1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
|
@Part(03, Root="ada.mss")
@Comment{$Date: 2006/10/17 05:29:42 $}
@Comment{$Source: e:\\cvsroot/ARM/Source/03b.mss,v $}
@Comment{$Revision: 1.66 $}
@LabeledClause{Array Types}
@begin{Intro}
@Defn{array}
@Defn{array type}
An @i(array) object is a composite object consisting of components
which all have the same subtype.
The name for a component of an array uses one or more
index values belonging to specified discrete types.
The value of an array object is a composite
value consisting of the values of the components.
@end{Intro}
@begin{Syntax}
@Syn{lhs=<array_type_definition>,rhs="
@Syn2{unconstrained_array_definition} | @Syn2{constrained_array_definition}"}
@Syn{lhs=<unconstrained_array_definition>,rhs="
@key{array}(@Syn2{index_subtype_definition} {, @Syn2{index_subtype_definition}}) @key{of} @Syn2{component_definition}"}
@Syn{lhs=<index_subtype_definition>,rhs="@Syn2{subtype_mark} @key{range} <>"}
@Syn{lhs=<constrained_array_definition>,rhs="
@key{array} (@Syn2{discrete_subtype_definition} {, @Syn2{discrete_subtype_definition}}) @key{of} @Syn2{component_definition}"}
@Syn{lhs=<discrete_subtype_definition>,rhs="@SynI{discrete_}@Syn2{subtype_indication} | @Syn2{range}"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01],ARef=[AI95-00406-01]}
@Syn{lhs=<component_definition>,rhs="@Chg{Version=[2],New=<
>,Old=<>}[@key{aliased}] @Syn2{subtype_indication}@Chg{Version=[2],New=<
| [@key{aliased}] @Syn2{access_definition}>,Old=<>}"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(discrete_subtype_definition range)}
For a @nt<discrete_subtype_definition> that is a @nt<range>, the
@nt<range> shall resolve to be of some specific discrete
type@Redundant[; which
discrete type shall be determined without using any context other than
the bounds of the @nt<range> itself (plus the preference
for @i(root_integer) @em
see @RefSecNum(The Context of Overload Resolution)).]
@end{Resolution}
@begin{Legality}
@Defn{index subtype}
Each @nt{index_subtype_definition}
or @nt{discrete_subtype_definition} in an @nt{array_type_definition}
defines an @i(index subtype);
@Defn{index type}
its type (the @i(index type)) shall be discrete.
@begin{Discussion}
@Defn2{Term=[index], Sec=(of an array)}
An @i(index) is a discrete quantity used to select along a given
dimension of an array. A component is selected by specifying corresponding
values for each of the indices.
@end{Discussion}
@Defn{component subtype}
The subtype defined by the @nt<subtype_indication> of a
@nt<component_definition> (the @i(component subtype)) shall be
a definite subtype.
@begin{Ramification}
This applies to all uses of @nt<component_definition>,
including in @nt<record_type_definition>s and @nt<protected_definition>s.@end{ramification}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[Within the definition of a
nonlimited composite type
(or a limited composite type that later in its immediate
scope becomes nonlimited @em see @RefSecNum{Private Operations}
and @RefSecNum{Limited Types}),
if a @nt{component_definition} contains the reserved word
@key[aliased] and the type of the component is discriminated,
then the nominal subtype of the component shall be constrained.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgNote{The rule's gone, we might as well clobber all the notes.}
@ChgDeleted{Version=[2],Text=[If we allowed the subtype to be unconstrained,
then the discriminants might change because of
an assignment to the containing (nonlimited) object,
thus causing a potential violation of an access subtype constraint
of an access value designating the aliased component.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[Note that the rule elsewhere defining all aliased
discriminated objects to be constrained does not help @em that rule prevents
assignments to the component itself from doing any harm, but not assignments to
the containing object.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Type=[Leading],Text=[We allow this
for components within limited types since assignment to
the enclosing object is not a problem. Furthermore, it is
important to be able to use a default expression for a discriminant
in arrays of limited components, since that is the only way
to give the components different values for their discriminants.
For example:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[@key[protected] @key[type] Counter_Type(Initial_Value : Integer := 1) @key[is]
@key[procedure] Get_Next(Next_Value : @key[out] Integer);
--@RI{ Returns the next value on each call, bumping Count}
--@RI{ before returning.}
@key[private]
Count : Integer := Initial_Value;
@key[end] Counter_Type;
@key[protected] @key[body] Counter_Type @key[is] ...]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[@key[function] Next_Id(Counter : @key[access] Counter_Type) @key[return] Integer @key[is]
Result : Integer;
@key[begin]
Counter.Get_Next(Result);
@key[return] Result;
@key[end] Next_Id;]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[C : @key[aliased] Counter_Type;
@key[task] @key[type] T(Who_Am_I : Integer := Next_Id(C'Access));
@key[task] @key[body] T @key[is] ...]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[Task_Array : @key[array](1..100) @key[of] @key[aliased] T;
--@RI{ Array of task elements, each with its own unique ID.}
--@RI{ We specify "aliased" so we can use Task_Array(I)'Access.}
--@RI{ This is safe because Task_Array is of a limited type,}
--@RI{ so there is no way an assignment to it could change}
--@RI{ the discriminants of one of its components.}]}
@end{Example}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[Note that this rule applies to array components
and record components, but not to protected type components (since
they are always limited).]}
@end{Ramification}
@end{Legality}
@begin{StaticSem}
@Defn2{Term=[dimensionality], Sec=(of an array)}
@Defn{one-dimensional array}
@Defn{multi-dimensional array}
An array is characterized by the number of indices
(the @i(dimensionality) of the array), the type and position
of each index, the lower and upper bounds for each index, and
the subtype of the components.
The order of the indices is significant.
A one-dimensional array has a distinct component for each possible index
value. A multidimensional array has a distinct component for each possible
sequence of index values that can be formed by selecting one value for
each index position (in the given order).
The possible values for a given index are all the values between the
lower and upper bounds, inclusive;
@Defn{index range}
this range of values is called the @i(index range).
@Defn2{Term=[bounds], Sec=(of an array)}
The @i(bounds) of an array are the bounds of its index ranges.
@Defn2{Term=[length], Sec=(of a dimension of an array)}
The @i(length) of a dimension of an array is
the number of values of the index range of the dimension (zero for
a null range).
@Defn2{Term=[length], Sec=(of a one-dimensional array)}
The @i(length) of a one-dimensional array is
the length of its only dimension.
An @nt<array_type_definition> defines an array type and its first subtype.
For each object of this array type, the number of indices, the type
and position of each index, and the subtype of the components
are as in the type definition@Redundant[; the values of the lower
and upper bounds for each index belong to
the corresponding index subtype of its type, except for null arrays
(see @RefSecNum(Index Constraints and Discrete Ranges))].
@Defn2{Term=[constrained], Sec=(subtype)}
@Defn2{Term=[unconstrained], Sec=(subtype)}
An @nt{unconstrained_array_definition} defines an array type with
an unconstrained first subtype.
Each @nt{index_@!subtype_@!definition} defines the
corresponding index subtype to be the subtype denoted
by the @nt{subtype_@!mark}.
@redundant[@PDefn2{Term=[box], Sec=(compound delimiter)}
The compound delimiter <> (called a @i(box)) of an
@nt<index_subtype_definition> stands for an undefined range
(different objects of the type need not have the same bounds).]
@Defn2{Term=[constrained], Sec=(subtype)}
@Defn2{Term=[unconstrained], Sec=(subtype)}
A @nt{constrained_array_definition} defines an array type with
a constrained first subtype.
Each @nt{discrete_@!subtype_@!definition}
defines the corresponding index subtype,
as well as the corresponding index range for the
constrained first subtype.
@PDefn2{Term=[constraint], Sec=(of a first array subtype)}
The @i(constraint) of the first subtype consists of the bounds
of the index ranges.
@begin{Discussion}
Although there is no namable
unconstrained array subtype in this case, the predefined slicing
and concatenation operations can operate on and yield
values that do not necessarily belong to the first array subtype.
This is also true for Ada 83.
@end{Discussion}
@Leading@;The discrete subtype defined by a @nt{discrete_@!subtype_@!definition} is
either that defined by the @nt{subtype_@!indication}, or a subtype
determined by the @nt{range} as follows:
@begin(itemize)
If the type of the @nt{range} resolves to @i(root_integer), then
the @nt{discrete_subtype_definition} defines a subtype of the
predefined type Integer with bounds given by a conversion to Integer
of the bounds of the @nt<range>;
@PDefn2{Term=[implicit subtype conversion],Sec=(bounds of a range)}
@begin{Reason}
This ensures that
indexing over the discrete subtype can be performed with
regular Integers, rather than only @i(universal_integer)s.
@end{Reason}
@begin{Discussion}
We considered doing this by simply creating
a @lquotes@;preference@rquotes@; for Integer when resolving the @nt<range>.
@PDefn{Beaujolais effect}
However, this can introduce @i(Beaujolais) effects when the
@nt<simple_expression>s involve calls on functions visible
due to @key(use) clauses.
@end{Discussion}
Otherwise, the @nt{discrete_subtype_definition} defines
a subtype of the type of the @nt{range}, with the bounds given
by the @nt<range>.
@end(itemize)
@PDefn2{Term=[nominal subtype], Sec=(of a component)}
The @nt{component_definition} of an @nt<array_type_definition>
defines the nominal subtype of the components.
If the reserved word @key(aliased) appears in the @nt{component_definition},
then each component of the array is aliased
(see @RefSecNum{Access Types}).
@begin(Ramification)
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[In this case, the nominal subtype cannot be an
unconstrained discriminated subtype. See @RefSecNum{Record Types}.]}
@end(Ramification)
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[elaboration], Sec=(array_type_definition)}
The elaboration of an @nt{array_type_definition}
creates the array type and its first subtype,
and consists of the elaboration of any @nt{discrete_@!subtype_@!definition}s
and the @nt{component_@!definition}.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01]}
@PDefn2{Term=[elaboration], Sec=(discrete_subtype_definition)}
The elaboration of a @nt{discrete_subtype_definition}
@Chg{New=[that does not contain any per-object expressions],Old=[]}
creates the discrete subtype, and consists
of the elaboration of the @nt{subtype_@!indication} or the
evaluation of the @nt{range}.
@Chg{New=[The elaboration of a @nt{discrete_subtype_definition} that contains
one or more per-object expressions is defined in @RefSecNum{Record Types}.],Old=[]}
@PDefn2{Term=[elaboration], Sec=(component_definition)}
The elaboration of a @nt{component_@!definition} in an
@nt{array_@!type_@!definition} consists of the elaboration
of the @nt{subtype_@!indication}@Chg{Version=[2],New=[ or @nt{access_definition}],Old=[]}.
The elaboration of any @nt{discrete_@!subtype_@!definition}s
and the elaboration of the
@nt{component_@!definition} are performed in an arbitrary order.
@end{RunTime}
@begin{Notes}
All components of an array have the same subtype. In particular, for an array
of components that are one-dimensional arrays, this means that all components
have the same bounds and hence the same length.
