1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
|
@Part(05, Root="ada.mss")
@Comment{$Date: 2006/10/17 05:29:45 $}
@LabeledSection{Statements}
@Comment{$Source: e:\\cvsroot/ARM/Source/05.mss,v $}
@Comment{$Revision: 1.31 $}
@begin{Intro}
@Redundant[A @nt{statement} defines an action to be performed upon
its execution.]
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Redundant[This section describes the general rules applicable to all
@nt{statement}s.
Some @nt{statement}s are discussed in later sections:
@nt{Procedure_@!call_@!statement}s and
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]} are
described in @RefSec{Subprograms}.
@nt{Entry_@!call_@!statement}s, @nt{requeue_@!statement}s,
@nt{delay_@!statement}s, @nt{accept_@!statement}s,
@nt{select_@!statement}s, and @nt{abort_@!statement}s are described in
@RefSec{Tasks and Synchronization}.
@nt{Raise_@!statement}s are described in @RefSec{Exceptions},
and @nt{code_@!statement}s in
@RefSecNum{Representation Issues}.
The remaining forms of @nt{statement}s are presented in this
section.]
@end{Intro}
@begin{DiffWord83}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
The description of
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]}
has been moved to
@RefSec{Return Statements}, so that it is closer to the
description of subprograms.
@end{DiffWord83}
@LabeledClause{Simple and Compound Statements - Sequences of Statements}
@begin{Intro}
@Redundant[A @nt<statement> is either simple or compound.
A @nt<simple_statement> encloses
no other @nt<statement>. A @nt<compound_statement> can enclose
@nt<simple_statement>s and other @nt<compound_statement>s.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<sequence_of_statements>,rhs="@Syn2{statement} {@Syn2{statement}}"}
@Syn{lhs=<statement>,rhs="
{@Syn2{label}} @Syn2{simple_statement} | {@Syn2{label}} @Syn2{compound_statement}"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{tabs=[P31], lhs=<simple_statement>,rhs="@Syn2{null_statement}
| @Syn2{assignment_statement}@\| @Syn2{exit_statement}
| @Syn2{goto_statement}@\| @Syn2{procedure_call_statement}
| @Chg{Version=[2],New=[@Syn2{simple_return_statement}],Old=[@Syn2{return_statement}]}@\| @Syn2{entry_call_statement}
| @Syn2{requeue_statement}@\| @Syn2{delay_statement}
| @Syn2{abort_statement}@\| @Syn2{raise_statement}
| @Syn2{code_statement}"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{tabs=[P31], lhs=<compound_statement>,rhs="
@Syn2{if_statement}@\| @Syn2{case_statement}
| @Syn2{loop_statement}@\| @Syn2{block_statement}@Chg{Version=[2],New=[
| @Syn2{extended_return_statement}],Old=[]}
| @Syn2{accept_statement}@\| @Syn2{select_statement}"}
@Syn{lhs=<null_statement>,rhs="@key{null};"}
@Syn{lhs=<label>,rhs="<<@SynI{label_}@Syn2{statement_identifier}>>"}
@Syn{lhs=<statement_identifier>,rhs="@Syn2{direct_name}"}
@begin(SyntaxText)
The @nt<direct_name> of a @nt<statement_identifier> shall
be an @nt<identifier> (not an @nt<operator_symbol>).
@end(SyntaxText)
@end{Syntax}
@begin{Resolution}
The @nt<direct_name> of a @nt<statement_identifier> shall resolve to
denote its corresponding implicit declaration (see below).
@end{Resolution}
@begin{Legality}
Distinct @nt{identifier}s shall be used for all
@nt<statement_identifier>s that
appear in the same body, including
inner @nt{block_statement}s
but excluding inner program units.
@end{Legality}
@begin{StaticSem}
For each @nt<statement_identifier>,
there is an implicit declaration (with the specified @nt<identifier>)
at the end of the @nt{declarative_part} of the
innermost @nt{block_statement} or body that
encloses the @nt{statement_identifier}.
The implicit declarations occur in the same order as the
@nt<statement_identifier>s occur in the source text.
If a usage name denotes such an implicit declaration, the entity it
denotes is the @nt<label>, @nt<loop_statement>,
or @nt<block_statement> with the given @nt<statement_identifier>.
@begin{Reason}
We talk in terms of individual @nt<statement_identifier>s here
rather than in terms of the corresponding statements, since
a given @nt{statement} may have multiple @nt<statement_identifier>s.
A @nt{block_statement} that has no
explicit @nt{declarative_part} has an implicit empty
@nt{declarative_part},
so this rule can safely
refer to the @nt{declarative_part} of a @nt<block_statement>.
The scope of a declaration starts at the place of the declaration
itself (see @RefSecNum{Scope of Declarations}).
In the case of a label, loop, or block name, it
follows from this rule that the scope of the implicit declaration
starts before the first explicit occurrence of the corresponding
name, since this occurrence is either in a statement label, a
@nt{loop_statement}, a @nt{block_statement}, or a
@nt{goto_statement}. An implicit
declaration in a @nt{block_statement} may hide a declaration given in an
outer program unit or @nt{block_statement} (according to the usual rules
of hiding explained in @RefSecNum{Visibility}).
The syntax rule for @nt{label} uses @nt{statement_identifier} which
is a @nt<direct_name> (not a @nt{defining_identifier}),
because labels are implicitly declared. The same applies to loop and
block names.
In other words, the @nt{label} itself is not the defining occurrence;
the implicit declaration is.
@Leading@;We cannot consider the @nt{label} to be a defining occurrence.
An example that can tell the difference is this:
@begin{example}
@key[declare]
--@RI{ Label Foo is implicitly declared here.}
@key[begin]
@key[for] Foo @key[in] ... @key[loop]
...
