1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
#!/usr/bin/env Rscript --vanilla
#
# Generates plots from CAF profiler output.
#
# The script takes a profiler log file on standard input and generates one plot
# according to the command line options given. In general, the script generates
# plots at the granularity of worker threads as well as individual actors.
suppressPackageStartupMessages(library(colorspace))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(plyr))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(reshape2))
suppressPackageStartupMessages(library(grid))
suppressPackageStartupMessages(library(scales)) # pretty_breaks
suppressPackageStartupMessages(library(optparse))
# ----------------------------------------------------------------------------
# Helper Functions
# ----------------------------------------------------------------------------
# Generates a diverging color palette of a given size.
# - http://tools.medialab.sciences-po.fr/iwanthue
# - https://gist.github.com/johnbaums/45b49da5e260a9fc1cd7
iwanthue <- function(n, hmin=0, hmax=360, cmin=0, cmax=180, lmin=0, lmax=100) {
stopifnot(hmin >= 0, cmin >= 0, lmin >= 0,
hmax <= 360, cmax <= 180, lmax <= 100,
hmin <= hmax, cmin <= cmax, lmin <= lmax,
n > 0)
lab <- LAB(as.matrix(expand.grid(seq(0, 100, 1),
seq(-100, 100, 5),
seq(-110, 100, 5))))
if (any((hmin != 0 || cmin != 0 || lmin != 0 ||
hmax != 360 || cmax != 180 || lmax != 100))) {
hcl <- as(lab, 'polarLUV')
hcl_coords <- coords(hcl)
hcl <- hcl[which(hcl_coords[, 'H'] <= hmax & hcl_coords[, 'H'] >= hmin &
hcl_coords[, 'C'] <= cmax & hcl_coords[, 'C'] >= cmin &
hcl_coords[, 'L'] <= lmax & hcl_coords[, 'L'] >= lmin), ]
#hcl <- hcl[-which(is.na(coords(hcl)[, 2]))]
lab <- as(hcl, 'LAB')
}
lab <- lab[which(!is.na(hex(lab))), ]
clus <- kmeans(coords(lab), n, iter.max=100, algorithm="MacQueen")
hex(LAB(clus$centers))
}
# Generates a palette with equally spaced hues around the color wheel.
color_hue <- function(n, l=65) {
hues <- seq(15, 375, length=n+1)
hcl(h=hues, l=l, c=100)[1:n]
}
# Generates labels microsecond ticks.
make_usec_labels <- function(ticks=10^(0:9), sep="") {
fuse <- function(x, u) paste(x, u, sep=sep)
unitize <- function(us) {
if (us < 1e3)
return(fuse(round(us), "us"))
else if (us < 1e6)
return(fuse(round(us / 1e3, 1), "ms"))
else if (us < 60 * 1e6)
return(fuse(round(us / 1e6, 1), "s"))
else if (us < 60 * 60 * 1e6)
return(fuse(round(us / (60 * 1e6), 1), "m"))
else
return(fuse(round(us / (60 * 60 * 1e6), 1), "h"))
}
sapply(ticks, unitize)