Each elaboration of an @nt<array_type_definition> creates
a distinct array type. A consequence of this is that each
object whose @nt<object_declaration> contains an @nt<array_type_definition>
is of its own unique type.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i(Examples of type declarations with unconstrained array definitions: )
@begin(Example)
@key(type) Vector @key(is) @key(array)(Integer @key(range) <>) @key(of) Real;
@key(type) Matrix @key(is) @key(array)(Integer @key(range) <>, Integer @key(range) <>) @key(of) Real;
@key(type) Bit_Vector @key(is) @key(array)(Integer @key(range) <>) @key(of) Boolean;
@key(type) Roman @key(is) @key(array)(Positive @key(range) <>) @key(of) Roman_Digit; --@RI[ see @RefSecNum(Character Types)]
@end(Example)
@begin{Wide}
@leading@keepnext@i(Examples of type declarations with constrained array definitions: )
@end{Wide}
@begin(Example)
@key(type) Table @key(is) @key(array)(1 .. 10) @key(of) Integer;
@key(type) Schedule @key(is) @key(array)(Day) @key(of) Boolean;
@key(type) Line @key(is) @key(array)(1 .. Max_Line_Size) @key(of) Character;
@end(Example)
@begin{Wide}
@leading@keepnext@i(Examples of object declarations with array type definitions: )
@end{Wide}
@begin(Example)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
Grid @Chg{Version=[2],New=[ ],Old=[]}: @key(array)(1 .. 80, 1 .. 100) @key(of) Boolean;
Mix @Chg{Version=[2],New=[ ],Old=[]}: @key(array)(Color @key(range) Red .. Green) @key(of) Boolean;@Chg{Version=[2],New=[
Msg_Table : @key(constant array)(Error_Code) @key(of access constant) String :=
(Too_Big => @key(new) String'("Result too big"), Too_Small => ...);],Old=[]}
Page @Chg{Version=[2],New=[ ],Old=[]}: @key(array)(Positive @key(range) <>) @key(of) Line := --@RI[ an array of arrays]
(1 | 50 => Line'(1 | Line'Last => '+', @key(others) => '-'), --@RI[ see @RefSecNum(Array Aggregates)]
2 .. 49 => Line'(1 | Line'Last => '|', @key(others) => ' '));
--@RI[ Page is constrained by its initial value to (1..50)]
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt{component_definition} is modified to allow
the reserved word @key{aliased}.
The syntax rules for @nt{unconstrained_array_definition} and
@nt{constrained_array_definition} are modified to use
@nt{component_definition} (instead of
@i(component_)@nt{subtype_indication}). The effect of this change is to allow
the reserved word @key{aliased} before the
component @nt{subtype_indication}.
A @nt{range} in a @nt{discrete_subtype_definition}
may use arbitrary
universal expressions for each bound (e.g. @en@;1 .. 3+5), rather
than strictly "implicitly convertible" operands. The subtype
defined will still be a subtype of Integer.
@end{Extend83}
@begin{DiffWord83}
We introduce a new syntactic category, @nt{discrete_subtype_definition},
as distinct from @nt{discrete_range}. These two constructs have
the same syntax, but their semantics
are quite different (one defines a subtype, with
a preference for Integer subtypes, while the
other just selects a subrange of an existing subtype).
We use this new syntactic category in @key(for) loops
and entry families.
The syntax for @nt{index_constraint} and @nt{discrete_range}
have been moved to their own subclause, since they are no
longer used here.
The syntax rule for @nt{component_definition} (formerly
@ntf<component_subtype_definition>) is moved here from
RM83-3.7.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00230-01],ARef=[AI95-00406-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Array components can have an anonymous access type.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00363-01]}
@ChgAdded{Version=[2],Text=[The prohibition against unconstrained
discriminated aliased components has been lifted. It has been replaced
by a prohibition against the actual troublemakers: general access
discriminant constraints (see @RefSecNum{Discriminant Constraints}).]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Added wording to allow
the elaboration of per-object constraints for constrained arrays.]}
@end{DiffWord95}
@LabeledSubClause{Index Constraints and Discrete Ranges}
@begin{Intro}
An @nt<index_constraint> determines the range of possible values for every
index of an array subtype, and thereby the corresponding array bounds.
@end{Intro}
@begin{Syntax}
@Syn{lhs=<index_constraint>,rhs=" (@Syn2{discrete_range} {, @Syn2{discrete_range}})"}
@Syn{lhs=<discrete_range>,rhs="@SynI{discrete_}@Syn2{subtype_indication} | @Syn2{range}"}
@end{Syntax}
@begin{Resolution}
@Defn{type of a @nt{discrete_range}}
The type of a @nt<discrete_range> is the
type of the subtype defined by the @nt<subtype_indication>,
or the type of the @nt<range>.
@PDefn2{Term=[expected type], Sec=(index_constraint discrete_range)}
For an @nt{index_constraint},
each @nt{discrete_range} shall resolve to be of the type of the
corresponding index.
@begin(Discussion)
In Ada 95, @nt{index_constraint}s only appear in
a @nt{subtype_indication}; they no longer appear in
@nt<constrained_array_definition>s.
@end(Discussion)
@end{Resolution}
@begin{Legality}
An @nt{index_constraint} shall appear only in a
@nt{subtype_indication} whose @nt{subtype_mark} denotes
either an unconstrained array subtype, or an
unconstrained access subtype whose designated subtype is
an unconstrained array subtype; in either case,
the @nt{index_constraint} shall provide a @nt{discrete_range}
for each index of the array type.
@end{Legality}
@begin{StaticSem}
@Defn2{Term=[bounds], Sec=(of a @nt<discrete_range>)}
A @nt{discrete_range} defines a range whose bounds are given
by the @nt{range}, or by the range of the subtype defined by the
@nt{subtype_indication}.
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[compatibility], Sec=(index constraint with a subtype)}
An @nt{index_constraint} is @i(compatible) with an unconstrained array subtype
if and only if the index range defined by each @nt{discrete_range}
is compatible (see @RefSecNum(Scalar Types)) with the corresponding index subtype.
@Defn{null array}
If any of the @nt<discrete_range>s defines a null range, any array thus
constrained is a @i(null array), having no components.
@PDefn2{Term=[satisfies], Sec=(an index constraint)}
An array value @i(satisfies) an @nt{index_constraint} if at each index position
the array value and the @nt{index_constraint} have the same index
bounds.
@begin{Ramification}
There is no need to define compatibility with a constrained
array subtype, because one is not allowed to constrain it again.@end{ramification}
@PDefn2{Term=[elaboration], Sec=(index_constraint)}
The elaboration of an @nt{index_constraint} consists
of the evaluation of the @nt{discrete_range}(s), in an arbitrary order.
@PDefn2{Term=[evaluation], Sec=(discrete_range)}
The evaluation of a @nt{discrete_range}
consists of the elaboration of the @nt{subtype_indication}
or the evaluation of the @nt{range}.
@end{RunTime}
@begin{Notes}
The elaboration of a @nt<subtype_indication> consisting
of a @nt<subtype_mark> followed
by an @nt<index_constraint> checks the compatibility of the
@nt<index_constraint> with the @nt<subtype_mark>
(see @RefSecNum(Subtype Declarations)).
Even if an array value does not satisfy the index constraint
of an array subtype, Constraint_Error is not
raised on conversion to the array subtype, so long as
the length of each dimension of the array value and the
array subtype match. See @RefSecNum(Type Conversions).
@end{Notes}
@begin{Examples}
@leading@keepnext@i(Examples of array declarations including an index constraint: )
@begin(Example)
Board : Matrix(1 .. 8, 1 .. 8); --@RI[ see @RefSecNum(Array Types)]
Rectangle : Matrix(1 .. 20, 1 .. 30);
Inverse : Matrix(1 .. N, 1 .. N); --@RI[ N need not be static ]
Filter : Bit_Vector(0 .. 31);
@end(Example)
@begin{Wide}
@leading@keepnext@i(Example of array declaration with a constrained array subtype: )
@end{Wide}
@begin(Example)
My_Schedule : Schedule; --@RI[ all arrays of type Schedule have the same bounds]
@end(Example)
@begin{Wide}
@leading@keepnext@i(Example of record type with a component that is an array: )
@end{Wide}
@begin(Example)
@key(type) Var_Line(Length : Natural) @key(is)
@key(record)
Image : String(1 .. Length);
@key(end) @key(record);
Null_Line : Var_Line(0); --@RI[ Null_Line.Image is a null array]
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
We allow the declaration of a variable with
a nominally unconstrained array subtype, so long as
it has an initialization expression to determine
its bounds.
@end{Extend83}
@begin{DiffWord83}
We have moved the syntax for @nt{index_constraint} and
@nt{discrete_range} here since they are no longer
used in @nt{constrained_array_definition}s.
We therefore also no longer have to describe the
(special) semantics of @nt{index_constraint}s and @nt{discrete_range}s
that appear in @nt{constrained_array_definition}s.
The rules given in RM83-3.6.1(5,7-10),
which define the bounds of an array object, are redundant
with rules given elsewhere, and so are not repeated here.
RM83-3.6.1(6), which requires that the (nominal) subtype of
an array variable be constrained, no longer applies,
so long as the variable is explicitly initialized.
@end{DiffWord83}
@LabeledSubClause{Operations of Array Types}
@begin{Legality}
@Redundant[The argument N used in the @nt<attribute_designator>s for
the N-th dimension of an array shall be a static @nt<expression> of
some integer type.] The value of N shall be positive (nonzero)
and no greater than the dimensionality of the array.
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0006],ARef=[AI95-00030-01]}
The following attributes are defined for
@ChgPrefixType{Version=[1],Kind=[Revised],Text=[a @Chg{New=[@nt{prefix}],
Old=[prefix]} A that is of an array type
@Redundant[(after any implicit dereference)], or denotes
a constrained array subtype]}:
@begin{Ramification}
These attributes are not defined if A is a subtype-mark
for an access-to-array subtype. They are defined (by implicit
dereference) for access-to-array values.@end{ramification}
@begin(description)
@Attribute{Prefix=<A>, AttrName=<First>,
Text=[A'First denotes the lower bound of the first index range; its
type is the corresponding index type.]}
@Attribute{Prefix=<A>, AttrName=<First(N)>,
Text=[A'First(N) denotes the lower bound of the N-th index range; its
type is the corresponding index type.]}
@Attribute{Prefix=<A>, AttrName=<Last>,
Text=[A'Last denotes the upper bound of the first index range; its
type is the corresponding index type.]}
@Attribute{Prefix=<A>, AttrName=<Last(N)>,
Text=[A'Last(N) denotes the upper bound of the N-th index range; its
type is the corresponding index type.]}
@Attribute{Prefix=<A>, AttrName=<Range>,
Text=[A'Range is equivalent to the range A'First .. A'Last,
except that the @nt<prefix> A is only evaluated once.]}
@Attribute{Prefix=<A>, AttrName=<Range(N)>,
Text=[A'Range(N) is equivalent to the range A'First(N) .. A'Last(N),
except that the @nt<prefix> A is only evaluated once.]}
@Attribute{Prefix=<A>, AttrName=<Length>,
Text=[A'Length denotes the number of values of the first index
range (zero for a null range); its type is @i(universal_integer).]}
@Attribute{Prefix=<A>, AttrName=<Length(N)>,
Text=[A'Length(N) denotes the number of values of the N-th index
range (zero for a null range); its type is @i(universal_integer).]}
@end(description)
@EndPrefixType{}
@end{StaticSem}
@begin{ImplAdvice}
An implementation should normally represent
multidimensional arrays in row-major order, consistent with the notation used
for multidimensional array aggregates (see @RefSecNum(Array Aggregates)).