<<Foo>> --@RI{ Illegal.}
...
@key[end] @key[loop];
@key[end];
@end{example}
The label in this example is hidden from itself by the loop parameter
with the same name;
the example is illegal.
We considered creating a new syntactic category name, separate from
@nt{direct_name} and @nt{selector_name}, for use in the case of statement
labels.
However, that would confuse the rules in Section 8, so we didn't do it.
@end{Reason}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(null_statement)}
The execution of a @nt{null_statement} has no effect.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Defn{transfer of control}
A @i{transfer of control} is
the run-time action of an @nt{exit_statement},
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]},
@nt{goto_statement},
or @nt{requeue_statement},
selection of a @nt{terminate_alternative},
raising of an exception,
or an abort,
which causes
the next action performed to be one other than what would normally be
expected from the other rules of the language.
@Redundant[As explained in
@RefSecNum{Completion and Finalization},
a transfer of control can cause the execution of constructs to be
completed and then left,
which may trigger finalization.]
@PDefn2{Term=[execution], Sec=(sequence_of_statements)}
The execution of a @nt{sequence_of_statements} consists of the execution
of the individual @nt{statement}s in succession
until the @ntf{sequence_} is completed.
@begin{Ramification}
It could be completed by reaching the end of it,
or by a transfer of control.
@end{Ramification}
@end{RunTime}
@begin{Notes}
A @nt<statement_identifier> that appears immediately within
the declarative region of a
named @nt<loop_statement> or an @nt<accept_statement> is nevertheless
implicitly declared immediately within the declarative region
of the innermost enclosing body or @nt<block_statement>;
in other words, the expanded name for a named statement is
not affected by whether the statement occurs inside or outside
a named loop or an @nt<accept_statement> @em only nesting
within @nt<block_statement>s is relevant to the form of its
expanded name.
@begin{Discussion}
@Leading@keepnext@;Each comment in the following example gives the
expanded name associated with an entity declared in the task body:
@begin{Example}
@key(task body) Compute @key(is)
Sum : Integer := 0; --@RI[ Compute.Sum]
@key(begin)
Outer: --@RI[ Compute.Outer]
@key(for) I @key(in) 1..10 @key(loop) --@RI[ Compute.Outer.I]
Blk: --@RI[ Compute.Blk]
@key(declare)
Sum : Integer := 0; --@RI[ Compute.Blk.Sum]
@key(begin)
@key(accept) Ent(I : out Integer; J : in Integer) @key(do)
--@RI[ Compute.Ent.I, Compute.Ent.J]
Compute.Ent.I := Compute.Outer.I;
Inner: --@RI[ Compute.Blk.Inner]
@key(for) J @key(in) 1..10 @key(loop)
--@RI[ Compute.Blk.Inner.J]
Sum := Sum + Compute.Blk.Inner.J * Compute.Ent.J;
@key(end loop) Inner;
@key(end) Ent;
Compute.Sum := Compute.Sum + Compute.Blk.Sum;
@key(end) Blk;
@key(end loop) Outer;
Record_Result(Sum);
@key(end) Compute;
@end{Example}
@end{Discussion}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of labeled statements:}
@begin{Example}
<<Here>> <<Ici>> <<Aqui>> <<Hier>> @key[null];
<<After>> X := 1;
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The @nt{requeue_statement} is new.
@end{Extend83}
@begin{DiffWord83}
We define the syntactic category @nt<statement_identifier> to simplify
the description. It is used for labels, loop names, and block names.
We define the entity associated with the implicit declarations
of statement names.
Completion includes completion caused by a transfer of control,
although RM83-5.1(6) did not take this view.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The @nt{extended_return_statement} is new (@nt{simple_return_statement}
is merely renamed).]}
@end{Extend95}
@LabeledClause{Assignment Statements}
@begin{Intro}
@Redundant[An @nt{assignment_statement}
replaces the current value of
a variable with the result of evaluating an
@nt<expression>.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<assignment_statement>,rhs="
@SynI{variable_}@Syn2{name} := @Syn2{expression};"}
@end{Syntax}
@begin{Intro}
The execution of an @nt<assignment_statement> includes
the evaluation of the @nt<expression> and the @i(assignment)
of the value of the @nt<expression> into the @i(target).
@RootDefn{assignment operation}
@IndexSee{Term=[assign], See=(assignment operation)}
@Redundant[An assignment operation (as opposed to
an @nt<assignment_@!statement>) is performed in other contexts
as well, including object initialization and by-copy parameter
passing.]
@Defn2{Term=[target], Sec=(of an assignment operation)}
@Defn2{Term=[target], Sec=(of an @nt{assignment_statement})}
The @i{target} of an assignment operation
is the view of the object to which a value is being assigned;
the target of an @nt{assignment_@!statement} is the variable denoted by
the @SynI{variable_}@nt{name}.
@begin{Discussion}
Don't confuse this notion of the @lquotes@;target@rquotes@; of an assignment
with the notion of the @lquotes@;target object@rquotes@; of an entry call or requeue.
Don't confuse the term @lquotes@;assignment operation@rquotes@; with the
@nt{assignment_statement}.
The assignment operation is just one part of the execution of an
@nt{assignment_statement}.
The assignment operation is also a part of the execution of various
other constructs; see @RefSec{Completion and Finalization} for a complete
list.
Note that when we say, @lquotes@;such-and-such is assigned to so-and-so@rquotes@;,
we mean that the assignment operation is being applied, and that
so-and-so is the target of the assignment operation.
