File: scan.cpp

package info (click to toggle)
actor-framework 0.17.6-3.2
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 9,008 kB
  • sloc: cpp: 77,684; sh: 674; python: 309; makefile: 13
file content (285 lines) | stat: -rw-r--r-- 10,432 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/******************************************************************************
 *                       ____    _    _____                                   *
 *                      / ___|  / \  |  ___|    C++                           *
 *                     | |     / _ \ | |_       Actor                         *
 *                     | |___ / ___ \|  _|      Framework                     *
 *                      \____/_/   \_|_|                                      *
 *                                                                            *
 * Copyright (C) 2011 - 2016                                                  *
 *                                                                            *
 * Distributed under the terms and conditions of the BSD 3-Clause License or  *
 * (at your option) under the terms and conditions of the Boost Software      *
 * License 1.0. See accompanying files LICENSE and LICENSE_ALTERNATIVE.       *
 *                                                                            *
 * If you did not receive a copy of the license files, see                    *
 * http://opensource.org/licenses/BSD-3-Clause and                            *
 * http://www.boost.org/LICENSE_1_0.txt.                                      *
 ******************************************************************************/

#include <iomanip>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

#include "caf/all.hpp"
#include "caf/opencl/all.hpp"

CAF_BEGIN_TYPE_ID_BLOCK(scan, first_custom_type_id)

  CAF_ADD_TYPE_ID(scan, (caf::opencl::dim_vec))
  CAF_ADD_TYPE_ID(scan, (caf::opencl::nd_range))
  CAF_ADD_TYPE_ID(scan, (std::vector<uint32_t>) )

CAF_END_TYPE_ID_BLOCK(scan)

using namespace caf;
using namespace caf::opencl;

using std::cerr;
using std::cout;
using std::endl;
using std::string;
using std::vector;

using caf::detail::limited_vector;

namespace {

using uval = uint32_t;
using uvec = std::vector<uval>;
using uref = mem_ref<uval>;

constexpr const size_t problem_size = 23;

constexpr const char* kernel_name_1 = "phase_1";
constexpr const char* kernel_name_2 = "phase_2";
constexpr const char* kernel_name_3 = "phase_3";

// opencl kernel, exclusive scan
// last parameter is, by convention, the output parameter
constexpr const char* kernel_source = R"__(
/// Global exclusive scan, phase 1. From:
/// - http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
kernel void phase_1(global uint* restrict data,
                    global uint* restrict increments,
                    local uint* tmp, uint len) {
  const uint thread = get_local_id(0);
  const uint block = get_group_id(0);
  const uint threads_per_block = get_local_size(0);
  const uint elements_per_block = threads_per_block * 2;
  const uint global_offset = block * elements_per_block;
  const uint n = elements_per_block;
  uint offset = 1;
  // A (2 lines) --> load input into shared memory
  tmp[2 * thread] = (global_offset + (2 * thread) < len)
                  ? data[global_offset + (2 * thread)] : 0;
  tmp[2 * thread + 1] = (global_offset + (2 * thread + 1) < len)
                      ? data[global_offset + (2 * thread + 1)] : 0;
  // build sum in place up the tree
  for (uint d = n >> 1; d > 0; d >>= 1) {
    barrier(CLK_LOCAL_MEM_FENCE);
    if (thread < d) {
      // B (2 lines)
      int ai = offset * (2 * thread + 1) - 1;
      int bi = offset * (2 * thread + 2) - 1;
      tmp[bi] += tmp[ai];
    }
    offset *= 2;
  }
  // C (2 lines) --> clear the last element
  if (thread == 0) {
    increments[block] = tmp[n - 1];
    tmp[n - 1] = 0;
  }
  // traverse down tree & build scan
  for (uint d = 1; d < n; d *= 2) {
    offset >>= 1;
    barrier(CLK_LOCAL_MEM_FENCE);
    if (thread < d) {
      // D (2 lines)
      int ai = offset * (2 * thread + 1) - 1;
      int bi = offset * (2 * thread + 2) - 1;
      uint t = tmp[ai];
      tmp[ai] = tmp[bi];
      tmp[bi] += t;
    }
  }
  barrier(CLK_LOCAL_MEM_FENCE);
  // E (2 line) --> write results to device memory
  if (global_offset + (2 * thread) < len)
    data[global_offset + (2 * thread)] = tmp[2 * thread];
  if (global_offset + (2 * thread + 1) < len)
    data[global_offset + (2 * thread + 1)] = tmp[2 * thread + 1];
}

/// Global exclusive scan, phase 2.
kernel void phase_2(global uint* restrict data, // not used ...
                    global uint* restrict increments,
                    uint len) {
  local uint tmp[2048];
  uint thread = get_local_id(0);
  uint offset = 1;
  const uint n = 2048;
  // A (2 lines) --> load input into shared memory
  tmp[2 * thread] = (2 * thread < len) ? increments[2 * thread] : 0;
  tmp[2 * thread + 1] = (2 * thread + 1 < len) ? increments[2 * thread + 1] : 0;
  // build sum in place up the tree
  for (uint d = n >> 1; d > 0; d >>= 1) {
    barrier(CLK_LOCAL_MEM_FENCE);
    if (thread < d) {
      // B (2 lines)
      int ai = offset * (2 * thread + 1) - 1;
      int bi = offset * (2 * thread + 2) - 1;
      tmp[bi] += tmp[ai];
    }
    offset *= 2;
  }
  // C (2 lines) --> clear the last element
  if (thread == 0)
    tmp[n - 1] = 0;
  // traverse down tree & build scan
  for (uint d = 1; d < n; d *= 2) {
    offset >>= 1;
    barrier(CLK_LOCAL_MEM_FENCE);
    if (thread < d) {
      // D (2 lines)
      int ai = offset * (2 * thread + 1) - 1;
      int bi = offset * (2 * thread + 2) - 1;
      uint t = tmp[ai];
      tmp[ai] = tmp[bi];
      tmp[bi] += t;
    }
  }
  barrier(CLK_LOCAL_MEM_FENCE);
  // E (2 line) --> write results to device memory
  if (2 * thread < len) increments[2 * thread] = tmp[2 * thread];
  if (2 * thread + 1 < len) increments[2 * thread + 1] = tmp[2 * thread + 1];
}