However, if a @key<pragma> Convention(Fortran, ...) applies to a
multidimensional array type, then column-major order should be used
instead (see @RefSec{Interfacing with Fortran}).
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Multidimensional arrays should be represented in row-major order,
unless the array has convention Fortran.]}]}
@end{ImplAdvice}
@begin{Notes}
@Leading@;The @nt<attribute_reference>s A'First and A'First(1) denote the same value.
A similar relation exists for the @nt<attribute_reference>s A'Last,
A'Range, and A'Length. The following relation is satisfied (except
for a null array) by the above attributes if the index type is an
integer type:
@begin(example)
A'Length(N) = A'Last(N) - A'First(N) + 1
@end(example)
An array type is limited if its component type is limited
(see @RefSecNum(Limited Types)).
@PDefn2{Term=[predefined operations],Sec=(of an array type)}
The predefined operations of an array type include the
membership tests, qualification, and explicit conversion.
If the array type is not limited, they also include assignment
and the predefined
equality operators. For a one-dimensional array type,
they include the predefined concatenation operators (if nonlimited) and,
if the component type is discrete, the predefined relational operators;
if the component type is boolean, the predefined
logical operators are also included.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A component of an array can be named with an @nt<indexed_component>.
A value of an array type can be specified with an
@nt<array_aggregate>@Chg{Version=[2],New=[],Old=[, unless the array type
is limited]}.
For a one-dimensional array type, a slice of the array can be named;
also, string literals are defined if the component type is
a character type.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples (using arrays declared in the examples of subclause @RefSecNum(Index Constraints and Discrete Ranges)):}
@begin(Example)
-- Filter'First = 0 Filter'Last = 31 Filter'Length = 32
-- Rectangle'Last(1) = 20 Rectangle'Last(2) = 30
@end(Example)
@end{Examples}
@LabeledSubClause{String Types}
@begin{StaticSem}
@Defn{string type}
A one-dimensional array type whose component type is a character type
is called a @i(string) type.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01]}
@Leading@redundant[There are @Chg{Version=[2],New=[three],Old=[two]} predefined
string types, String@Chg{Version=[2],New=[,],Old=[ and]}
Wide_String@Chg{Version=[2],New=[, and Wide_Wide_String],Old=[]},
each indexed by values of the predefined subtype Positive;
these are declared in the visible part of package Standard:]
@begin(example)
@redundant[@key(subtype) Positive @key(is) Integer @key(range) 1 .. Integer'Last;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01]}
@key(type) String @key(is) @key(array)(Positive @key(range) <>) @key(of) Character;
@key(type) Wide_String @key(is) @key(array)(Positive @key(range) <>) @key(of) Wide_Character;
@Chg{Version=[2],New=[@key(type) Wide_Wide_String @key(is) @key(array)(Positive @key(range) <>) @key(of) Wide_Wide_Character;],Old=[]}
]@end(example)
@end{StaticSem}
@begin{Notes}
String literals (see @RefSecNum(String Literals) and
@RefSecNum(Literals)) are defined for all string types.
The concatenation operator & is predefined
for string types, as for all nonlimited
one-dimensional array types.
The ordering operators <, <=, >, and >= are predefined
for string types, as for all one-dimensional discrete array types;
these ordering operators correspond to lexicographic order
(see @RefSecNum(Relational Operators and Membership Tests)).
@end{Notes}
@begin{Examples}
@Leading@keepnext@i(Examples of string objects:)
@begin(Example)
@TabClear()@TabSet(P50)
Stars : String(1 .. 120) := (1 .. 120 => '*' );
Question : @key(constant) String := "How many characters?";
@\--@RI[ Question'First = 1, Question'Last = 20]
@\--@RI[ Question'Length = 20 (the number of characters)]
Ask_Twice : String := Question & Question;@\--@RI[ constrained to (1..40)]
Ninety_Six : @key(constant) Roman := "XCVI";@\--@RI[ see @RefSecNum(Character Types) and @RefSecNum(Array Types)]
@end(Example)
@end{Examples}
@begin{Inconsistent83}
@Defn{inconsistencies with Ada 83}
The declaration of Wide_String in Standard hides a use-visible
declaration with the same @nt<defining_identifier>.
In rare cases, this might result in an inconsistency between
Ada 83 and Ada 95.
@end{Inconsistent83}
@begin{Incompatible83}
@Defn{incompatibilities with Ada 83}
Because both String and Wide_String are always directly visible,
an expression like
@begin(Example)
"a" < "bc"
@end(Example)
is now ambiguous, whereas in Ada 83 both string literals could
be resolved to type String.
@end{Incompatible83}
@begin{Extend83}
@Defn{extensions to Ada 83}
The type Wide_String is new (though it was approved by
ARG for Ada 83 compilers as well).
@end{Extend83}
@begin{DiffWord83}
We define the term @i(string type) as a natural analogy
to the term @i(character type).
@end{DiffWord83}
@begin{Inconsistent95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[@Defn{inconsistencies with Ada 95}
The declaration of Wide_Wide_String in Standard hides a use-visible
declaration with the same @nt<defining_identifier>.
In the (very) unlikely event that an Ada 95 program had
depended on such a use-visible declaration, and the program remains
legal after the substitution of Standard.Wide_Wide_String,
the meaning of the program will be different.]}
@end{Inconsistent95}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The type Wide_Wide_String is new.]}
@end{Extend95}
@LabeledClause{Discriminants}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00251-01],ARef=[AI95-00326-01]}
@redundant[@Defn{discriminant}
@IndexSee{Term=[type parameter],See=(discriminant)}
@IndexSeeAlso{Term=[parameter],See=(discriminant)}
A composite type (other than an array@Chg{Version=[2],New=[ or
interface],Old=[]} type) can have discriminants,
which parameterize the type.
A @nt<known_discriminant_part> specifies the discriminants
of a composite type.
A discriminant of an object is a component of the object,
and is either of a discrete type or an access type.
An @nt<unknown_discriminant_part> in the declaration of
a@Chg{Version=[2],New=[],Old=[ partial]} view of a type
specifies that the discriminants of the type are unknown
for the given view;
all subtypes of such a@Chg{Version=[2],New=[],Old=[ partial]} view
are indefinite subtypes.]
@ChgRef{Version=[2],Kind=[Revised]}
@ChgToGlossary{Version=[2],Kind=[Revised],Term=<Discriminant>,
Text=<A discriminant is a parameter @Chg{Version=[2],New=[for],Old=[of]} a composite type.
It can control, for example, the bounds of a component
of the type if @Chg{Version=[2],New=[the component is],Old=[that type is]}
an array@Chg{Version=[2],New=[],Old=[ type]}.
A discriminant @Chg{Version=[2],New=[for],Old=[of]} a task type can be
used to pass data to a task of the type upon creation.>}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
@PDefn{unknown discriminants}
@PDefn2{Term=[discriminants], Sec=(unknown)}
A @Chg{Version=[2],New=[view of a ],Old=[]}type, and all @Chg{Version=[2],New=[],
Old=[of its ]}subtypes@Chg{Version=[2],New=[ of the view],Old=[]}, have
@i(unknown discriminants)
when the number or names of the discriminants, if any, are unknown at
the point of the type declaration@Chg{Version=[2],New=[ for the view],Old=[]}.
A @nt<discriminant_part> of (<>) is used to indicate unknown discriminants.
@end{Discussion}
@end{Intro}
@begin{Metarules}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00402-01]}
@ChgAdded{Version=[2],Text=[When an access discriminant
is initialized at the time of object creation with an allocator
of an anonymous type, the allocated object and the object
with the discriminant are tied together for their lifetime.
They should be allocated out of the same storage pool,
and then at the end of the lifetime of the enclosing object, finalized
and reclaimed together. In this case, the allocated object is called
a coextension (see @RefSecNum{Operations of Access Types}).]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The above principle when applied to a
nonlimited type implies that such an object may be copied only to a
shorter-lived object, because attempting to assign it to a longer-lived
object would fail because the access discriminants would not match.
In a copy, the lifetime connection between the enclosing object
and the allocated object does not exist. The allocated object is
tied in the above sense only to the original object. Other copies
have only secondary references to it.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Note that when an @nt{allocator} appears as a
constraint on an access discriminant in a @nt{subtype_indication}
that is elaborated independently from object creation,
no such connection exists. For example, if a named constrained
subtype is declared via
"@key{subtype} Constr @key{is} Rec(Acc_Discrim => @key{new} T);"
or if such an @nt{allocator} appears in the @nt{subtype_indication} for
a component, the allocator is evaluated when the @nt{subtype_indication}
is elaborated, and hence its lifetime is typically longer than
the objects or components that will later be subject to the
constraint. In these cases, the allocated object should not
be reclaimed until the @nt{subtype_indication} goes out of scope.]}
@end{Discussion}
@end{Metarules}
@begin{Syntax}
@Syn{lhs=<discriminant_part>,rhs="@Syn2{unknown_discriminant_part} | @Syn2{known_discriminant_part}"}
@Syn{lhs=<unknown_discriminant_part>,rhs="(<>)"}
@Syn{lhs=<known_discriminant_part>,rhs="
(@Syn2{discriminant_specification} {; @Syn2{discriminant_specification}})"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01]}
@Syn{lhs=<discriminant_specification>,rhs="
@Syn2{defining_identifier_list} : @Chg{Version=[2],New=<[@Syn2{null_exclusion}] >,Old=<>}@Syn2{subtype_mark} [:= @Syn2{default_expression}]
| @Syn2{defining_identifier_list} : @Syn2{access_definition} [:= @Syn2{default_expression}]"}
@Syn{lhs=<default_expression>,rhs="@Syn2{expression}"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(discriminant default_expression)}
The expected type for the @nt{default_expression}
of a @nt{discriminant_specification} is that of the corresponding
discriminant.
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0007],ARef=[AI95-00098-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00251-01]}
A @Chg{New=[@nt{discriminant_part}],Old=[@nt{known_discriminant_part}]} is only
permitted in a declaration for a composite type that is not an
array@Chg{Version=[2],New=[ or interface],Old=[]} type
@Redundant[(this includes generic formal types)]@Chg{New=[. A],Old=[; a]}
type declared with a @nt<known_discriminant_part> is called
a @i(discriminated) type,@Defn{discriminated type} as is a type that inherits
(known) discriminants.
@begin{ImplNote}
Discriminants on array types were considered,
but were omitted to ease (existing) implementations.
@end{implnote}
@begin(Discussion)
Note that the above definition for @lquotes@;discriminated type@rquotes@; does
not include types declared with an @nt<unknown_discriminant_part>.
This seems consistent with Ada 83, where such types (in a generic
formal part) would not be considered discriminated types.
Furthermore, the full type for a type with unknown discriminants
need not even be composite, much less have any discriminants.
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0007],ARef=[AI95-00098-01]}
@Chg{New=[On the other hand, @nt<unknown_discriminant_part>s cannot be
applied to type declarations that cannot have a @nt<known_discriminant_part>.