@end{Discussion}
@end{Intro}
@begin{Resolution}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
@PDefn2{Term=[expected type],
Sec=(assignment_statement variable_name)}
The @i(variable_)@nt<name> of an @nt<assignment_statement>
is expected to be of any @Chg{Version=[2],New=[],Old=[nonlimited ]}type.
@PDefn2{Term=[expected type],
Sec=(assignment_statement expression)}
The expected type for the @nt<expression> is
the type of the target.
@begin{ImplNote}
@Leading@keepnext@;An @nt<assignment_statement> as a whole is a "complete context,"
so if the @i{variable_}@nt<name> of an @nt<assignment_statement> is
overloaded, the @nt<expression> can be used to help disambiguate it.
For example:
@begin{Example}
@key[type] P1 @key[is access] R1;
@key[type] P2 @key[is access] R2;
@key[function] F return P1;
@key[function] F return P2;
X : R1;
@key[begin]
F.all := X; --@RI[ Right hand side helps resolve left hand side]
@end{Example}
@end{ImplNote}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
The target @Redundant[denoted by the
@i(variable_)@nt<name>] shall be a variable@Chg{Version=[2],New=[ of a
nonlimited type],Old=[]}.
If the target is of a tagged class-wide type @i(T)'Class, then
the @nt<expression> shall either be dynamically tagged,
or of type @i(T) and tag-indeterminate
(see @RefSecNum{Dispatching Operations of Tagged Types}).
@begin{Reason}
This is consistent with the general rule that a single
dispatching operation shall not have both dynamically tagged and
statically tagged operands. Note that for an object
initialization (as opposed to the @nt{assignment_statement}),
a statically tagged initialization expression is permitted,
since there is no chance for confusion (or Tag_Check failure).
Also, in an object initialization, tag-indeterminate expressions
of any type covered by @i(T)'Class would be allowed, but with
an @nt{assignment_statement}, that might not work if the tag of the target
was for a type that didn't have one of the dispatching operations
in the tag-indeterminate expression.
@end{Reason}
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(assignment_statement)}
For the execution of an @nt{assignment_statement},
the @i(variable_)@nt<name> and the @nt<expression>
are first evaluated in an arbitrary order.
@begin{Ramification}
Other rules of the language may require that the
bounds of the variable be determined prior to evaluating
the @nt<expression>, but that does not necessarily require
evaluation of the @i(variable_)@nt<name>, as pointed out by the ACID.
@end{Ramification}
@Leading@keepnext@;When the type of the target is class-wide:
@begin(itemize)
@PDefn2{Term=[controlling tag value], Sec=(for the @nt{expression}
in an @nt{assignment_statement})}
If the @nt<expression> is tag-indeterminate
(see @RefSecNum{Dispatching Operations of Tagged Types}), then the controlling
tag value for the @nt<expression> is the tag of the target;
@begin{Ramification}
See @RefSec(Dispatching Operations of Tagged Types).
@end{Ramification}
@IndexCheck{Tag_Check}
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
Otherwise @Redundant[(the @nt<expression> is dynamically tagged)],
a check is made that the tag of
the value of the @nt<expression>
is the same as that of the target;
if this check fails, Constraint_Error is raised.
@end(itemize)
The value of the @nt<expression> is converted to the subtype of the
target. @Redundant[The conversion might raise an exception
(see @RefSecNum{Type Conversions}).]
@PDefn2{Term=[implicit subtype conversion],Sec=(assignment_statement)}
@begin{Ramification}
@RefSec(Type Conversions) defines what actions
and checks are associated with subtype conversion.
For non-array subtypes, it is just a constraint
check presuming the types match.
For array subtypes, it checks the lengths and slides if the
target is constrained.
@lquotes@;Sliding@rquotes@; means the array doesn't have to have the same bounds,
so long as it is the same length.
@end{Ramification}
In cases involving controlled types, the target is finalized,
and an anonymous object might be used as an intermediate in the assignment,
as described in @RefSec{Completion and Finalization}.
@Defn{assignment operation}
@Defn2{Term=[assignment operation],
Sec=(during execution of an @nt{assignment_statement})}
In any case,
the converted value of the @nt<expression> is then @i(assigned) to the target,
which consists of the following two steps:
@begin{Honest}
@RefSecNum{Completion and Finalization} actually says that
finalization happens always, but unless controlled types are involved,
this finalization during an @nt{assignment_statement} does
nothing.
@end{Honest}
@begin(itemize)
The value of the target becomes the converted value.
If any part of the target is controlled, its value
is adjusted as explained in
clause @RefSecNum{User-Defined Assignment and Finalization}.
@PDefn2{Term=[adjustment], Sec=(as part of assignment)}
@begin{Ramification}
If any parts of the object are controlled,
abort is deferred during the assignment operation itself,
but not during the rest of the execution of an
@nt<assignment_statement>.
@end{Ramification}
@end(itemize)
@end{RunTime}
@begin{Notes}
The tag of an object never changes;
in particular, an
@nt{assignment_statement}
does not change the tag of the target.
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[The values of the discriminants of an object
designated by an access value cannot be changed (not even by assigning a
complete value to the object itself) since such objects are always constrained;
however, subcomponents of such objects may be unconstrained.]}
@begin{Ramification}
The implicit subtype conversion described above for
@nt{assignment_statement}s
is performed only for the value of the right-hand side
expression as a whole; it is not performed for subcomponents of the
value.
The determination of the type of the variable of an
@nt{assignment_statement} may require consideration of the expression
if the variable
name can be interpreted as the name of a variable designated by the
access value returned by a function call, and similarly, as a
component or slice of such a variable
(see @RefSec{The Context of Overload Resolution}).
