File: caf-prof

package info (click to toggle)
actor-framework 0.18.7-1~exp1
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 8,740 kB
  • sloc: cpp: 85,162; sh: 491; python: 187; makefile: 11
file content (375 lines) | stat: -rwxr-xr-x 15,020 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#!/usr/bin/env Rscript --vanilla
#
# Generates plots from CAF profiler output.
#
# The script takes a profiler log file on standard input and generates one plot
# according to the command line options given. In general, the script generates
# plots at the granularity of worker threads as well as individual actors.

suppressPackageStartupMessages(library(colorspace))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(plyr))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(grid))
suppressPackageStartupMessages(library(scales)) # pretty_breaks
suppressPackageStartupMessages(library(optparse))

# ----------------------------------------------------------------------------
#                              Helper Functions
# ----------------------------------------------------------------------------

# Generates a diverging color palette of a given size.
#   - http://tools.medialab.sciences-po.fr/iwanthue
#   - https://gist.github.com/johnbaums/45b49da5e260a9fc1cd7
iwanthue <- function(n, hmin=0, hmax=360, cmin=0, cmax=180, lmin=0, lmax=100) {
  stopifnot(hmin >= 0, cmin >= 0, lmin >= 0,
            hmax <= 360, cmax <= 180, lmax <= 100,
            hmin <= hmax, cmin <= cmax, lmin <= lmax,
            n > 0)
  lab <- LAB(as.matrix(expand.grid(seq(0, 100, 1),
                                   seq(-100, 100, 5),
                                   seq(-110, 100, 5))))
  if (any((hmin != 0 || cmin != 0 || lmin != 0 ||
           hmax != 360 || cmax != 180 || lmax != 100))) {
    hcl <- as(lab, 'polarLUV')
    hcl_coords <- coords(hcl)
    hcl <- hcl[which(hcl_coords[, 'H'] <= hmax & hcl_coords[, 'H'] >= hmin &
                     hcl_coords[, 'C'] <= cmax & hcl_coords[, 'C'] >= cmin &
                     hcl_coords[, 'L'] <= lmax & hcl_coords[, 'L'] >= lmin), ]
    #hcl <- hcl[-which(is.na(coords(hcl)[, 2]))]
    lab <- as(hcl, 'LAB')
  }
  lab <- lab[which(!is.na(hex(lab))), ]
  clus <- kmeans(coords(lab), n, iter.max=100, algorithm="MacQueen")
  hex(LAB(clus$centers))
}

# Generates a palette with equally spaced hues around the color wheel.
color_hue <- function(n, l=65) {
  hues <- seq(15, 375, length=n+1)
  hcl(h=hues, l=l, c=100)[1:n]
}

# Generates labels microsecond ticks.
make_usec_labels <- function(ticks=10^(0:9), sep="") {
  fuse <- function(x, u) paste(x, u, sep=sep)
  unitize <- function(us) {
    if (us < 1e3)
      return(fuse(round(us), "us"))
    else if (us < 1e6)
      return(fuse(round(us / 1e3, 1), "ms"))
    else if (us < 60 * 1e6)
      return(fuse(round(us / 1e6, 1), "s"))
    else if (us < 60 * 60 * 1e6)
      return(fuse(round(us / (60 * 1e6), 1), "m"))
    else
      return(fuse(round(us / (60 * 60 * 1e6), 1), "h"))
  }
  sapply(ticks, unitize)
}

# FIXME: crappy hack to get a log transformation that keeps 0s as 0s instead of
# setting them to -Inf. This only "makes sense" because we have almost no
# values in [0,1]. The only reason why we need such a thing is to get prettier
# scatterplots where the points don't hang directly on top of the axes lines.
# Another annoying artifact of this hack is that annotation logticks
# between 0 and the first order of magnitude are wrong.
# Possible solution: coord_trans()
log_magic_trans <- function(base=10) {
  magic <- 1.000000042
  trans <- function(x) {
    stopifnot(! magic %in% x)
    r <- x
    r[r == 1] <- magic
    r <- log(r, base)
    r[is.infinite(r)] <- 0
    r
  }
  inv <- function(x) {
    r <- x
    r[r == base^magic] <- 1
    r <- base^x
    r[r == 1] <- 0
    r
  }
  trans_new(paste0("log-magic-", format(base)), trans, inv,
            log_breaks(base=base), domain=c(0, Inf))
}