There is no point in having unknown discriminants on a type that can never
have discriminants (for instance, a formal modular type), even when these
are allowed syntactically.],Old=[]}
@end(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00254-01]}
The subtype of a discriminant may be defined
by@Chg{Version=[2],New=[ an optional @nt{null_exclusion} and],Old=[]} a
@nt<subtype_mark>, in which case the @nt<subtype_mark> shall denote
a discrete or access subtype, or it may be defined by an
@nt<access_definition>@Chg{Version=[2],New=[],Old=[ @Redundant[(in which case
the @nt<subtype_mark> of the @nt<access_definition> may denote
any kind of subtype)]]}.
@Defn{access discriminant}
A discriminant that is defined by an @nt<access_definition>
is called an @i(access discriminant)
and is of an anonymous @Chg{Version=[2],New=[access],
Old=[general access-to-variable]} type@Chg{Version=[2],New=[],Old=[ whose
designated subtype is
denoted by the @nt<subtype_mark> of the @nt<access_definition>]}.
@begin(Reason)
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00230-01]}
@ChgNote{It still does cause complexities. :-)}@ChgNote{We don't
want to delete "Reason:" here, thus we use @Chg and not @ChgDeleted}
@Chg{Version=[2],New=[],Old=[In an early version of Ada 9X,
we allowed access discriminants on nonlimited types,
but this created unpleasant complexities.
It turned out to be simpler and more uniform to allow discriminants
of a named access type on any discriminated type, and keep access
discriminants just for limited types.]}
Note that discriminants of a named access type are not
considered @lquotes@;access discriminants.@rquotes@;
Similarly, @lquotes@;access parameter@rquotes@;
only refers to a formal parameter defined by an @nt<access_definition>.
@end(Reason)
@ChgNote{This paragraph is just moved up}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00402-01]}
@ChgAdded{Version=[2],Text=[@nt{Default_expression}s shall be provided either
for all or for none
of the discriminants of a @nt{known_@!discriminant_@!part}.
No @nt<default_@!expression>s are permitted in a
@nt<known_@!discriminant_@!part> in a declaration of a tagged
type @Redundant[or a generic formal type].]}
@begin(Reason)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The all-or-none rule
is related to the rule that a discriminant constraint shall specify
values for all discriminants. One could imagine a different rule
that allowed a constraint to specify only some of the discriminants,
with the others provided by default. Having defaults for discriminants
has a special significance @em it allows objects of the type to
be unconstrained, with the discriminants alterable as part of
assigning to the object.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Defaults for discriminants of tagged types
are disallowed so that every object of a
tagged type is constrained,
either by an explicit constraint,
or by its initial discriminant values.
This substantially simplifies the semantic rules
and the implementation of inherited
dispatching operations. For generic formal types,
the restriction simplifies the type matching rules.
If one simply wants a "default" value for the discriminants,
a constrained subtype can be declared for future use.]}
@end(Reason)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01],ARef=[AI95-00402-01],ARef=[AI95-00419-01]}
A @nt<discriminant_specification> for
an access discriminant
@Chg{Version=[2],New=[may have a @nt{default_expression}],Old=[shall appear]}
only in the declaration for a task or protected type,
or for a type @Chg{Version=[2],New=[that is a descendant of an explicitly
limited record type],Old=[with the reserved word @key[limited] in its
@Redundant[(full)] definition
or in that of one of its ancestors]}.
In addition to the places where @LegalityTitle normally apply
(see @RefSecNum{Generic Instantiation}),
this rule applies also in the private part of an
instance of a generic unit.@PDefn{generic contract issue}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Revised]}
This rule implies that a type can have @Chg{Version=[2],
New=[a default for ],Old=[]}an access discriminant
if the type is limited,
but not if the only reason it's limited is because of a limited component.
Compare with the definition of limited type in
@RefSecNum{Limited Types}.@Chg{Version=[2],New=[ Also, recall that a
@lquotes@;descendant@rquote includes the type itself, so an explicitly
limited record type can have defaults.],Old=[]}
@end{Discussion}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[
It is a consequence of this rule that only a return-by-reference
type can have an access discriminant (see @RefSecNum{Return Statements}).
This is important to avoid dangling references to local variables.]}
@end{Ramification}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01]}
@Leading@Keepnext@;We @Chg{Version=[2],New=[],Old=[also ]}considered the
following rules@Chg{Version=[2],New=[ for access discriminants],Old=[]}:
@begin{Itemize}
If a type has an access discriminant,
this automatically makes it limited,
just like having a limited component automatically
makes a type limited.
This was rejected because it decreases program readability,
and because it seemed error prone (two bugs in a previous
version of the RM9X were attributable to this rule).
@ChgRef{Version=[2],Kind=[Revised]}
A type with an access discriminant shall be limited.
This is equivalent to the rule we actually chose@Chg{Version=[2],New=[ for Ada 95],Old=[]},
except that it allows a type to have an access discriminant
if it is limited just because of a limited component.
For example, any record containing a task would be allowed to have
an access discriminant, whereas the actual rule requires
@lquotes@key[limited] @key[record]@rquotes@;.
This rule was also rejected due to readability concerns,
and because would interact badly with the rules for
limited types that @lquotes@;become nonlimited@rquotes@;.
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[A type may have an access discriminant if
it is a limited partial view, or a task, protected, or
explicitly limited record type. This was the rule chosen for Ada 95.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant.
For nonlimited type, there is no special accessibility for access
discriminants; they're the same as any other anonymous access component.
For a limited type, they have the special accessibility of Ada 95. However,
this doesn't work because a limited partial view can have a nonlimited
full view -- giving the two views different accessibility.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant,
as above. However, special accessibility rules only apply to types
that are @lquotes@;really@rquotes@; limited (task, protected, and
explicitly limited records). However, this breaks privacy; worse,
@LegalityTitle depend on the definition of accessibility.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant,
as above. Limited types have special accessibility, while nonlimited
types have normal accessibility. However, a limited partial view with an
access discriminant can only be completed by a task, protected, or
explicitly limited record type. That prevents accessibility from changing.
A runtime accessibility check is required on generic formal types with
access discriminants. However, changing between limited and nonlimited
types would have far-reaching consequences for access discriminants @em
which is uncomfortable.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant.
All types have special accessibility. This was considered early during
the Ada 9X process, but was dropped for @lquotes@;unpleasant
complexities@rquotes@;, which unfortunately aren't recorded. It does
seem that an accessibility check would be needed on assignment of such
a type, to avoid copying an object with a discriminant pointing to a
local object into a more global object (and thus creating a dangling
pointer).]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant,
but access discriminants cannot have defaults. All types have special
accessibility. This gets rid of the problems on assignment (you couldn't
change such a discriminant), but it would be horribly incompatible with
Ada 95.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any type may have an access discriminant,
but access discriminants may have defaults only if they are a
@lquotes@;really@rquotes@; limited type. This is the rule chosen for
Ada 2005, as it is not incompatible, and it doesn't require weird
accessibility checks.]}
@end{Itemize}
@end{Reason}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00402-01]}
@ChgDeleted{Version=[2],Text=[@nt{Default_expression}s shall be provided either for all or for none
of the discriminants of a @nt{known_@!discriminant_@!part}.
No @nt<default_@!expression>s are permitted in a
@nt<known_@!discriminant_@!part> in a declaration of a tagged
type @Redundant[or a generic formal type].]}
@begin(Reason)
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[The all-or-none rule
is related to the rule that a discriminant constraint shall specify
values for all discriminants. One could imagine a different rule
that allowed a constraint to specify only some of the discriminants,
with the others provided by default. Having defaults for discriminants
has a special significance @em it allows objects of the type to
be unconstrained, with the discriminants alterable as part of
assigning to the object.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[Defaults for discriminants of tagged types
are disallowed so that every object of a
tagged type is constrained,
either by an explicit constraint,
or by its initial discriminant values.
This substantially simplifies the semantic rules
and the implementation of inherited
dispatching operations. For generic formal types,
the restriction simplifies the type matching rules.
If one simply wants a "default" value for the discriminants,
a constrained subtype can be declared for future use.]}
@end(Reason)
@Leading@;For a type defined by a @nt<derived_type_definition>,
if a @nt<known_discriminant_part> is provided in its declaration, then:
@begin{Itemize}
The parent subtype shall be constrained;
If the parent type is not a tagged type, then each discriminant
of the derived type shall be used in the constraint defining
the parent subtype;@begin{ImplNote}
This ensures that the new discriminant can share storage with
an existing discriminant.@end{implnote}
If a discriminant is used in the constraint defining the parent subtype,
the subtype of the discriminant shall be statically compatible
(see @RefSecNum{Statically Matching Constraints and Subtypes}) with the
subtype of the corresponding parent discriminant.
@begin(Reason)
This ensures that on conversion
(or extension via an extension aggregate) to a distantly related type,
if the discriminants satisfy the target type's requirements they satisfy
all the intermediate types' requirements as well.
@end(Reason)
@begin(Ramification)
There is no requirement that the new discriminant have the
same (or any) @nt<default_expression> as the parent's discriminant.
@end(Ramification)
@end{Itemize}
The type of the @nt<default_expression>, if any, for an access discriminant
shall be convertible to the anonymous access type of the discriminant
(see @RefSecNum{Type Conversions}).
@PDefn2{Term=[convertible],Sec=(required)}
@begin{Ramification}
This requires convertibility
of the designated subtypes.
@end{ramification}
@end{Legality}
@begin{StaticSem}
A @nt{discriminant_specification} declares a discriminant;
the @nt{subtype_mark}
denotes its subtype unless it is an access discriminant, in which case
the discriminant's subtype is the anonymous access-to-variable subtype
defined by the @nt{access_definition}.
@Redundant[For a type defined by a @nt<derived_type_definition>,
each discriminant of the parent type
is either inherited,
constrained to equal some new discriminant of the derived type,
or constrained to the value of an expression.]
@Defn{corresponding discriminants}
When inherited or constrained to equal some new discriminant,
the parent discriminant and the discriminant of the derived type are said
to @i(correspond).
Two discriminants also correspond
if there is some common discriminant to which they
both correspond. A discriminant corresponds to itself
as well.
@Defn{specified discriminant}
If a discriminant of a parent type is constrained to a specific value
by a @nt<derived_type_definition>,
then that discriminant is said to be @i(specified)
by that @nt<derived_type_definition>.
@begin{Ramification}
The correspondence relationship is transitive, symmetric,
and reflexive. That is,
if A corresponds to B, and B corresponds to C, then
A, B, and C each corresponds to A, B, and C in all combinations.@end{ramification}
@Defn2{Term=[depend on a discriminant],
Sec=(for a @nt<constraint> or @nt<component_definition>)}
A @nt{constraint} that appears
within the definition of a discriminated
type @i(depends on a discriminant) of the type if it names the
discriminant as a bound or discriminant value.
A @nt{component_definition} depends on a discriminant if its
@nt{constraint} depends on the discriminant, or on a discriminant
that corresponds to it.
@begin(Ramification)
A @nt{constraint} in a @nt{task_body} is not considered to
@i(depend) on a discriminant of the task type, even if it
names it. It is only the @nt<constraint>s in the type definition
itself that are considered dependents. Similarly for protected types.