@end{Ramification}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of assignment statements:}
@begin{Example}
Value := Max_Value - 1;
Shade := Blue;
Next_Frame(F)(M, N) := 2.5; --@RI{ see @RefSecNum{Indexed Components}}
U := Dot_Product(V, W); --@RI{ see @RefSecNum{Subprogram Bodies}}
Writer := (Status => Open, Unit => Printer, Line_Count => 60); --@RI{ see @RefSecNum{Variant Parts and Discrete Choices}}
Next_Car.@key[all] := (72074, @key[null]); --@RI{ see @RefSecNum{Incomplete Type Declarations}}
@end{Example}
@begin{Wide}
@Leading@keepnext@i{Examples involving scalar subtype conversions:}
@end{Wide}
@begin{Example}
I, J : Integer @key[range] 1 .. 10 := 5;
K : Integer @key[range] 1 .. 20 := 15;
...
I := J; --@RI{ identical ranges}
K := J; --@RI{ compatible ranges}
J := K; --@RI{ will raise Constraint_Error if K > 10}
@end{Example}
@begin{Wide}
@leading@keepnext@i{Examples involving array subtype conversions:}
@end{Wide}
@begin{Example}
A : String(1 .. 31);
B : String(3 .. 33);
...
A := B; --@RI{ same number of components}
A(1 .. 9) := "tar sauce";
A(4 .. 12) := A(1 .. 9); --@RI{ A(1 .. 12) = "tartar sauce"}
@end{Example}
@end{Examples}
@begin{Notes}
@i{Notes on the examples:}
@nt{Assignment_statement}s are allowed even in the case of overlapping
slices of the same array,
because the @SynI{variable_}@nt{name} and @nt{expression}
are both evaluated before copying the value into the variable.
In the above example, an
implementation yielding A(1 .. 12) = "tartartartar" would be
incorrect.
@end{Notes}
@begin{Extend83}
@Defn{extensions to Ada 83}
We now allow user-defined finalization and value adjustment actions
as part of @nt{assignment_statement}s
(see @RefSec{User-Defined Assignment and Finalization}).
@end{Extend83}
@begin{DiffWord83}
The special case of array assignment is subsumed by the concept
of a subtype conversion, which is applied for all kinds of types,
not just arrays. For arrays it provides @lquotes@;sliding@rquotes@;. For numeric
types it provides conversion of a value of a universal type to
the specific type of the target. For other types,
it generally has no run-time effect, other than a constraint
check.
We now cover in a general way in @RefSecNum{Operations of Discriminated Types}
the erroneous execution possible due to
changing the value of a discriminant when
the variable in an @nt<assignment_statement> is a subcomponent
that depends on discriminants.
@end{DiffWord83}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@Chg{Version=[2],New=[@Defn{incompatibilities with Ada 95}
The change of the limited check from a resolution rule to
a legality rule is not quite upward compatible. For example],Old=[]}.
@begin{Example}
@Chg{Version=[2],New=[@key{type} AccNonLim @key{is} @key{access} NonLim;
@key{function} Foo (Arg : in Integer) @key{return} AccNonLim;
@key{type} AccLim @key{is} @key{access} Lim;
@key{function} Foo (Arg : in Integer) @key{return} AccLim;
Foo(2).@key{all} := Foo(1).@key{all};],Old=[]}.
@end{Example}
@ChgAdded{Version=[2],Text=[where NonLim is a nonlimited type and Lim is a
limited type. The assignment is legal in Ada 95 (only the first Foo would be
considered), and is ambiguous in Ada 2005. We made the change because we want
limited types to be as similar to nonlimited types as possible. Limited
expressions are now allowed in all other contexts (with a similar
incompatibility), and it would be odd if assignments had different resolution
rules (which would eliminate ambiguities in some cases). Moreover, examples
like this one are rare, as they depend on assigning into overloaded function
calls.]}
@end{Incompatible95}
@LabeledClause{If Statements}
@begin{Intro}
@Redundant[An @nt{if_statement} selects for execution at most one of
the enclosed @ntf{sequences_of_statements}, depending on the (truth)
value of one or more corresponding @nt{condition}s.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<if_statement>,rhs="
@key{if} @Syn2{condition} @key{then}
@Syn2{sequence_of_statements}
{@key{elsif} @Syn2{condition} @key{then}
@Syn2{sequence_of_statements}}
[@key{else}
@Syn2{sequence_of_statements}]
@key{end} @key{if};"}
@Syn{lhs=<condition>,rhs="@SynI{boolean_}@Syn2{expression}"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(condition)}
A @nt{condition} is expected to be of any boolean type.
@end{Resolution}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(if_statement)}
For the execution of an @nt{if_statement}, the @nt{condition} specified
after @key{if}, and any @nt{condition}s specified after @key{elsif}, are
evaluated in succession (treating a final @key{else} as @key{elsif} True
@key{then}), until one evaluates to True or
all @nt{condition}s are evaluated and
yield False.
If a @nt{condition} evaluates to True, then the
corresponding @nt{sequence_of_statements} is executed; otherwise none of
them is executed.
@begin{Ramification}
The part about all evaluating to False can't happen if
there is an @key{else}, since that is herein considered equivalent to
@key{elsif} True @key{then}.