}
# FIXME: crappy hack to get a log transformation that keeps 0s as 0s instead of
# setting them to -Inf. This only "makes sense" because we have almost no
# values in [0,1]. The only reason why we need such a thing is to get prettier
# scatterplots where the points don't hang directly on top of the axes lines.
# Another annoying artifact of this hack is that annotation logticks
# between 0 and the first order of magnitude are wrong.
# Possible solution: coord_trans()
log_magic_trans <- function(base=10) {
magic <- 1.000000042
trans <- function(x) {
stopifnot(! magic %in% x)
r <- x
r[r == 1] <- magic
r <- log(r, base)
r[is.infinite(r)] <- 0
r
}
inv <- function(x) {
r <- x
r[r == base^magic] <- 1
r <- base^x
r[r == 1] <- 0
r
}
trans_new(paste0("log-magic-", format(base)), trans, inv,
log_breaks(base=base), domain=c(0, Inf))
}
# Dynamic time scale that flips to logarithmic if our data is more than two
# orders of magnitude apart.
scale_time <- function(.data, fun) {
trans <- NULL
breaks <- NULL
if (log10(diff(range(.data))) > 2) {
#trans <- log10_trans()
#breaks <- 10^(0:10)
trans <- log_magic_trans()
breaks <- c(0, 10^(1:10))
} else {
trans <- identity_trans()
breaks <- pretty_breaks(10)(.data)
}
fun(breaks=breaks, labels=make_usec_labels(breaks), trans=trans)
}
scale_x_time <- function(.data) scale_time(.data, fun=scale_x_continuous)
scale_y_time <- function(.data) scale_time(.data, fun=scale_y_continuous)
# Adds a geom_point to an existing plot for a profile. If the the profile has
# labels, the function adds one geom_point per label, with (1) layers sorted by
# decreasing number of points and (2) alpha scaled inversely proportional to
# the number of points.
add_points <- function(p, .data) {
r <- p
# Add one layer per label, sorted by per-label point frequency to avoid
# hiding smaller point groups behind big point clouds.
f <- table(.data$label)
o <- names(rev(sort(f))) # order of layers
gp <- function(x) { force(x); geom_point(data=subset(.data, label == x)) }
r <- Reduce("+", lapply(o, gp), r)
# Give each layer its own color and assign it it custom alpha value
# inversely proportional to the point frequency.
n <- length(f)
stopifnot(n > 0)
# Scales a vector to the interval [amin, 1] inversely proportional to the
# point values.
make_alpha <- function(x, amin=0.4) {
stopifnot(amin > 0, amin < 1)
1 - log(x) / (max(log(x)) + amin * max(log(x)))
}
r <- r + aes(color=label, alpha=label) +
scale_color_manual(name="ID", values=as.vector(iwanthue(n))) +
guides(color=guide_legend(override.aes=list(size=4)))
# Turn each point into a shape and slightly increase alpha.
if (n > 25) {
write("** ignoring shapification: more than 25 unique labels", stderr())
r <- r +
scale_alpha_manual(values=as.list(make_alpha(f)), guide='none')
} else {
r <- r + aes(shape=label) +
scale_shape_manual(name="ID", values=rev(order(f))) +
scale_alpha_manual(values=as.list(make_alpha(f, 0.5)), guide='none')
}
r
}
# ----------------------------------------------------------------------------
# Plot Functions
# ----------------------------------------------------------------------------
# Plots system and user CPU utilization over time.
plot_utilization_time <- function(.data, color.sys="red", color.usr="blue") {
ggplot(.data) +
aes(x=clock) +
geom_point(aes(y=usr/time), shape=4, color=color.usr) +
geom_point(aes(y=sys/time), shape=1, color=color.sys) +
geom_line(aes(y=usr/time), color=color.usr) +
geom_line(aes(y=sys/time), color=color.sys) +
scale_y_continuous(breaks=seq(0,1,length=5)) +
labs(x="Time", y="CPU utilization") +
theme(axis.ticks=element_blank(), axis.text.x=element_blank()) +
facet_wrap(~ id, ncol=4)
}
# Plots the total CPU utilization in a scatterplot, where the axes denote user
# and system CPU utilization. The point radius is scaled logarithmically to the
# runtime.
plot_utilization_scatter <- function(.data) {
max.xy <- with(.data, max(usr/time, sys/time))
p <- ggplot(.data, aes(x=usr/time, y=sys/time, size=time)) +
scale_size(name="ID", range=c(2, 10), guide='none') +
xlim(0, max.xy) + ylim(0, max.xy) +
labs(x="User CPU utilization", y="System CPU utilization")
add_points(p, .data)