@end(Ramification)
@Leading@keepnext@Defn2{Term=[depend on a discriminant], Sec=(for a component)}
A component @i(depends on a discriminant) if:
@begin(itemize)
Its @nt{component_definition} depends on the discriminant; or
@begin{Ramification}
A component does @i(not) depend on a discriminant just because
its @nt<default_expression> refers to the discriminant.@end{ramification}
It is declared in a @nt{variant_part} that is governed by the
discriminant; or
It is a component inherited as part of a @nt<derived_type_definition>,
and the @nt<constraint> of the @i(parent_)@nt<subtype_indication>
depends on the discriminant; or
@begin{Reason}
When the parent subtype depends on a discriminant, the parent
part of the derived type is treated like a discriminant-dependent
component.
@end{Reason}
@begin{Ramification}
Because of this rule, we don't really need to worry about @lquotes@;corresponding@rquotes@;
discriminants, since all the inherited components will be
discriminant-dependent if there is a new @nt<known_discriminant_part>
whose discriminants are used to constrain the old discriminants.
@end{Ramification}
It is a subcomponent of a component that depends on the discriminant.
@end(itemize)
@begin{Reason}
The concept of discriminant-dependent (sub)components is primarily used
in various rules that disallow renaming or 'Access, or specify that
certain discriminant-changing assignments are erroneous.
The goal is to allow implementations to move around or change the size
of discriminant-dependent subcomponents upon a discriminant-changing
assignment to an enclosing object. The above definition specifies that
all subcomponents of a discriminant-dependent component or parent part
are themselves discriminant-dependent, even though their presence
or size does not in fact depend on a discriminant. This is because
it is likely that they will move in a discriminant-changing assignment
if they are a component of one of several discriminant-dependent
parts of the same record.
@end{Reason}
Each value of a discriminated type includes a value for
each component
of the type that does not depend
on a discriminant@Redundant[; this includes the discriminants
themselves]. The values
of discriminants determine which other component values are present
in the value of the discriminated type.
@begin{Honest}
Which values are present might depend on discriminants of
some ancestor type that are constrained in an intervening
@nt<derived_type_definition>. That's why we say "values of discriminants"
instead of "values of @i(the) discriminants" @em a subtle point.@end{honest}
@Defn{known discriminants}
@Defn2{Term=[discriminants], Sec=(known)}
@Defn2{Term=[constrained], Sec=(subtype)}
@Defn2{Term=[unconstrained], Sec=(subtype)}
A type declared with a @nt<known_discriminant_part> is said to have
@i(known discriminants); its first subtype is unconstrained.
@Defn{unknown discriminants}
@Defn2{Term=[discriminants], Sec=(unknown)}
A type declared with an
@nt<unknown_discriminant_part> is said to have @i(unknown discriminants).
A type declared without a @nt<discriminant_part> has
no discriminants, unless it is a derived type; if derived,
such a type has the same sort of discriminants (known, unknown, or none)
as its parent (or ancestor) type.
A tagged class-wide type also has unknown discriminants.
@Defn{class-wide type}
@Defn{indefinite subtype}
@Redundant[Any subtype of a type with unknown discriminants
is an unconstrained and indefinite
subtype (see @RefSecNum{Types and Subtypes}
and @RefSecNum{Objects and Named Numbers}).]
@begin(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
An @nt<unknown_discriminant_part> @lquotes@;(<>)@rquotes@; is only permitted in
the declaration of a (generic or nongeneric) private type,
private extension, @Chg{Version=[2],New=[incomplete type, ],Old=[]}or
formal derived type.@Comment{That was always intended,
but 8652/0007 was needed to make it true.}
Hence, only such types, descendants thereof, and class-wide
types can have unknown discriminants.
An @nt<unknown_discriminant_part> is used to indicate that the corresponding
actual or full type might have discriminants without defaults,
or be an unconstrained array subtype. Tagged class-wide types
are also considered to have unknown discriminants because discriminants
can be added by type extensions, so the total number of
discriminants of any given value of a tagged class-wide type
is not known at compile time.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A subtype with unknown discriminants
is indefinite, and hence an object of such a subtype needs
explicit initialization.@Chg{Version=[2],New=[],Old=[ If the subtype is
limited, no (stand-alone) objects
can be declared since initialization is not permitted (though
formal parameters are permitted, and objects of the actual/full type
will generally be declarable).]} A limited private type with
unknown discriminants is @lquotes@;extremely@rquotes@;
limited;@Chg{Version=[2],New=[ objects of],Old=[]} such a type
@Chg{Version=[2],New=[ can be initialized only by subprograms (either
procedures with a parameter of the type, or a function returning the
type) declared in the package. Subprograms declared elsewhere can operate on
and even return the type, but they can only initialize the object by calling
(ultimately) a subprogram in the package declaring the type. Such a type],Old=[]} is useful for
keeping complete control over object creation within the package declaring
the type.
A partial view of a type might have unknown discriminants, while
the full view of the same type might have known, unknown, or no
discriminants@Chg{New=[.],Old=[,]}
@end(Discussion)
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01],ARef=[AI95-00416-01]}
@Chg{Version=[2],New=[For an access discriminant, its],
Old=[An]} @nt<access_definition> is
elaborated when the value of @Chg{Version=[2],New=[the],Old=[a corresponding]}
access discriminant is defined@Chg{Version=[2],New=[:],Old=[, either]}
by evaluation of its @nt<default_expression>@Chg{Version=[2],New=[,],Old=[ or]}
by elaboration of a @nt<discriminant_constraint>@Chg{Version=[2],New=[, or
by an assignment that initializes the enclosing object.],Old=[.
@Redundant[The elaboration of an @nt<access_definition> creates the
anonymous access type. When the expression defining the
access discriminant is evaluated, it is converted to this
anonymous access type (see @RefSecNum{Type Conversions}).]]}
@PDefn2{Term=[implicit subtype conversion],Sec=(access discriminant)}
@begin(Ramification)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00416-01]}
@Chg{Version=[2],New=[The],Old=[This]} conversion@Chg{Version=[2],New=[
of the @nt{expression} defining the access discriminant to the anonymous
access type],Old=[]} raises @Chg{Version=[2],New=[Program_Error],
Old=[Constraint_Error if the initial value is @key(null), or,]} for an
object created by an allocator of an access type T, if the
initial value is an access parameter that designates a view whose
accessibility level is deeper than that of T.
@end(Ramification)
@end{RunTime}
@begin{Notes}
If a discriminated type has @nt<default_expression>s for its
discriminants, then unconstrained variables of the type are permitted,
and the values of the discriminants can be changed by an assignment
to such a variable.
If defaults are not provided for the discriminants, then all
variables of the type are constrained, either by explicit
constraint or by their initial value; the values of the discriminants
of such a variable cannot be changed after initialization.
@begin(Discussion)
This connection between discriminant defaults and unconstrained variables
can be a source of confusion. For Ada 95, we considered various
ways to break the connection between defaults and unconstrainedness,
but ultimately gave up for lack of a sufficiently simple and intuitive
alternative.
@Defn{mutable}
An unconstrained discriminated subtype with defaults is called
a @i{mutable} subtype, and a variable of such a subtype is called
a mutable variable,
because the discriminants of such a variable can change.
There are no mutable arrays (that is, the bounds of an array
object can never change), because there is no way in the language
to define default values for the bounds.
Similarly, there are no mutable class-wide subtypes,
because there is no way to define the default tag,
and defaults for discriminants are not allowed in the
tagged case.
Mutable tags would also require a way for the
maximum possible size of such a class-wide subtype to be known.
(In some implementations, all mutable variables are allocated
with the maximum possible size. This approach is appropriate
for real-time applications where implicit use of the heap
is inappropriate.)
@end(Discussion)
The @nt{default_expression} for a discriminant of a type is evaluated
when an object of an unconstrained subtype of the type is created.
Assignment to a discriminant of an object (after its
initialization) is not allowed,
since the name of a discriminant is a constant; neither
@nt{assignment_statement}s
nor assignments inherent in passing as an @key(in out)
or @key(out) parameter
are allowed.
Note however that the value of a discriminant
can be changed by assigning to the enclosing object, presuming it
is an unconstrained variable.
@begin(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
An @nt{unknown_discriminant_part} is permitted only in the
declaration of a private type (including generic formal private),
private extension, @Chg{Version=[2],New=[incomplete type, ],Old=[]}or
generic formal derived type.
These are the things that will have a corresponding completion or
generic actual, which will either define the discriminants,
or say there are none.
The (<>) indicates that the actual/full subtype might be an indefinite subtype.
An @nt{unknown_discriminant_part} is not permitted in a normal
untagged derived type declaration, because there is no separate
full type declaration for such a type.
Note that (<>) allows unconstrained array bounds;
those are somewhat like undefaulted discriminants.
For a derived type, either the discriminants are inherited as is,
or completely respecified in a new @nt<discriminant_part>. In this
latter case, each discriminant of the parent type shall be constrained,
either to a specific value, or to equal one of the new discriminants.
Constraining a parent type's discriminant to equal one of the new
discriminants is like a renaming of the discriminant, except that
the subtype of the new discriminant can be more restrictive than
that of the parent's one.
In any case, the new discriminant can share storage with the
parent's discriminant.
@end(Discussion)
A discriminant that is of a named access type is not called
an access discriminant; that term is
used only for discriminants defined by an @nt<access_definition>.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i(Examples of discriminated types:)
@begin(Example)
@key(type) Buffer(Size : Buffer_Size := 100) @key(is) --@RI[ see @RefSecNum(Integer Types)]
@key(record)
Pos : Buffer_Size := 0;
Value : String(1 .. Size);
@key(end) @key(record);
@key(type) Matrix_Rec(Rows, Columns : Integer) @key(is)
@key(record)
Mat : Matrix(1 .. Rows, 1 .. Columns); --@RI[ see @RefSecNum(Array Types)]
@key(end) @key(record);
@key(type) Square(Side : Integer) @key(is) @key(new)
Matrix_Rec(Rows => Side, Columns => Side);
@key(type) Double_Square(Number : Integer) @key(is)
@key(record)
Left : Square(Number);
Right : Square(Number);
@key(end) @key(record);
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@Chg{Version=[2],New=[@key(task type) Worker(Prio : System.Priority; Buf : @key(access) Buffer) @key(is)
--@RI[ discriminants used to parameterize the task type (see @RefSecNum{Task Units and Task Objects})]
@key(pragma) Priority(Prio); --@RI[ see @RefSecNum{Task Priorities}]
@key(entry) Fill;
@key(entry) Drain;
@key(end) Worker;],Old=[@key(type) Item(Number : Positive) @key(is)
@key(record)
Content : Integer;
--@RI[ no component depends on the discriminant]
@key(end) @key(record);]}
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax for a @nt{discriminant_specification}
is modified to allow an @i{access discriminant},
with a type specified by an @nt{access_definition}
(see @RefSecNum{Access Types}).
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00251-01]}
Discriminants are allowed on all composite types other than array@Chg{Version=[2],New=[ and
interface],Old=[]} types.
Discriminants may be of an access type.
@end{Extend83}
@begin{DiffWord83}
@nt{Discriminant_part}s are not elaborated,
though an @nt<access_definition> is elaborated
when the discriminant is initialized.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00230-01],ARef=[AI95-00402-01],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[Access discriminants (anonymous access types
used as a discriminant) can be used on any type allowing discriminants.