# Dynamic time scale that flips to logarithmic if our data is more than two
# orders of magnitude apart.
scale_time <- function(.data, fun) {
  trans <- NULL
  breaks <- NULL
  if (log10(diff(range(.data))) > 2) {
    #trans <- log10_trans()
    #breaks <- 10^(0:10)
    trans <- log_magic_trans()
    breaks <- c(0, 10^(1:10))
  } else {
    trans <- identity_trans()
    breaks <- pretty_breaks(10)(.data)
  }
  fun(breaks=breaks, labels=make_usec_labels(breaks), trans=trans)
}

scale_x_time <- function(.data) scale_time(.data, fun=scale_x_continuous)
scale_y_time <- function(.data) scale_time(.data, fun=scale_y_continuous)

# Adds a geom_point to an existing plot for a profile. If the the profile has
# labels, the function adds one geom_point per label, with (1) layers sorted by
# decreasing number of points and (2) alpha scaled inversely proportional to
# the number of points.
add_points <- function(p, .data) {
  r <- p
  # Add one layer per label, sorted by per-label point frequency to avoid
  # hiding smaller point groups behind big point clouds.
  f <- table(.data$label)
  o <- names(rev(sort(f))) # order of layers
  gp <- function(x) { force(x); geom_point(data=subset(.data, label == x)) }
  r <- Reduce("+", lapply(o, gp), r)
  # Give each layer its own color and assign it it custom alpha value
  # inversely proportional to the point frequency.
  n <- length(f)
  stopifnot(n > 0)
  # Scales a vector to the interval [amin, 1] inversely proportional to the
  # point values.
  make_alpha <- function(x, amin=0.4) {
    stopifnot(amin > 0, amin < 1)
    1 - log(x) / (max(log(x)) + amin * max(log(x)))
  }
  r <- r + aes(color=label, alpha=label) +
    scale_color_manual(name="ID", values=as.vector(iwanthue(n))) +
    guides(color=guide_legend(override.aes=list(size=4)))
  # Turn each point into a shape and slightly increase alpha.
  if (n > 25) {
    write("** ignoring shapification: more than 25 unique labels", stderr())
    r <- r +
      scale_alpha_manual(values=as.list(make_alpha(f)), guide='none')
  } else {
    r <- r + aes(shape=label) +
      scale_shape_manual(name="ID", values=rev(order(f))) +
      scale_alpha_manual(values=as.list(make_alpha(f, 0.5)), guide='none')
  }
  r
}

# ----------------------------------------------------------------------------
#                               Plot Functions
# ----------------------------------------------------------------------------

# Plots system and user CPU utilization over time.
plot_utilization_time <- function(.data, color.sys="red", color.usr="blue") {
  ggplot(.data) +
    aes(x=clock) +
    geom_point(aes(y=usr/time), shape=4, color=color.usr) +
    geom_point(aes(y=sys/time), shape=1, color=color.sys) +
    geom_line(aes(y=usr/time), color=color.usr) +
    geom_line(aes(y=sys/time), color=color.sys) +
    scale_y_continuous(breaks=seq(0,1,length=5)) +
    labs(x="Time", y="CPU utilization") +
    theme(axis.ticks=element_blank(), axis.text.x=element_blank()) +
    facet_wrap(~ id, ncol=4)
}

# Plots the total CPU utilization in a scatterplot, where the axes denote user
# and system CPU utilization. The point radius is scaled logarithmically to the
# runtime.
plot_utilization_scatter <- function(.data) {
  max.xy <- with(.data, max(usr/time, sys/time))
  p <- ggplot(.data, aes(x=usr/time, y=sys/time, size=time)) +
    scale_size(name="ID", range=c(2, 10), guide='none') +
    xlim(0, max.xy) + ylim(0, max.xy) +
    labs(x="User CPU utilization", y="System CPU utilization")
  add_points(p, .data)
}