@end{Ramification}
@end{RunTime}
@begin{Examples}
@Leading@keepnext@i{Examples of if statements:}
@begin{Example}
@key[if] Month = December @key[and] Day = 31 @key[then]
Month := January;
Day := 1;
Year := Year + 1;
@key[end] @key[if];
@key[if] Line_Too_Short @key[then]
@key[raise] Layout_Error;
@key[elsif] Line_Full @key[then]
New_Line;
Put(Item);
@key[else]
Put(Item);
@key[end] @key[if];
@key[if] My_Car.Owner.Vehicle /= My_Car @key[then] --@RI{ see @RefSecNum{Incomplete Type Declarations}}
Report ("Incorrect data");
@key[end] @key[if];
@end{Example}
@end{Examples}
@LabeledClause{Case Statements}
@begin{Intro}
@Redundant[A @nt{case_statement} selects for execution one of a
number of alternative @ntf{sequences_of_statements}; the chosen
alternative is defined by the value of an expression.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<case_statement>,rhs="
@key{case} @Syn2{expression} @key{is}
@Syn2{case_statement_alternative}
{@Syn2{case_statement_alternative}}
@key{end} @key{case};"}
@Syn{lhs=<case_statement_alternative>,rhs="
@key{when} @Syn2{discrete_choice_list} =>
@Syn2{sequence_of_statements}"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(case expression)}
The @nt{expression} is expected to be of any discrete type.
@PDefn2{Term=[expected type],
Sec=(case_statement_alternative discrete_choice)}
The expected type for each @nt{discrete_choice} is the type of the
@nt{expression}.
@end{Resolution}
@begin{Legality}
The @nt{expression}s and @nt{discrete_range}s given as
@nt{discrete_choice}s of a @nt{case_statement} shall be static.
@Redundant[A @nt{discrete_choice} @key(others), if present,
shall appear alone and in the last @nt{discrete_choice_list}.]
The possible values of the @nt{expression} shall be covered as follows:
@begin{itemize}
If the @nt{expression} is a @nt{name} @Redundant[(including a
@nt<type_conversion> or a @nt<function_call>)] having
a static and constrained nominal subtype, or
is a @nt{qualified_expression} whose
@nt{subtype_mark} denotes a static and constrained
scalar subtype,
then each non-@key{others} @nt{discrete_choice} shall cover only values in
that subtype, and each value of that subtype shall
be covered by some @nt{discrete_choice}
@Redundant[(either explicitly or by @key(others))].
@begin{Ramification}
Although not official @nt<name>s of objects, a value conversion
still has a defined nominal subtype, namely its target subtype.
See @RefSecNum{Type Conversions}.
@end{Ramification}
If the type of the @nt{expression} is
@i(root_integer), @i(universal_integer), or a descendant of a
formal scalar type,
then the @nt{case_statement} shall have an @key{others}
@nt{discrete_choice}.
@begin{Reason}
This is because the base range is
implementation defined for @i(root_integer) and @i(universal_integer),
and not known statically in the case of a formal scalar type.
@end{Reason}
Otherwise,
each value of the base range of the type of the @nt{expression} shall
be covered
@Redundant[(either explicitly or by @key(others))].
@end{itemize}
Two distinct @nt{discrete_choice}s of a
@nt{case_statement} shall not cover the same value.
@begin{Ramification}
The goal of these coverage rules is
that any possible value of the @nt{expression} of a
@nt{case_statement} should be covered by exactly one
@nt{discrete_choice} of the
@nt{case_statement}, and that this should be checked at compile time.
The goal is achieved in most cases, but there are two minor
loopholes:
@begin{Itemize}
If the expression reads an object with an invalid representation
(e.g. an uninitialized object),
then the value can be outside the covered range.
This can happen for static constrained subtypes, as well as nonstatic or
unconstrained subtypes.
It cannot, however, happen if the @nt{case_statement} has the
@nt{discrete_choice} @key{others}, because @key{others} covers all values,
even those outside the subtype.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
If the compiler chooses to represent the value of an expression of an
unconstrained subtype in a way that includes values outside the bounds of the
subtype, then those values can be outside the covered range.
For example, if X: Integer := Integer'Last;, and the case @nt{expression} is
X+1, then the implementation might choose to produce the correct value, which
is outside the bounds of Integer.
(It might raise Constraint_Error instead.)
This case can only happen for non-generic subtypes that are either
unconstrained or
non@Chg{Version=[2],New=[],Old=[-]}@ChgNote{Make spelling consistent}static
(or both).
It can only happen if there is no @key{others} @nt{discrete_choice}.
@end{Itemize}
In the uninitialized variable case, the value might be anything; hence, any
alternative can be chosen, or Constraint_Error can be raised. (We intend to
prevent, however, jumping to random memory locations and the like.)
In the out-of-range case, the behavior is more sensible: if there is an
@key{others}, then the implementation may choose to raise Constraint_Error
on the evaluation of the @nt{expression} (as usual), or it may choose
to correctly evaluate the @nt{expression} and therefore choose the
@key{others} alternative.
Otherwise (no @key{others}), Constraint_Error is raised either way @em on
the @nt{expression} evaluation, or for the @nt{case_statement} itself.
For an enumeration type with a discontiguous set of internal codes
(see @RefSecNum{Enumeration Representation Clauses}),
the only way to get values in between the proper values
is via an object with an invalid representation;
there is no @lquotes@;out-of-range@rquotes@; situation that can produce them.
@end{Ramification}
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(case_statement)}
For the execution of a @nt{case_statement} the
@nt{expression} is first evaluated.
If the value of the @nt{expression} is covered by the
@nt{discrete_@!choice_@!list} of some
@nt{case_@!statement_@!alternative}, then the
@nt{sequence_of_@!statements} of the @ntf{_alternative} is
executed.
@IndexCheck{Overflow_Check}
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
Otherwise (the value is not covered by any
@nt{discrete_choice_list},
perhaps due to being outside the base range),
Constraint_Error is raised.
@begin{Ramification}
In this case, the value is outside the base range of its type,
or is an invalid representation.
@end{Ramification}
@end{RunTime}
@begin{Notes}
The execution of a @nt{case_statement} chooses one and only one
alternative.