Defaults aren't allowed on discriminants of non-limited types, however, so
that accessibility problems don't happen on assignment.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00231-01]}
@ChgAdded{Version=[2],Text=[
@nt{null_exclusion} can be used in the declaration of a discriminant.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0007],ARef=[AI95-00098-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> The wording was clarified so
that types that cannot have discriminants cannot have an
@nt{unknown_discriminant_part}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00251-01]}
@ChgAdded{Version=[2],Text=[Added wording to prevent interfaces from
having discriminants. We don't want interfaces to have any components.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00254-01]}
@ChgAdded{Version=[2],Text=[Removed wording which implied or required an
access discriminant to have an access-to-object type (anonymous access
types can now be access-to-subprogram types as well).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00326-01]}
@ChgAdded{Version=[2],Text=[Fixed the wording of the introduction to this
clause to reflect that both incomplete and partial views can have
unknown discriminants. That was always true, but for some reason this
wording specified partial views.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[Changed the wording to use the new term
@lquotes@;explicitly limited record@rquotes, which makes the intent
much clearer (and eliminates confusion with derived types that happen to
contain the reserved word @key(limited).]}
@end{DiffWord95}
@LabeledSubClause{Discriminant Constraints}
@begin{Intro}
A @nt<discriminant_constraint> specifies the values of the discriminants
for a given discriminated type.
@end{Intro}
@begin{MetaRules}
The rules in this clause are intentionally parallel
to those given in Record Aggregates.
@end{MetaRules}
@begin{Syntax}
@Syn{lhs=<discriminant_constraint>,rhs="
(@Syn2{discriminant_association} {, @Syn2{discriminant_association}})"}
@Syn{lhs=<discriminant_association>,rhs="
[@SynI{discriminant_}@Syn2{selector_name} {| @SynI{discriminant_}@Syn2{selector_name}} =>] @Syn2{expression}"}
@begin{SyntaxText}
@Defn{named discriminant association}
A @nt<discriminant_association>
is said to be @i(named) if it has one or more
@i(discriminant_)@nt<selector_name>s;
@Defn{positional discriminant association}
it is otherwise said to be @i(positional).
In a @nt<discriminant_constraint>,
any positional associations shall precede any named
associations.
@end{SyntaxText}
@end{Syntax}
@begin{Resolution}
Each @nt<selector_name> of a named @nt<discriminant_@!association> shall
resolve to denote a discriminant of the subtype being constrained;
@Defn2{Term=[associated discriminants],
Sec=(of a named @nt<discriminant_association>)}
the discriminants so named are the @i(associated discriminants) of
the named association.
@Defn2{Term=[associated discriminants],
Sec=(of a positional @nt<discriminant_association>)}
For a positional association, the @i(associated discriminant)
is the one whose @nt<discriminant_@!specification> occurred in
the corresponding position in the @nt<known_@!discriminant_@!part>
that defined the discriminants of the subtype being constrained.
@PDefn2{Term=[expected type], Sec=(discriminant_association expression)}
The expected type for the @nt{expression} in
a @nt{discriminant_association}
is that of the associated discriminant(s).
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0008],ARef=[AI95-00168-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00363-01]}
A @nt{discriminant_constraint} is only allowed in a
@nt{subtype_indication} whose @nt{subtype_mark} denotes
either an unconstrained discriminated subtype, or an
unconstrained access subtype whose designated subtype is
an unconstrained discriminated subtype.
@Chg{New=[However, in the case of @Chg{Version=[2],New=[an],Old=[a general]}
access subtype, a @nt{discriminant_@!constraint} is illegal
if @Chg{Version=[2],New=[the
designated type has a partial view that is constrained or, for a general
access subtype, has @nt{default_expression}s for its discriminants.
In addition to the places where @LegalityTitle@; normally apply
(see @RefSecNum{Generic Instantiation}),
these rules apply also in the private part of an instance
of a generic unit. In a generic body, this rule is checked presuming all
formal access types of the generic might be general access types, and all
untagged discriminated formal types of the generic might have
@nt{default_expression}s for their discriminants.
@PDefn{generic contract issue}],
Old=[there is a place within the
immediate scope of the designated subtype where the designated subtype's view
is constrained.]}],Old=[]}
@begin{Reason}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0008],ARef=[AI95-00168-01]}
@ChgRef{Version=[2],Kind=[DeletedAdded],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[@Chg{New=[The second rule is necessary to
prevent assignments that change the discriminant of a constrained object.
See the defect report for examples.],Old=[]}]}
@end{Reason}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00363-01]}
@ChgAdded{Version=[2],Text=[The second rule is necessary to prevent objects
from changing so that they no longer match their constraint. In Ada 95, we
attempted to prevent this by banning every case where an aliased object
could be unconstrained or be changed by an enclosing assignment. New ways
to cause this problem were being discovered frequently, meaning that new rules
had to be dreamed up to cover them. Meanwhile, aliased objects and components
were getting more and more limited. In Ada 2005, we sweep away all of that
cruft and replace it by a simple rule @lquotes@;thou shalt not create an
access subtype that can point to an item whose discriminants can be changed by
assignment@rquotes@;.]}
@end{Reason}
A named @nt<discriminant_association> with more than one
@nt<selector_name> is allowed only if the named discriminants
are all of the same type.
A @nt<discriminant_constraint> shall provide exactly one value for each
discriminant of the subtype being constrained.
The @nt<expression> associated with an access discriminant
shall be of a type convertible to the anonymous access type.
@PDefn2{Term=[convertible],Sec=(required)}
@begin(Ramification)
This implies both convertibility of designated types, and
static accessibility.
This implies that if an object of type T with an
access discriminant is created
by an allocator for an access type A, then it requires that the
type of the @nt<expression> associated
with the access discriminant have an accessibility level
that is not statically deeper than that of A.
This is to avoid dangling references.
@end(Ramification)
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[compatibility], Sec=(discriminant constraint with a
subtype)}
A @nt{discriminant_constraint} is @i(compatible) with an unconstrained
discriminated subtype if each discriminant value belongs to the
subtype of the corresponding discriminant.
@begin{Ramification}
The "dependent
compatibility check" has been eliminated in Ada 95. Any checking
on subcomponents is performed when (and if) an object is created.@end{ramification}
@begin{Discussion}
There is no need to define compatibility with a constrained
discriminated subtype, because one is not allowed to constrain it again.@end{discussion}
@PDefn2{Term=[satisfies], Sec=(a discriminant constraint)}
A composite value @i(satisfies) a discriminant constraint if and only
if each discriminant of the composite value has the value imposed
by the discriminant constraint.
@PDefn2{Term=[elaboration], Sec=(discriminant_constraint)}
For the elaboration of a @nt{discriminant_constraint}, the @nt{expression}s
in the @nt{discriminant_association}s are evaluated in an arbitrary
order and converted to the type of the associated
discriminant (which might raise Constraint_Error @em
see @RefSecNum{Type Conversions});
the @nt{expression} of a named association is evaluated
(and converted) once for each associated discriminant.
@PDefn2{Term=[implicit subtype conversion],Sec=(discriminant values)}
The result of each evaluation and conversion is the
value imposed by the constraint for the associated discriminant.
@begin{Reason}
We convert to the type, not the subtype, so that the definition
of compatibility of discriminant constraints is not vacuous.@end{reason}
@end{RunTime}
@begin{Notes}
The rules of the language ensure that
a discriminant of an object always has a value, either
from explicit or implicit initialization.
@begin(Discussion)
Although it is illegal to constrain a class-wide tagged subtype, it
is possible to have a partially constrained class-wide
subtype: If the subtype S is defined by T(A => B),
then S'Class is partially constrained in the sense that objects of
subtype S'Class have to have discriminants corresponding
to A equal to B,
but there can be other discriminants defined
in extensions that are not constrained to any particular value.
@end(Discussion)
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples (using types declared above in clause @RefSecNum(Discriminants)):}
@begin(Example)
Large : Buffer(200); --@RI[ constrained, always 200 characters]
--@RI[ (explicit discriminant value)]
Message : Buffer; --@RI[ unconstrained, initially 100 characters]
--@RI[ (default discriminant value)]
Basis : Square(5); --@RI[ constrained, always 5 by 5]
Illegal : Square; --@RI[ illegal, a Square has to be constrained]
@end(Example)
@end{Examples}
@begin{Inconsistent83}
@Defn{inconsistencies with Ada 83}
Dependent compatibility checks are no longer performed on
subtype declaration. Instead they are deferred until
object creation (see @RefSecNum(Object Declarations)).
This is upward compatible for a program
that does not raise Constraint_Error.
@end{Inconsistent83}
@begin{DiffWord83}
Everything in RM83-3.7.2(7-12), which specifies the
initial values for discriminants, is now redundant
with 3.3.1, 6.4.1, 8.5.1, and 12.4. Therefore, we don't
repeat it here. Since the material is largely intuitive,
but nevertheless complicated to state formally, it doesn't
seem worth putting it in a "NOTE."
@end{DiffWord83}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0008],ARef=[AI95-00168-01],ARef=[AI95-00363-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
The Corrigendum added a restriction on @nt{discriminant_constraint}s for
general access subtypes. Such constraints are prohibited
if the designated type can be treated as constrained somewhere in the program.
Ada 2005 goes further and prohibits such @nt{discriminant_constraint}s if
the designated type has (or might have, in the case of a formal type)
defaults for its discriminants. The use of general access subtypes is rare,
and this eliminates a boatload of problems that required many restrictions
on the use of aliased objects and components (now lifted). Similarly,
Ada 2005 prohibits @nt{discriminant_constraint}s on any access type whose
designated type has a partial view that is constrained. Such a type will
not be constrained in the heap to avoid privacy problems. Again, the use
of such subtypes is rare (they can only happen within the package and its
child units).]}
@end{Incompatible95}
@LabeledSubClause{Operations of Discriminated Types}
@begin{Intro}
@Redundant[If a discriminated type has @nt<default_expression>s for its
discriminants, then unconstrained variables of the type are permitted,
and the discriminants of such a variable can be changed by assignment to
the variable. For a formal parameter of such a type, an attribute
is provided to determine whether the corresponding actual parameter
is constrained or unconstrained.]
@end{Intro}
@begin{StaticSem}
For @PrefixType{a @nt<prefix> A that is of a
discriminated type @Redundant[(after any implicit dereference)]},
the following attribute is defined:
@begin(description)
@Attribute{Prefix=<A>, AttrName=<Constrained>,
Text=[Yields the value True if A denotes a constant, a value,
or a constrained variable,
and False otherwise.]}
@begin(ImplNote)
This attribute is primarily used on parameters, to determine whether
the discriminants can be changed as part of an assignment.
The Constrained attribute is statically True for @key(in) parameters.
For @key(in out) and @key(out) parameters of a discriminated type,
the value of this attribute needs to be passed as an implicit
parameter, in general. However, if the type does not have
defaults for its discriminants, the attribute is statically True,
so no implicit parameter is needed.
Parameters of a limited type
with defaulted discriminants need this implicit parameter,
unless there are no nonlimited views,
because they might be passed to a subprogram whose body has
visibility on a nonlimited view of the type, and hence might be
able to assign to the object and change its discriminants.
@end(ImplNote)
@end(description)
@EndPrefixType{}
@end{StaticSem}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
The execution of a construct is erroneous if the construct
has a constituent that is a @nt<name> denoting
a subcomponent that depends on discriminants, and the
value of any of these discriminants is changed by this execution
between evaluating the @nt<name> and the last use (within this
execution) of the subcomponent denoted by the @nt<name>.