# Plots the CPU time in a scatterplot, where axes denote absolute runtime for
# CPU time in user and system mode. The point radius is scaled to utilization.
plot_time_scatter <- function(.data) {
  p <- ggplot(.data, aes(x=usr, y=sys, size=(usr+sys)/time)) +
    scale_size(name="Utilization", range=c(1,6)) +
    #scale_size_area(name="Utilization", max_size=6) +
    scale_x_time(.data$usr) +
    scale_y_time(.data$sys) +
# TODO: re-enable when fixing the magic transformation.
#    annotation_logticks(color="grey") +
    xlab("User CPU time") + ylab("System CPU time")
  add_points(p, .data)
}

# Plots CPU time as boxplot per label.
plot_time_boxplot <- function(.data) {
  totals <- .data %>% group_by(label) %>% summarize(sort=sum(usr+sys))
  lvls <- rev(totals[order(totals$sort), ]$label)
  xs <- .data %>% group_by(label) %>% mutate(util=sum(cpu)/sum(time))
  # Do not drop zeros on log transformation.
  xs$cpu <- mapvalues(xs$cpu, 0, 1, warn_missing=FALSE)
  xs$label <- factor(xs$label, levels=lvls)
  ggplot(xs) +
    aes(x=label, y=cpu, fill=util) +
# TODO: re-enable when fixing the magic transformation.
#    annotation_logticks(sides="lr", color="grey") +
    geom_boxplot(outlier.colour="grey") +
    labs(x="ID", y="CPU time") +
    scale_y_time(xs$cpu) +
    scale_fill_gradient(name="Utilization", low="red", high="green",
                        limits=c(0, 1)) +
    theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1))
}

# Plots CPU utilization as boxplot per label.
plot_utilization_boxplot <- function(.data) {
  totals <- .data %>% group_by(label) %>% summarize(sort=sum(cpu))
  lvls <- rev(totals[order(totals$sort), ]$label)
  xs <- .data %>% group_by(label) %>% mutate(dom=sum(usr-sys)/sum(usr+sys))
  xs$label <- factor(xs$label, levels=lvls)
  ggplot(xs) +
    aes(x=label, y=util, fill=dom) +
    geom_boxplot() +
    labs(x="ID", y="CPU utilization") +
    scale_fill_gradient2(name="Domination",
                         low="red", mid="white", high="green",
                         breaks=c(-.5, .5), labels=c("System", "User"),
                         limits=c(-1, 1)) +
    theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1))
}


# Plots the total runtime where each bar consists of system (bottom) and user
# (top) CPU time.
plot_time_barplot <- function(.data) {
  sums <- .data %>% group_by(label) %>% summarize(usr=sum(usr), sys=sum(sys))
  molten <- melt(sums, .(label))
  molten <- molten[order(molten$variable, decreasing=TRUE),] # sys at bottom
  lvls <- rev(sums[order(sums$usr + sums$sys), ]$label)
  molten$label <- factor(molten$label, levels=lvls) # highest bar on the left
  ticks <- pretty_breaks(10)(sums$usr + sums$sys)
  ggplot(molten) +
    aes(x=label, y=value, fill=variable) +
    geom_bar(stat="identity") +
    xlab("ID") +
    scale_y_continuous(name="CPU time", breaks=ticks,
                       labels=make_usec_labels(ticks)) +
    scale_fill_manual(name="CPU time", values=rev(color_hue(2)),
                      labels=c("User", "System")) +
    theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1),
          legend.justification=c(1,1), legend.position=c(1,1))
}

# ----------------------------------------------------------------------------
#                            Command Line Parsing
# ----------------------------------------------------------------------------

option_list <- list(
  make_option(c("-a", "--actors"), action="store_true", default=F,
              help="generate plots involving actors"),
  make_option(c("-w", "--workers"), action="store_true", default=F,
              help="generate plots involving workers"),
  make_option(c("-l", "--labels"), default=NULL,
              help="two-column file mapping IDs to labels"),
  make_option(c("-f", "--font-size"), type="integer", default=12,
              metavar="number", help="font base size [%default]"),
  make_option(c("-s", "--squeeze"), action="store_true", default=F,
              help="make plot edages as small as possible [%default]"),
  make_option(c("-o", "--output"), default="png",
              help="the image format of the output [%default]"),
  make_option(c("-r", "--read"), default="stdin",
              help="read CAF profile from file [-]"),
  make_option(c("-h", "--help"), action="store_true", default=F,
              help="display this help and exit")
  )

opt <- parse_args(OptionParser(option_list=option_list,
                               add_help_option=F))