kernel void phase_3(global uint* restrict data,
                    global uint* restrict increments,
                    uint len) {
  const uint thread = get_local_id(0);
  const uint block = get_group_id(0);
  const uint threads_per_block = get_local_size(0);
  const uint elements_per_block = threads_per_block * 2;
  const uint global_offset = block * elements_per_block;
  // add the appropriate value to each block
  uint ai = 2 * thread;
  uint bi = 2 * thread + 1;
  uint ai_global = ai + global_offset;
  uint bi_global = bi + global_offset;
  uint increment = increments[block];
  if (ai_global < len) data[ai_global] += increment;
  if (bi_global < len) data[bi_global] += increment;
}
)__";

} // namespace

template <class T, class = caf::detail::enable_if_t<std::is_integral<T>::value>>
T round_up(T numToRound, T multiple) {
  return ((numToRound + multiple - 1) / multiple) * multiple;
}

int main() {
  actor_system_config cfg;
  cfg.load<opencl::manager>().add_message_types<id_block::scan>();
  actor_system system{cfg};
  cout << "Calculating exclusive scan of '" << problem_size << "' values."
       << endl;
  // ---- create data ----
  uvec values(problem_size);
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_int_distribution<uval> val_gen(0, 1023);
  std::generate(begin(values), end(values), [&]() { return val_gen(gen); });
  // ---- find device ----
  auto& mngr = system.opencl_manager();
  //
  string prefix = "GeForce";
  auto opt = mngr.find_device_if([&](const device_ptr dev) {
    auto& name = dev->name();
    return equal(begin(prefix), end(prefix), begin(name));
  });
  if (!opt) {
    cout << "No device starting with '" << prefix << "' found. "
         << "Will try the first OpenCL device available." << endl;
    opt = mngr.find_device();
  }
  if (!opt) {
    cerr << "Not OpenCL device available." << endl;
    return EXIT_FAILURE;
  } else {
    cerr << "Found device '" << (*opt)->name() << "'." << endl;
  }
  {
    // ---- general ----
    auto dev = std::move(*opt);
    auto prog = mngr.create_program(kernel_source, "", dev);
    scoped_actor self{system};
    // ---- config parameters ----
    auto half_block = dev->max_work_group_size() / 2;
    auto get_size = [half_block](size_t n) -> size_t {
      return round_up((n + 1) / 2, half_block);
    };
    auto nd_conf = [half_block, get_size](size_t dim) {
      return nd_range{dim_vec{get_size(dim)}, {}, dim_vec{half_block}};
    };
    auto reduced_ref = [&](const uref&, uval n) {
      // calculate number of groups from the group size from the values size
      return size_t{get_size(n) / half_block};
    };
    // default nd-range
    auto ndr = nd_range{dim_vec{half_block}, {}, dim_vec{half_block}};
    // ---- scan actors ----
    auto phase1 = mngr.spawn(
      prog, kernel_name_1, ndr,
      [nd_conf](nd_range& range, message& msg) -> optional<message> {
        return msg.apply([&](uvec& vec) {
          auto size = vec.size();
          range = nd_conf(size);
          return make_message(std::move(vec), static_cast<uval>(size));
        });
      },
      in_out<uval, val, mref>{}, out<uval, mref>{reduced_ref},
      local<uval>{half_block * 2}, priv<uval, val>{});
    auto phase2 = mngr.spawn(
      prog, kernel_name_2, ndr,
      [nd_conf](nd_range& range, message& msg) -> optional<message> {
        return msg.apply([&](uref& data, uref& incs) {
          auto size = incs.size();
          range = nd_conf(size);
          return make_message(std::move(data), std::move(incs),
                              static_cast<uval>(size));
        });
      },
      in_out<uval, mref, mref>{}, in_out<uval, mref, mref>{},
      priv<uval, val>{});
    auto phase3 = mngr.spawn(
      prog, kernel_name_3, ndr,
      [nd_conf](nd_range& range, message& msg) -> optional<message> {
        return msg.apply([&](uref& data, uref& incs) {
          auto size = incs.size();
          range = nd_conf(size);
          return make_message(std::move(data), std::move(incs),
                              static_cast<uval>(size));
        });
      },
      in_out<uval, mref, val>{}, in<uval, mref>{}, priv<uval, val>{});
    // ---- composed scan actor ----
    auto scanner = phase3 * phase2 * phase1;
    // ---- scan the data ----
    self->send(scanner, values);
    self->receive([&](const uvec& results) {
      cout << "Received results." << endl
           << " index | values |  scan  " << endl
           << "-------+--------+--------" << endl;
      for (size_t i = 0; i < problem_size; ++i)
        cout << std::setw(6) << i << " | " << std::setw(6) << values[i] << " | "
             << std::setw(6) << results[i] << std::endl;
    });
  }
  return EXIT_SUCCESS;
}