@begin{Ramification}
This rule applies to @nt<assignment_statement>s,
calls (except when the discriminant-dependent subcomponent is
an @key(in) parameter passed by copy),
@nt<indexed_component>s, and @nt<slice>s.
Ada 83 only covered the first two cases. AI83-00585 pointed out
the situation with the last two cases.
The cases of @nt<object_renaming_declaration>s and
generic formal @key(in out) objects are handled differently,
by disallowing the situation at compile time.
@end{Ramification}
@end{Erron}
@begin{Extend83}
@ChgRef{Version=[1],Kind=[Revised]}@ChgNote{To be consistent with 8652/0006}
@Defn{extensions to Ada 83}
For consistency with other attributes, we are allowing
the @Chg{New=[@nt{prefix}],Old=[prefix]} of Constrained to be a value as well
as an object of a discriminated type, and also an implicit
dereference. These extensions are
not important capabilities, but there seems no
reason to make this attribute different from
other similar attributes. We are curious what most
Ada 83 compilers do with F(1).X'Constrained.
We now handle in a general way
the cases of erroneousness identified by AI83-00585, where
the @nt<prefix> of an @nt<indexed_component> or @nt<slice>
is discriminant-dependent, and the evaluation of the index or
discrete range changes the value of a discriminant.
@end{Extend83}
@begin{DiffWord83}
We have moved all discussion of erroneous use of @nt<name>s
that denote discriminant-dependent
subcomponents to this subclause. In Ada 83, it used to
appear separately under @nt{assignment_statement}s and
subprogram calls.
@end{DiffWord83}
@LabeledClause{Record Types}
@begin{Intro}
@Defn{record}
@Defn{record type}
A record object is a composite object consisting of named components.
The value of a record object is a composite value consisting of the
values of the components.
@IndexSee{Term=[structure],See=(record type)}
@end{Intro}
@begin{Syntax}
@Syn{lhs=<record_type_definition>,rhs="[[@key{abstract}] @key{tagged}] [@key{limited}] @Syn2{record_definition}"}
@Syn{lhs=<record_definition>,rhs="
@key{record}
@Syn2{component_list}
@key{end} @key{record}
| @key{null record}"}
@Syn{lhs=<component_list>,rhs="
@Syn2{component_item} {@Syn2{component_item}}
| {@Syn2{component_item}} @Syn2{variant_part}
| @key{null};"}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<component_item>,rhs="@Syn2{component_declaration} | @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}
@Syn{lhs=<component_declaration>,rhs="
@Syn2{defining_identifier_list} : @Syn2{component_definition} [:= @Syn2{default_expression}];"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(component_declaration default_expression)}
The expected type for the @nt<default_expression>, if any, in
a @nt<component_declaration> is the type of the
component.
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00287-01]}
@ChgDeleted{Version=[2],Text=[A @nt<default_expression> is not permitted if
the component is of a limited type.]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00366-01]}@ChgNote{This is not THE definition of component}
@PDefn2{Term=[components], Sec=(of a record type)}
Each @nt<component_declaration> declares a
@Chg{Version=[2],New=[component],Old=[@i(component)]} of the record type.
Besides components declared by @nt<component_declaration>s, the components of a
record type include any components declared by @nt<discriminant_specification>s
of the record type declaration. @Redundant[The identifiers of all components of
a record type shall be distinct.]
@begin{TheProof}
The identifiers of all
components of a record type have to
be distinct because they are all declared immediately
within the same declarative region. See Section 8.
@end{theproof}
Within a @nt{type_declaration},
a @nt{name} that denotes a component, protected subprogram,
or entry of the type is allowed only in the following cases:
@begin{Itemize}
A @nt{name} that denotes any component, protected subprogram,
or entry is allowed within a
representation item that occurs within the declaration of the composite type.
A @nt{name} that denotes a noninherited discriminant
is allowed within the declaration of the type,
but not within the @nt{discriminant_part}.
If the discriminant is used to define the constraint of
a component, the bounds of an entry family, or
the constraint of the parent subtype in a
@nt<derived_type_definition>
then its name shall appear alone as a @nt<direct_name> (not as
part of a larger expression or expanded name).
A discriminant shall not be used to define the constraint of
a scalar component.@Defn2{Term=[discriminant],Sec=[use in a record definition]}@ChgNote{New index entry}
@begin{Reason}
The penultimate restriction simplifies implementation,
and allows the outer discriminant and the inner discriminant
or bound to possibly share storage.
@end{reason}
@begin{Ramification}
Other rules prevent such a discriminant from being an inherited one.
@end{ramification}
@begin{Reason}
The last restriction is inherited from Ada 83.
The restriction is not really necessary from a language design point of
view, but we did not remove it,
in order to avoid unnecessary changes to existing compilers.
@end{Reason}
@begin{Discussion}
Note that a discriminant can be used to define the constraint
for a component that is of an access-to-composite type.
@end{Discussion}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00373-01]}
The above rules, and a similar one in @RefSecNum{Subprogram Declarations}
for formal parameters, are intended to allow initializations of
components or parameters to occur in @Chg{Version=[2],
New=[a (nearly)],Old=[an]} arbitrary order @em whatever
order is most efficient@Chg{Version=[2],New=[ (subject to the restrictions
of @RefSecNum{Object Declarations})],Old=[]},
since one @nt{default_expression} cannot depend on the value of
another one.
@Chg{Version=[2],New=[They],Old=[It]} also prevent circularities.
@end{Reason}
@begin{Ramification}
Inherited discriminants are not allowed to be denoted,
except within representation items.
However, the @SynI{discriminant_}@nt{selector_name} of
the parent @nt{subtype_indication} is allowed to denote
a discriminant of the parent.
@end{Ramification}
@end{Itemize}
If the name of the current instance of a type
(see @RefSecNum{The Context of Overload Resolution})
is used to define the constraint of a component,
then it shall appear as a @nt{direct_name}
that is the @nt<prefix> of an @nt{attribute_reference}
whose result is of an access type,
and the @nt{attribute_reference} shall appear alone.
@begin{Reason}
This rule allows T'Access
or T'Unchecked_Access, but disallows, for example,
a range constraint (1..T'Size).
Allowing things like (1..T'Size) would mean that a per-object
constraint could affect the size of the object,
which would be bad.
@end{Reason}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[@Defn{explicitly limited record}
@Defn2{Term=[record],Sec=(explicitly limited)}
If a @nt{record_type_definition} includes the
reserved word @key{limited}, the type is called an
@i<explicitly limited record> type.]}
@PDefn2{Term=[nominal subtype], Sec=(of a record component)}
The @nt{component_definition} of a @nt<component_declaration>
defines the (nominal) subtype of the component.
If the reserved word @key(aliased) appears in the @nt{component_definition},
then the component is aliased (see @RefSecNum{Access Types}).
@begin(Ramification)
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[In this case, the nominal subtype cannot be
an unconstrained discriminated subtype.
See @RefSecNum{Array Types}.]}
@end(Ramification)
@Defn{null record}
If the @nt<component_list> of a record type is defined by the reserved
word @key(null) and there are no discriminants, then the record type has
no components and all records of the type are @i(null records).
A @nt<record_definition> of @key{null record} is equivalent to
@key{record null; end record}.
@begin{Ramification}
This short-hand is available both for declaring a record type
and a record extension @em see @RefSecNum(Type Extensions).
@end{ramification}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[elaboration], Sec=(record_type_definition)}
The elaboration of a @nt{record_type_definition} creates
the record type and its first subtype,
and consists of the elaboration of the @nt<record_definition>.
@PDefn2{Term=[elaboration], Sec=(record_definition)}
The elaboration of a @nt<record_definition> consists of the
elaboration of its @nt{component_list}, if any.
@PDefn2{Term=[elaboration], Sec=(component_list)}
The elaboration of a @nt{component_list} consists of the elaboration
of the @nt{component_item}s and
@nt{variant_part}, if any, in the order in which they appear.
@PDefn2{Term=[elaboration], Sec=(component_declaration)}
The elaboration of a @nt{component_declaration} consists of the
elaboration of the @nt{component_definition}.
@begin(Discussion)
If the @nt<defining_identifier_list> has more than one
@nt<defining_identifier>, we presume here that the transformation
explained in @RefSecNum(Object Declarations) has already
taken place. Alternatively, we could say that
the @nt<component_definition> is elaborated once for
each @nt<defining_identifier> in the list.
@end(Discussion)
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00230-01]}
@Defn{per-object expression}
@Defn{per-object constraint}
@Defn{entry index subtype}
Within the definition of a composite type,
if a @nt<component_definition> or @nt<discrete_subtype_definition>
(see @RefSecNum{Entries and Accept Statements})
includes a @nt<name> that denotes a discriminant of the type, or
that is an @nt<attribute_reference> whose @nt<prefix> denotes the current
instance of the type,
the expression containing the @nt<name> is called a @i(per-object expression),
and the @Chg{New=[@nt{constraint} or @nt{range}],Old=[constraint]} being defined
is called a @i(per-object constraint).
@PDefn2{Term=[elaboration], Sec=(component_definition)}
For the elaboration of a @nt{component_definition} of
a @nt<component_declaration>@Chg{New=[ or the @nt{discrete_@!subtype_@!definition}
of an @nt{entry_@!declaration} for an entry family (see
@RefSecNum{Entries and Accept Statements})],Old=[]},@Chg{Version=[2],
New=[ if the component subtype is defined by an @nt{access_definition} or],
Old=[]} if the @nt{constraint}
@Chg{New=[or @nt{range}],Old=[]} of the @nt{subtype_indication}
@Chg{New=[or @nt{discrete_@!subtype_@!definition}],Old=[]} is not a per-object
constraint, then the@Chg{Version=[2],New=[ @nt{access_definition},],Old=[]}
@nt{subtype_indication}@Chg{Version=[2],New=[,],Old=[]}
@Chg{New=[or @nt{discrete_@!subtype_@!definition}],Old=[]}
is elaborated. On the other hand, if the @nt{constraint}
@Chg{New=[or @nt{range}],Old=[]} is a per-object constraint,
then the elaboration consists of the evaluation of any included
expression that is not part of a per-object expression.
@Chg{New=[Each such expression is evaluated once unless it is part of a named
association in a discriminant constraint, in which case it is evaluated once
for each associated discriminant.],Old=[]}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0002],ARef=[AI95-00171-01]}
@Chg{New=[@PDefn2{Term=[Elaboration],Sec=(per-object constraint)}When a
per-object constraint is elaborated @Redundant[(as part of creating an
object)], each per-object expression of the constraint is evaluated. For other
expressions, the values determined during the elaboration of the
@nt{component_@!definition} or @nt{entry_@!declaration} are used. Any checks
associated with the enclosing @nt{subtype_indication} or
@nt{discrete_subtype_definition} are performed@Redundant[, including the subtype
compatibility check (see @RefSecNum{Subtype Declarations}),] and the associated
subtype is created.],
Old=[]}
@begin(Discussion)
The evaluation of other expressions that appear in
@nt<component_definition>s and @nt<discrete_subtype_definition>s
is performed when the type definition is elaborated.
The evaluation of expressions that appear as
@nt<default_expression>s is postponed until an object is created.
Expressions in representation items
that appear within a composite type definition are evaluated
according to the rules of the particular representation item.
@end(Discussion)
@end{RunTime}
@begin{Notes}
A @nt<component_declaration> with several identifiers is equivalent
to a sequence of single @nt<component_declaration>s, as explained
in @RefSecNum{Object Declarations}.