}
# Plots the CPU time in a scatterplot, where axes denote absolute runtime for
# CPU time in user and system mode. The point radius is scaled to utilization.
plot_time_scatter <- function(.data) {
p <- ggplot(.data, aes(x=usr, y=sys, size=(usr+sys)/time)) +
scale_size(name="Utilization", range=c(1,6)) +
#scale_size_area(name="Utilization", max_size=6) +
scale_x_time(.data$usr) +
scale_y_time(.data$sys) +
# TODO: re-enable when fixing the magic transformation.
# annotation_logticks(color="grey") +
xlab("User CPU time") + ylab("System CPU time")
add_points(p, .data)
}
# Plots CPU time as boxplot per label.
plot_time_boxplot <- function(.data) {
totals <- .data %>% group_by(label) %>% summarize(sort=sum(usr+sys))
lvls <- rev(totals[order(totals$sort), ]$label)
xs <- .data %>% group_by(label) %>% mutate(util=sum(cpu)/sum(time))
# Do not drop zeros on log transformation.
xs$cpu <- mapvalues(xs$cpu, 0, 1, warn_missing=FALSE)
xs$label <- factor(xs$label, levels=lvls)
ggplot(xs) +
aes(x=label, y=cpu, fill=util) +
# TODO: re-enable when fixing the magic transformation.
# annotation_logticks(sides="lr", color="grey") +
geom_boxplot(outlier.colour="grey") +
labs(x="ID", y="CPU time") +
scale_y_time(xs$cpu) +
scale_fill_gradient(name="Utilization", low="red", high="green",
limits=c(0, 1)) +
theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1))
}
# Plots CPU utilization as boxplot per label.
plot_utilization_boxplot <- function(.data) {
totals <- .data %>% group_by(label) %>% summarize(sort=sum(cpu))
lvls <- rev(totals[order(totals$sort), ]$label)
xs <- .data %>% group_by(label) %>% mutate(dom=sum(usr-sys)/sum(usr+sys))
xs$label <- factor(xs$label, levels=lvls)
ggplot(xs) +
aes(x=label, y=util, fill=dom) +
geom_boxplot() +
labs(x="ID", y="CPU utilization") +
scale_fill_gradient2(name="Domination",
low="red", mid="white", high="green",
breaks=c(-.5, .5), labels=c("System", "User"),
limits=c(-1, 1)) +
theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1))
}
# Plots the total runtime where each bar consists of system (bottom) and user
# (top) CPU time.
plot_time_barplot <- function(.data) {
sums <- .data %>% group_by(label) %>% summarize(usr=sum(usr), sys=sum(sys))
molten <- melt(sums, .(label))
molten <- molten[order(molten$variable, decreasing=TRUE),] # sys at bottom
lvls <- rev(sums[order(sums$usr + sums$sys), ]$label)
molten$label <- factor(molten$label, levels=lvls) # highest bar on the left
ticks <- pretty_breaks(10)(sums$usr + sums$sys)
ggplot(molten) +
aes(x=label, y=value, fill=variable) +
geom_bar(stat="identity") +
xlab("ID") +
scale_y_continuous(name="CPU time", breaks=ticks,
labels=make_usec_labels(ticks)) +
scale_fill_manual(name="CPU time", values=rev(color_hue(2)),
labels=c("User", "System")) +
theme(axis.text.x=element_text(angle=90, vjust=.5, hjust=1),
legend.justification=c(1,1), legend.position=c(1,1))
}
# ----------------------------------------------------------------------------
# Command Line Parsing
# ----------------------------------------------------------------------------
option_list <- list(
make_option(c("-a", "--actors"), action="store_true", default=F,
help="generate plots involving actors"),
make_option(c("-w", "--workers"), action="store_true", default=F,
help="generate plots involving workers"),
make_option(c("-l", "--labels"), default=NULL,
help="two-column file mapping IDs to labels"),
make_option(c("-f", "--font-size"), type="integer", default=12,
metavar="number", help="font base size [%default]"),
make_option(c("-s", "--squeeze"), action="store_true", default=F,
help="make plot edages as small as possible [%default]"),
make_option(c("-o", "--output"), default="png",
help="the image format of the output [%default]"),
make_option(c("-r", "--read"), default="stdin",
help="read CAF profile from file [-]"),
make_option(c("-h", "--help"), action="store_true", default=F,
help="display this help and exit")
)
opt <- parse_args(OptionParser(option_list=option_list,
add_help_option=F))