Qualification of the expression of a @nt{case_statement} by a static
subtype can often be used to limit the number of choices that need be
given explicitly.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of case statements:}
@begin{Example}
@tabclear()@tabset(P22)
@key[case] Sensor @key[is]
@key[when] Elevation@\=> Record_Elevation(Sensor_Value);
@key[when] Azimuth@\=> Record_Azimuth (Sensor_Value);
@key[when] Distance@\=> Record_Distance (Sensor_Value);
@key[when] @key[others]@\=> @key[null];
@key[end] @key[case];
@tabclear()@tabset(P22)
@key[case] Today @key[is]
@key[when] Mon@\=> Compute_Initial_Balance;
@key[when] Fri@\=> Compute_Closing_Balance;
@key[when] Tue .. Thu@\=> Generate_Report(Today);
@key[when] Sat .. Sun@\=> @key[null];
@key[end] @key[case];
@tabclear()@tabset(P16)
@key[case] Bin_Number(Count) @key[is]
@key[when] 1@\=> Update_Bin(1);
@key[when] 2@\=> Update_Bin(2);
@key[when] 3 | 4@\=>
Empty_Bin(1);
Empty_Bin(2);
@key[when] @key[others]@\=> @key[raise] Error;
@key[end] @key[case];
@end{Example}
@end{Examples}
@begin{Incompatible83}
@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[@Defn{incompatibilities with Ada 83}
In Ada 95, @nt{function_call}s and @nt{type_conversion}s are @nt{name}s, whereas
in Ada 83, they were @nt{expression}s. Therefore, if the @nt{expression} of a
@nt{case_statement} is a @nt{function_call} or @nt{type_conversion}, and the
result subtype is static, it is illegal to specify a choice outside the bounds
of the subtype. For this case in Ada 83 choices only are required to be in the
base range of the type.],Old=[]}
@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[In addition, the rule about which choices must be covered is
unchanged in Ada 95. Therefore, for a @nt{case_statement} whose @nt{expression}
is a @nt{function_call} or @nt{type_conversion}, Ada 83 required covering all
choices in the base range, while Ada 95 only requires covering choices in the
bounds of the subtype. If the @nt{case_statement} does not include an @key{others}
@nt{discrete_choice}, then a legal Ada 83 @nt{case_statement} will be illegal
in Ada 95 if the bounds of the subtype are different than the bounds of the
base type.],Old=[]}
@end{Incompatible83}
@begin{Extend83}
@Defn{extensions to Ada 83}
In Ada 83, the @nt{expression} in a @nt{case_statement} is not allowed to
be of a generic formal type.
This restriction is removed in Ada 95; an @key{others} @nt{discrete_choice}
is required instead.
In Ada 95, a function call is the name of an object;
this was not true in Ada 83 (see @RefSec{Names}).
This change makes the following @nt{case_statement} legal:
@begin{Example}
@key[subtype] S @key[is] Integer @key[range] 1..2;
@key[function] F @key[return] S;
@key[case] F @key[is]
@key[when] 1 => ...;
@key[when] 2 => ...;
--@RI{ No @key{others} needed.}
@key[end] @key[case];
@end{Example}
Note that the result subtype given in a function
@nt{renaming_declaration} is ignored;
for a @nt{case_statement} whose expression calls a such a function, the
full coverage rules are checked using the result subtype of the original
function.
Note that predefined operators such as "+" have an unconstrained result
subtype (see @RefSecNum{Logical Operators and Short-circuit Control Forms}).
Note that generic formal functions do not have static result subtypes.
Note that the result subtype of an inherited subprogram need not
correspond to any namable subtype;
there is still a perfectly good result subtype, though.
@end{Extend83}
@begin{DiffWord83}
Ada 83 forgot to say what happens for @lquotes@;legally@rquotes@; out-of-bounds values.
We take advantage of rules and terms (e.g. @i(cover a value))
defined for @nt{discrete_choice}s and @nt{discrete_choice_list}s
in @RefSec{Variant Parts and Discrete Choices}.
In the @ResolutionName for the case expression,
we no longer need RM83-5.4(3)'s @lquotes@;which must be determinable
independently of the context in which the expression occurs, but
using the fact that the expression must be of a discrete type,@rquotes@;
because the @nt{expression} is now a complete context.
See @RefSec{The Context of Overload Resolution}.
Since @nt<type_conversion>s are now defined as @nt<name>s,
their coverage rule is now covered under the general rule
for @nt<name>s, rather than being separated out along with
@nt<qualified_expression>s.
@end{DiffWord83}
@LabeledClause{Loop Statements}
@begin{Intro}
@Redundant[A @nt{loop_statement} includes a
@nt{sequence_of_statements} that is to be executed repeatedly,
zero or more times.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<loop_statement>,rhs="
[@SynI{loop_}@Syn2{statement_identifier}:]
[@Syn2{iteration_scheme}] @key{loop}
@Syn2{sequence_of_statements}
@key{end} @key{loop} [@SynI{loop_}@Syn2{identifier}];"}
@Syn{lhs=<iteration_scheme>,rhs="@key{while} @Syn2{condition}
| @key{for} @Syn2{loop_parameter_specification}"}
@Syn{lhs=<loop_parameter_specification>,rhs="
@Syn2{defining_identifier} @key{in} [@key{reverse}] @Syn2{discrete_subtype_definition}"}
@begin(SyntaxText)
If a @nt{loop_statement} has a @SynI{loop_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end loop};
otherwise, there shall not be an @nt<identifier> after the @key{end loop}.
@end(SyntaxText)
@end{Syntax}
@begin{StaticSem}
@Defn{loop parameter}
A @nt{loop_parameter_specification} declares a @i{loop parameter},
which is an object whose
subtype is that defined by the @nt{discrete_subtype_definition}.