The @nt<default_expression> of a record component is only
evaluated upon the creation of
a default-initialized object of the record type (presuming
the object has the component, if it is in a @nt<variant_part> @em
see @RefSecNum{Object Declarations}).
The subtype defined by a @nt<component_definition> (see @RefSecNum(Array Types))
has to be a definite subtype.
If a record type does not have a @nt<variant_part>, then the same components
are present in all values of the type.
A record type is limited if it has the reserved word @key[limited]
in its definition, or if any of its components are
limited (see @RefSecNum{Limited Types}).
@PDefn2{Term=[predefined operations],Sec=(of a record type)}
The predefined operations of a record type include membership
tests, qualification, and explicit conversion. If the
record type is nonlimited, they also include
assignment and the predefined equality operators.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A component of a record can be named with a @nt<selected_component>.
A value of a record can be specified with a @nt<record_aggregate>@Chg{Version=[2],
New=[],Old=[, unless the record type is limited]}.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i(Examples of record type declarations: )
@begin(Example)
@key(type) Date @key(is)
@key(record)
Day : Integer @key(range) 1 .. 31;
Month : Month_Name;
Year : Integer @key(range) 0 .. 4000;
@key(end) @key(record);
@key(type) Complex @key(is)
@key(record)
Re : Real := 0.0;
Im : Real := 0.0;
@key(end) @key(record);
@end(Example)
@begin{Wide}
@leading@keepnext@i(Examples of record variables: )
@end{Wide}
@begin(Example)
Tomorrow, Yesterday : Date;
A, B, C : Complex;
--@RI[ both components of A, B, and C are implicitly initialized to zero ]
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt<component_declaration> is modified
to use @nt<component_definition> (instead of
@ntf<component_subtype_definition>). The effect of this change
is to allow the reserved word @key(aliased) before the
@ntf<component_subtype_definition>.
A short-hand is provided for defining a null record type
(and a null record extension), as these will be more common
for abstract root types (and derived types without additional components).
The syntax rule for @nt{record_type_definition} is modified to allow
the reserved words @key{tagged} and @key{limited}.
Tagging is new.
Limitedness is now orthogonal to privateness.
In Ada 83 the syntax implied that limited private was sort of more
private than private.
However, limitedness really has nothing to do with privateness;
limitedness simply indicates the lack of assignment capabilities,
and makes perfect sense for nonprivate types such as record types.
@end{Extend83}
@begin{DiffWord83}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
The syntax rules now allow @Chg{New=[@nt{aspect_clause}s],
Old=[@nt{representation_clause}s]} to appear in a @nt{record_definition}.
This is not a language extension, because @LegalityName@;s prevent all
language-defined representation clauses from appearing there.
However, an implementation-defined @nt{attribute_definition_clause}
could appear there.
The reason for this change is to allow the rules for
@Chg{New=[@nt{aspect_clause}s],Old=[@nt{representation_clause}s]} and
representation pragmas to be as similar as possible.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Record components can have an anonymous access type.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Limited components can be initialized, so long as the expression is
one that allows building the object in place (such as an @nt{aggregate} or
@nt{function_call}).]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Improved the description of the
elaboration of per-object constraints.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0009],ARef=[AI95-00137-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed representation clauses to
aspect clauses to reflect that they are used for more than just
representation.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[Defined @i{explicitly limited record} type to
use in other rules.]}
@end{DiffWord95}
@LabeledSubClause{Variant Parts and Discrete Choices}
@begin{Intro}
A record type with a @nt<variant_part> specifies alternative
lists of components. Each @nt<variant> defines the components
for the value or values of the discriminant
covered by its @nt<discrete_choice_list>.
@begin{Discussion}
@RootDefn{cover a value}
@nt{Discrete_choice_list}s and @nt{discrete_choice}s are
said to @i(cover) values as defined below; which
@nt{discrete_choice_list} covers a value determines
which of various alternatives is chosen. These are used
in @nt{variant_part}s, @nt{array_aggregate}s, and
@nt{case_statement}s.
@end{Discussion}
@end{Intro}
@begin{MetaRules}
The definition of @lquotes@;cover@rquotes@; in this subclause
and the rules about discrete choices
are designed so that they
are also appropriate for array aggregates and case statements.
The rules of this subclause intentionally
parallel those for case statements.
@end{MetaRules}
@begin{Syntax}
@Syn{lhs=<variant_part>,rhs="
@key{case} @SynI{discriminant_}@Syn2{direct_name} @key{is}
@Syn2{variant}
{@Syn2{variant}}
@key{end} @key{case};"}
@Syn{lhs=<variant>,rhs="
@key{when} @Syn2{discrete_choice_list} =>
@Syn2{component_list}"}
@Syn{lhs=<discrete_choice_list>,rhs="@Syn2{discrete_choice} {| @Syn2{discrete_choice}}"}
@Syn{lhs=<discrete_choice>,rhs="@Syn2{expression} | @Syn2{discrete_range} | @key{others}"}
@end{Syntax}
@begin{Resolution}
@Defn2{Term=[discriminant], Sec=(of a @nt<variant_part>)}
The @i(discriminant_)@nt{direct_name} shall resolve to denote
a discriminant (called
the @i(discriminant of the @nt<variant_part>)) specified in
the @nt{known_discriminant_part} of the @nt{full_type_declaration}
that contains the @nt{variant_part}.
@PDefn2{Term=[expected type], Sec=(variant_part discrete_choice)}
The expected type for each @nt{discrete_choice} in a @nt<variant> is the type
of the discriminant of the @nt{variant_part}.
@begin{Ramification}
A @nt<full_type_declaration> with a @nt<variant_part>
has to have a (new) @nt<known_discriminant_part>;
the discriminant of the @nt<variant_part> cannot be an
inherited discriminant.
@end{Ramification}
@end{Resolution}
@begin{Legality}
The discriminant of the @nt{variant_part} shall
be of a discrete type.
@begin{Ramification}
It shall not be of an access type,
named or anonymous.@end{ramification}
The @nt{expression}s and @nt{discrete_range}s given as
@nt{discrete_choice}s in a @nt{variant_part} shall be static.
The @nt{discrete_choice} @key(others) shall appear alone
in a @nt{discrete_choice_list}, and such a @nt{discrete_choice_list},
if it appears, shall be the last one in the enclosing construct.
@Leading@PDefn2{Term=[cover a value], Sec=(by a @nt{discrete_choice})}
A @nt<discrete_choice> is defined to @i(cover a value) in the
following cases:
@begin(itemize)
A @nt{discrete_choice} that is an @nt{expression} covers a value if
the value equals the value of the @nt{expression}
converted to the expected type.
A @nt{discrete_choice} that is a @nt{discrete_range} covers all values
(possibly none) that belong to the range.
The @nt{discrete_choice} @key{others} covers all values of its
expected type that are not covered by
previous @nt{discrete_choice_list}s of the same construct.
@begin(Ramification)
For @nt{case_statement}s,
this includes values outside the range of the static subtype (if any)
to be covered by the choices.
It even includes values outside the base
range of the case expression's type,
since values of numeric types (and undefined values of any scalar type?)
can be outside their base range.
@end(Ramification)
@end(itemize)
@PDefn2{Term=[cover a value], Sec=(by a @nt{discrete_choice_list})}
A @nt{discrete_choice_list} covers a value if one of
its @nt{discrete_choice}s covers the value.
@Leading@keepnext@;The possible values of the discriminant of a @nt{variant_part}
shall be covered as follows:
@begin{itemize}
If the discriminant is of a static constrained scalar subtype,
then each non-@key{others} @nt{discrete_@!choice} shall cover only values in
that subtype, and each value of that subtype shall be covered
by some @nt{discrete_@!choice} @Redundant[(either explicitly or
by @key<others>)];
If the type of the discriminant is a
descendant of a generic formal scalar type
then the @nt{variant_part} shall have an @key{others}
@nt{discrete_choice};@begin{Reason}
The base range is not known statically in this
case.@end{reason}
Otherwise,
each value of the base range of the type of the discriminant shall
be covered @Redundant[(either explicitly or by @key<others>)].
@end{itemize}
Two distinct @nt{discrete_choice}s of a @nt{variant_part} shall not cover
the same value.
@end{Legality}
@begin{StaticSem}
If the @nt{component_list} of a @nt{variant} is specified by @key(null),
the variant has no components.
@Defn{govern a @nt{variant_part}}
@Defn{govern a @nt{variant}}
The discriminant of a @nt<variant_part> is said to @i(govern) the
@nt<variant_part> and its @nt<variant>s. In addition,
the discriminant of a derived
type governs a @nt<variant_part> and its @nt<variant>s if it
corresponds (see @RefSecNum(Discriminants)) to the
discriminant of the @nt<variant_part>.
@end{StaticSem}
@begin{RunTime}
A record value contains the values of the components of a particular
@nt{variant} only if the
value of the discriminant governing the @nt<variant> is covered
by the @nt{discrete_choice_list} of the @nt{variant}.
This rule applies in turn to any further @nt{variant} that is, itself,
included in the @nt{component_list} of the given @nt{variant}.
@PDefn2{Term=[elaboration], Sec=(variant_part)}
The elaboration of a @nt{variant_part} consists
of the elaboration of the @nt{component_list} of each
@nt{variant} in the order in which they appear.
@end{RunTime}
@begin{Examples}
@Leading@keepnext@i(Example of record type with a variant part: )
@begin(Example)
@key(type) Device @key(is) (Printer, Disk, Drum);
@key(type) State @key(is) (Open, Closed);
@key(type) Peripheral(Unit : Device := Disk) @key(is)
@key(record)
Status : State;
@key(case) Unit @key(is)
@key(when) Printer =>
Line_Count : Integer @key(range) 1 .. Page_Size;
@key(when) @key(others) =>
Cylinder : Cylinder_Index;
Track : Track_Number;
@key(end) @key(case);
@key(end) @key(record);
@end(Example)
@begin{Wide}
@leading@keepnext@i(Examples of record subtypes:)
@end{Wide}
@begin(Example)
@key(subtype) Drum_Unit @key(is) Peripheral(Drum);
@key(subtype) Disk_Unit @key(is) Peripheral(Disk);
@end(Example)
@begin{Wide}
@leading@keepnext@i(Examples of constrained record variables:)
@end{Wide}
@begin(Example)
Writer : Peripheral(Unit => Printer);
Archive : Disk_Unit;
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
In Ada 83, the discriminant of a @nt{variant_part} is not allowed to
be of a generic formal type.
This restriction is removed in Ada 95; an @key{others} @nt{discrete_choice}
is required in this case.
@end{Extend83}
@begin{DiffWord83}
The syntactic category @ntf{choice} is removed.
The syntax rules for @nt{variant}, @nt{array_aggregate}, and
@nt{case_statement} now use @nt{discrete_choice_list}
or @nt{discrete_choice} instead.
The syntax rule for @nt{record_aggregate} now defines its own syntax
for named associations.
We have added the term Discrete Choice to the title
since this is where they are talked about.
This is analogous to the name of the subclause
"Index Constraints and Discrete Ranges" in
the clause on Array Types.
The rule requiring that the discriminant denote
a discriminant of the type being defined seems to have been
left implicit in RM83.
@end{DiffWord83}
|