# If neither --actors nor --workers given, set 'em both.
if (! opt$actors && ! opt$workers) {
  opt$actors <- TRUE
  opt$workers <- TRUE
}

# ----------------------------------------------------------------------------
#                               Plot Generation
# ----------------------------------------------------------------------------

# Setup theme.
options(scipen=1000)
theme_set(theme_bw(base_size=opt$`font-size`))
theme_update(legend.key=element_rect(colour="white"))
if (opt$squeeze)
  theme_update(legend.key.width=unit(3, "lines"),
               plot.margin=unit(rep(0, 4), "lines"))

record <- function(name, fun, ...) {
  filename <- paste("plot", name, sep="-")
  filename <- paste(filename, opt$output, sep=".")
  write(paste("-- generating", filename), stderr())
  ggsave(filename, fun(...), height=10, width=10)
}

make_zero <- function(x) mapvalues(x, NaN, 0, warn_missing=FALSE)

make_profile <- function(filename) {
  read.table(filename, header=T) %>%
    filter(time > 0) %>%
    group_by(id, type) %>%
    arrange(time) %>%
    mutate(cpu=usr+sys, util=cpu/time, dom=make_zero((usr-sys)/cpu))
}

make_workers <- function(prof) {
  x <- prof %>% filter(type == "worker")
  x$label <- factor(x$id)
  x
}

make_actors <- function(prof, labels=NULL) {
  x <- prof %>% filter(type == "actor")
  if (is.null(labels)) {
    x$label <- factor(x$id)
  } else {
    ls <- read.table(labels, col.names=c("id", "label"))
    x <- left_join(x, ls, "id")
    x$label <- droplevels(x$label)
    x$label <- addNA(x$label)
    levels(x$label) <- mapvalues(levels(x$label), NA, "OTHER")
  }
  x
}

summarize.prof <- function(x) {
  summarize(x, usr=sum(usr), sys=sum(sys), cpu=sum(cpu), time=sum(time),
            util=sum(cpu)/sum(time), dom=make_zero(sum(usr-sys)/sum(cpu)))
}

prof <- make_profile(file(opt$read))

if (opt$workers) {
  workers <- make_workers(prof)
  workers.by_id <- workers %>% group_by(id, label) %>% summarize.prof
  record("worker-time-bar", plot_time_barplot, workers)
  record("worker-time-facets", plot_utilization_time, workers)
  record("worker-time-scatter", plot_time_scatter, workers)
  record("worker-time-scatter-id", plot_time_scatter, workers.by_id)
  record("worker-util-box", plot_utilization_boxplot, workers)
  record("worker-util-scatter", plot_utilization_scatter, workers)
  record("worker-util-scatter-id", plot_utilization_scatter, workers.by_id)
}

if (opt$actors) {
  actors <- make_actors(prof, opt$labels)
  actors.by_id <- actors %>% group_by(id, label) %>% summarize.prof
  actors.by_label <- actors.by_id %>% group_by(label) %>% summarize.prof
  record("actor-time-bar", plot_time_barplot, actors.by_label)
  record("actor-time-scatter", plot_time_scatter, actors)
  record("actor-time-scatter-id", plot_time_scatter, actors.by_id)
  record("actor-time-scatter-label", plot_time_scatter, actors.by_label)
  record("actor-time-box", plot_time_boxplot, actors)
  record("actor-time-box-id", plot_time_boxplot, actors.by_id)
  record("actor-util-box", plot_utilization_boxplot, actors)
  record("actor-util-box-id", plot_utilization_boxplot, actors.by_id)
  record("actor-util-scatter-id", plot_utilization_scatter, actors.by_id)
  record("actor-util-scatter-label", plot_utilization_scatter, actors.by_label)
}