# If neither --actors nor --workers given, set 'em both.
if (! opt$actors && ! opt$workers) {
opt$actors <- TRUE
opt$workers <- TRUE
}
# ----------------------------------------------------------------------------
# Plot Generation
# ----------------------------------------------------------------------------
# Setup theme.
options(scipen=1000)
theme_set(theme_bw(base_size=opt$`font-size`))
theme_update(legend.key=element_rect(colour="white"))
if (opt$squeeze)
theme_update(legend.key.width=unit(3, "lines"),
plot.margin=unit(rep(0, 4), "lines"))
record <- function(name, fun, ...) {
filename <- paste("plot", name, sep="-")
filename <- paste(filename, opt$output, sep=".")
write(paste("-- generating", filename), stderr())
ggsave(filename, fun(...), height=10, width=10)
}
make_zero <- function(x) mapvalues(x, NaN, 0, warn_missing=FALSE)
make_profile <- function(filename) {
read.table(filename, header=T) %>%
filter(time > 0) %>%
group_by(id, type) %>%
arrange(time) %>%
mutate(cpu=usr+sys, util=cpu/time, dom=make_zero((usr-sys)/cpu))
}
make_workers <- function(prof) {
x <- prof %>% filter(type == "worker")
x$label <- factor(x$id)
x
}
make_actors <- function(prof, labels=NULL) {
x <- prof %>% filter(type == "actor")
if (is.null(labels)) {
x$label <- factor(x$id)
} else {
ls <- read.table(labels, col.names=c("id", "label"))
x <- left_join(x, ls, "id")
x$label <- droplevels(x$label)
x$label <- addNA(x$label)
levels(x$label) <- mapvalues(levels(x$label), NA, "OTHER")
}
x
}
summarize.prof <- function(x) {
summarize(x, usr=sum(usr), sys=sum(sys), cpu=sum(cpu), time=sum(time),
util=sum(cpu)/sum(time), dom=make_zero(sum(usr-sys)/sum(cpu)))
}
prof <- make_profile(file(opt$read))
if (opt$workers) {
workers <- make_workers(prof)
workers.by_id <- workers %>% group_by(id, label) %>% summarize.prof
record("worker-time-bar", plot_time_barplot, workers)
record("worker-time-facets", plot_utilization_time, workers)
record("worker-time-scatter", plot_time_scatter, workers)
record("worker-time-scatter-id", plot_time_scatter, workers.by_id)
record("worker-util-box", plot_utilization_boxplot, workers)
record("worker-util-scatter", plot_utilization_scatter, workers)
record("worker-util-scatter-id", plot_utilization_scatter, workers.by_id)
}
if (opt$actors) {
actors <- make_actors(prof, opt$labels)
actors.by_id <- actors %>% group_by(id, label) %>% summarize.prof
actors.by_label <- actors.by_id %>% group_by(label) %>% summarize.prof
record("actor-time-bar", plot_time_barplot, actors.by_label)
record("actor-time-scatter", plot_time_scatter, actors)
record("actor-time-scatter-id", plot_time_scatter, actors.by_id)
record("actor-time-scatter-label", plot_time_scatter, actors.by_label)
record("actor-time-box", plot_time_boxplot, actors)
record("actor-time-box-id", plot_time_boxplot, actors.by_id)
record("actor-util-box", plot_utilization_boxplot, actors)
record("actor-util-box-id", plot_utilization_boxplot, actors.by_id)
record("actor-util-scatter-id", plot_utilization_scatter, actors.by_id)
record("actor-util-scatter-label", plot_utilization_scatter, actors.by_label)
}
|