@IndexSeeAlso{Term=[parameter],See=[loop parameter]}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(loop_statement)}
For the execution of a @nt{loop_statement},
the @nt{sequence_of_statements} is executed repeatedly,
zero or more times,
until the @nt{loop_statement} is complete.
The @nt{loop_statement} is complete when a transfer
of control occurs that transfers control out of the loop, or, in the
case of an @nt{iteration_scheme}, as specified below.
@PDefn2{Term=[execution],
Sec=(loop_statement with a while iteration_scheme)}
For the execution of a @nt{loop_statement} with a @key{while}
@nt{iteration_scheme}, the condition is evaluated before each
execution of the @nt{sequence_of_@!statements}; if the value of the
@nt{condition} is True, the @nt{sequence_of_@!statements} is executed;
if False, the execution of the @nt{loop_@!statement} is complete.
@PDefn2{Term=[execution],
Sec=(loop_statement with a for iteration_scheme)}
@PDefn2{Term=[elaboration], Sec=(loop_parameter_specification)}
For the execution of a @nt{loop_statement} with a @key{for}
@nt{iteration_scheme},
the @nt{loop_@!parameter_@!specification} is first elaborated. This
elaboration creates the loop parameter and elaborates the
@nt{discrete_@!subtype_@!definition}.
If the @nt{discrete_@!subtype_@!definition} defines a subtype
with a null range,
the execution of the
@nt{loop_statement} is complete. Otherwise, the
@nt{sequence_of_@!statements} is executed once for each value of the
discrete subtype defined by the
@nt{discrete_@!subtype_@!definition} (or until the loop is left as a
consequence of a transfer of control).
@Defn2{Term=[assignment operation], Sec=(during execution of a @key{for} loop)}
Prior to each such iteration,
the corresponding value of the discrete subtype is assigned to the
loop parameter. These values are assigned in increasing order unless
the reserved word @key{reverse} is present, in which case the values
are assigned in decreasing order.
@begin{Ramification}
The order of creating the loop parameter and evaluating the
@nt{discrete_subtype_definition} doesn't matter,
since the creation of the loop parameter has no side effects (other
than possibly raising Storage_Error, but anything can do that).
@end{Ramification}
@end{RunTime}
@begin{Notes}
A loop parameter is a constant;
it cannot be updated within the
@nt{sequence_of_statements} of the loop
(see @RefSecNum{Objects and Named Numbers}).
An @nt{object_declaration} should not be given for a loop parameter,
since the loop parameter is automatically declared by
the @nt{loop_parameter_specification}.
The scope of a loop parameter extends from the
@nt{loop_parameter_specification} to the end of the
@nt{loop_statement}, and the visibility
rules are such that a loop parameter is only visible within the
@nt{sequence_of_statements} of the loop.
@begin{ImplNote}
An implementation could give a warning if a variable is hidden by a
@nt{loop_parameter_specification}.
@end{ImplNote}
The @nt<discrete_subtype_definition> of a for loop is elaborated
just once. Use of the
reserved word @key[reverse] does not alter the discrete subtype defined,
so that the following @nt{iteration_scheme}s are not equivalent; the
first has a null range.
@begin{Example}
@key[for] J @key[in] @key[reverse] 1 .. 0
@key[for] J @key[in] 0 .. 1
@end{Example}
@begin{Ramification}
If a @nt{loop_parameter_specification} has a static discrete range,
the subtype of the loop parameter is static.
@end{Ramification}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Example of a loop statement without an iteration scheme:}
@begin{Example}
@key[loop]
Get(Current_Character);
@key[exit] @key[when] Current_Character = '*';
@key[end] @key[loop];
@end{Example}
@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a @key[while] iteration scheme:}
@end{Wide}
@begin{Example}
@key[while] Bid(N).Price < Cut_Off.Price @key[loop]
Record_Bid(Bid(N).Price);
N := N + 1;
@key[end] @key[loop];
@end{Example}
@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a @key[for] iteration scheme:}
@end{Wide}
@begin{Example}
@key[for] J @key[in] Buffer'Range @key[loop] --@RI{ works even with a null range}
@key[if] Buffer(J) /= Space @key[then]
Put(Buffer(J));
@key[end] @key[if];
@key[end] @key[loop];
@end{Example}
@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a name:}
@end{Wide}
@begin{Example}
Summation:
@key[while] Next /= Head @key[loop] --@RI{ see @RefSecNum{Incomplete Type Declarations}}
Sum := Sum + Next.Value;
Next := Next.Succ;
@key[end] @key[loop] Summation;
@end{Example}
@end{Examples}
@begin{DiffWord83}
The constant-ness of loop parameters is specified in
@RefSec{Objects and Named Numbers}.
@end{DiffWord83}
@RMNewPage
@LabeledClause{Block Statements}
@begin{Intro}
@Redundant[A @nt{block_statement} encloses a
@nt{handled_sequence_of_statements}
optionally preceded by a @nt{declarative_part}.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<block_statement>,rhs="
[@SynI{block_}@Syn2{statement_identifier}:]
[@key{declare}
@Syn2{declarative_part}]
@key{begin}
@Syn2{handled_sequence_of_statements}
@key{end} [@SynI{block_}@Syn2{identifier}];"}
@begin(SyntaxText)
If a @nt{block_statement} has a @SynI{block_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end};
otherwise, there shall not be an @nt<identifier> after the @key{end}.
@end(SyntaxText)
@end{Syntax}
@begin{StaticSem}
A @nt{block_statement} that has no
explicit @nt{declarative_part} has an implicit empty
@nt{declarative_part}.
@begin{Ramification}
Thus, other rules can always
refer to the @nt{declarative_part} of a @nt<block_statement>.
