&) = 0;

  virtual error apply_impl(std::u16string&) = 0;

  virtual error apply_impl(std::u32string&) = 0;

private:
  template <class T>
  T& deconst(const T& x) {
    return const_cast<T&>(x);
  }

  template <class D, class T, class U, class F>
  static typename std::enable_if<D::reads_state, error>::type
  convert_apply(D& self, T& x, U& storage, F assign) {
    assign(storage, x);
    return self(storage);
  }

  template <class D, class T, class U, class F>
  static typename std::enable_if<!D::reads_state, error>::type
  convert_apply(D& self, T& x, U& storage, F assign) {
    if (auto err = self(storage))
      return err;
    assign(x, storage);
    return none;
  }

  // Returns a reference to the derived type.
  Derived& dref() {
    return *static_cast<Derived*>(this);
  }

  execution_unit* context_;
};

} // namespace caf