@end{Ramification}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(block_statement)}
The execution of a @nt{block_statement} consists of the elaboration
of its @nt{declarative_part} followed by the execution of
its @nt{handled_sequence_of_statements}.
@end{RunTime}
@begin{Examples}
@Leading@keepnext@i{Example of a block statement with a local variable:}
@begin{Example}
Swap:
@key[declare]
Temp : Integer;
@key[begin]
Temp := V; V := U; U := Temp;
@key[end] Swap;
@end{Example}
@begin{Ramification}
If task objects are declared within a @nt{block_statement} whose execution
is completed, the @nt{block_statement} is not left until all its dependent
tasks are terminated
(see @RefSecNum{User-Defined Assignment and Finalization}).
This rule applies to completion caused by a transfer of control.
Within a @nt{block_statement}, the block name can be used in expanded
names denoting local entities such as Swap.Temp in the above example
(see @RefSecNum{Selected Components}).
@end{Ramification}
@end{Examples}
@begin{DiffWord83}
The syntax rule for @nt{block_statement} now uses the syntactic category
@nt{handled_sequence_of_statements}.
@end{DiffWord83}
@LabeledClause{Exit Statements}
@begin{Intro}
@Redundant[An @nt{exit_statement} is used to complete the execution
of an enclosing @nt{loop_statement}; the
completion is conditional if the @nt{exit_statement} includes a
@nt{condition}.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<exit_statement>,rhs="
@key{exit} [@SynI{loop_}@Syn2{name}] [@key{when} @Syn2{condition}];"}
@end{Syntax}
@begin{Resolution}
The @i(loop_)@nt{name}, if any, in an @nt{exit_statement} shall resolve to
denote a @nt{loop_statement}.
@end{Resolution}
@begin{Legality}
@Defn2{Term=[apply], Sec=(to a @nt{loop_statement} by an @nt{exit_statement})}
Each @nt{exit_@!statement} @i{applies to} a
@nt{loop_@!statement}; this is the @nt{loop_@!statement} being exited.
An @nt{exit_@!statement} with a @nt{name} is only allowed within the
@nt{loop_@!statement} denoted by the @nt{name},
and applies to that @nt{loop_@!statement}.
An @nt{exit_@!statement} without a @nt{name} is only allowed within a
@nt{loop_@!statement}, and applies to the innermost enclosing one.
An @nt{exit_@!statement} that applies to a given @nt{loop_@!statement}
shall not appear within a body or @nt{accept_@!statement}, if
this construct is itself enclosed by the given @nt{loop_statement}.
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(exit_statement)}
For the execution of an @nt{exit_statement}, the @nt{condition}, if
present, is first evaluated.
If the value of the @nt{condition} is True, or if there is no @nt{condition},
a transfer of control is done to complete the @nt{loop_@!statement}.
If the value of the @nt{condition} is False, no transfer of control takes
place.
@end{RunTime}
@begin{Notes}
Several nested loops can be exited by an @nt{exit_statement} that names
the outer loop.
@end{Notes}
@begin{Examples}
@i{Examples of loops with exit statements:}
@begin{Example}
@key[for] N @key[in] 1 .. Max_Num_Items @key[loop]
Get_New_Item(New_Item);
Merge_Item(New_Item, Storage_File);
@key[exit] @key[when] New_Item = Terminal_Item;
@key[end] @key[loop];
Main_Cycle:
@key[loop]
--@RI{ initial statements}
@key[exit] Main_Cycle @key[when] Found;
--@RI{ final statements}
@key[end] @key[loop] Main_Cycle;
@end{Example}
@end{Examples}
@LabeledClause{Goto Statements}
@begin{Intro}
@Redundant[A @nt{goto_statement} specifies an explicit transfer of control
from this @nt{statement} to a target
statement with a given label.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<goto_statement>,rhs="@key{goto} @SynI{label_}@Syn2{name};"}
@end{Syntax}
@begin{Resolution}
@Defn2{Term=[target statement], Sec=(of a @nt{goto_statement})}
The @i(label_)@nt{name} shall resolve to denote a @nt<label>;
the @nt{statement} with that @nt{label} is the @i(target statement).
@end{Resolution}
@begin{Legality}
The innermost @nt{sequence_of_statements} that encloses the target
statement shall also enclose the @nt{goto_statement}.
Furthermore, if a @nt{goto_statement} is enclosed by an
@nt{accept_statement} or a body, then the target
statement shall not be outside this enclosing construct.
@begin{Ramification}
The @nt{goto_statement} can be a @nt{statement} of an inner
@ntf{sequence_}.
It follows from the second rule that if the target @nt{statement}
is enclosed by such a construct, then the @nt{goto_statement}
cannot be outside.
@end{Ramification}
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(goto_statement)}
The execution of a @nt{goto_statement} transfers control to the
target statement, completing the execution
of any @nt<compound_statement> that encloses the @nt<goto_statement>
but does not enclose the target.
@end{RunTime}
@begin{Notes}
The above rules allow transfer of control to a @nt{statement} of an
enclosing @nt{sequence_of_statements} but not the reverse. Similarly,
they prohibit transfers of control such as between alternatives of a
@nt{case_statement}, @nt{if_statement}, or @nt{select_statement};
between @nt{exception_handler}s; or from an @nt{exception_handler} of
a @nt{handled_sequence_of_statements}
back to its @nt{sequence_of_statements}.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Example of a loop containing a goto statement:}
@begin{Example}
<<Sort>>
@key[for] I @key[in] 1 .. N-1 @key[loop]
@key[if] A(I) > A(I+1) @key[then]
Exchange(A(I), A(I+1));
@key[goto] Sort;
@key[end] @key[if];
@key[end] @key[loop];
@end{Example}
@end{Examples}
|