File: 05.mss

package info (click to toggle)
ada-reference-manual 1%3A2012.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,872 kB
  • sloc: ada: 29,393; makefile: 193; python: 92
file content (1274 lines) | stat: -rwxr-xr-x 46,999 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
@Part(05, Root="ada.mss")

@Comment{$Date: 2006/10/17 05:29:45 $}
@LabeledSection{Statements}

@Comment{$Source: e:\\cvsroot/ARM/Source/05.mss,v $}
@Comment{$Revision: 1.31 $}

@begin{Intro}
@Redundant[A @nt{statement} defines an action to be performed upon
its execution.]

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Redundant[This section describes the general rules applicable to all
@nt{statement}s.
Some @nt{statement}s are discussed in later sections:
@nt{Procedure_@!call_@!statement}s and
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]} are
described in @RefSec{Subprograms}.
@nt{Entry_@!call_@!statement}s, @nt{requeue_@!statement}s,
@nt{delay_@!statement}s, @nt{accept_@!statement}s,
@nt{select_@!statement}s, and @nt{abort_@!statement}s are described in
@RefSec{Tasks and Synchronization}.
@nt{Raise_@!statement}s are described in @RefSec{Exceptions},
and @nt{code_@!statement}s in
@RefSecNum{Representation Issues}.
The remaining forms of @nt{statement}s are presented in this
section.]
@end{Intro}

@begin{DiffWord83}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
The description of
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]}
has been moved to
@RefSec{Return Statements}, so that it is closer to the
description of subprograms.
@end{DiffWord83}

@LabeledClause{Simple and Compound Statements - Sequences of Statements}

@begin{Intro}
@Redundant[A @nt<statement> is either simple or compound.
A @nt<simple_statement> encloses
no other @nt<statement>. A @nt<compound_statement> can enclose
@nt<simple_statement>s and other @nt<compound_statement>s.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<sequence_of_statements>,rhs="@Syn2{statement} {@Syn2{statement}}"}


@Syn{lhs=<statement>,rhs="
   {@Syn2{label}} @Syn2{simple_statement} | {@Syn2{label}} @Syn2{compound_statement}"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{tabs=[P31], lhs=<simple_statement>,rhs="@Syn2{null_statement}
   | @Syn2{assignment_statement}@\| @Syn2{exit_statement}
   | @Syn2{goto_statement}@\| @Syn2{procedure_call_statement}
   | @Chg{Version=[2],New=[@Syn2{simple_return_statement}],Old=[@Syn2{return_statement}]}@\| @Syn2{entry_call_statement}
   | @Syn2{requeue_statement}@\| @Syn2{delay_statement}
   | @Syn2{abort_statement}@\| @Syn2{raise_statement}
   | @Syn2{code_statement}"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{tabs=[P31], lhs=<compound_statement>,rhs="
     @Syn2{if_statement}@\| @Syn2{case_statement}
   | @Syn2{loop_statement}@\| @Syn2{block_statement}@Chg{Version=[2],New=[
   | @Syn2{extended_return_statement}],Old=[]}
   | @Syn2{accept_statement}@\| @Syn2{select_statement}"}

@Syn{lhs=<null_statement>,rhs="@key{null};"}

@Syn{lhs=<label>,rhs="<<@SynI{label_}@Syn2{statement_identifier}>>"}

@Syn{lhs=<statement_identifier>,rhs="@Syn2{direct_name}"}

@begin(SyntaxText)
The @nt<direct_name> of a @nt<statement_identifier> shall
be an @nt<identifier> (not an @nt<operator_symbol>).
@end(SyntaxText)
@end{Syntax}

@begin{Resolution}
The @nt<direct_name> of a @nt<statement_identifier> shall resolve to
denote its corresponding implicit declaration (see below).
@end{Resolution}

@begin{Legality}
Distinct @nt{identifier}s shall be used for all
@nt<statement_identifier>s that
appear in the same body, including
inner @nt{block_statement}s
but excluding inner program units.
@end{Legality}

@begin{StaticSem}
For each @nt<statement_identifier>,
there is an implicit declaration (with the specified @nt<identifier>)
at the end of the @nt{declarative_part} of the
innermost @nt{block_statement} or body that
encloses the @nt{statement_identifier}.
The implicit declarations occur in the same order as the
@nt<statement_identifier>s occur in the source text.
If a usage name denotes such an implicit declaration, the entity it
denotes is the @nt<label>, @nt<loop_statement>,
or @nt<block_statement> with the given @nt<statement_identifier>.
@begin{Reason}
  We talk in terms of individual @nt<statement_identifier>s here
  rather than in terms of the corresponding statements, since
  a given @nt{statement} may have multiple @nt<statement_identifier>s.

  A @nt{block_statement} that has no
  explicit @nt{declarative_part} has an implicit empty
  @nt{declarative_part},
  so this rule can safely
  refer to the @nt{declarative_part} of a @nt<block_statement>.

  The scope of a declaration starts at the place of the declaration
  itself (see @RefSecNum{Scope of Declarations}).
  In the case of a label, loop, or block name, it
  follows from this rule that the scope of the implicit declaration
  starts before the first explicit occurrence of the corresponding
  name, since this occurrence is either in a statement label, a
  @nt{loop_statement}, a @nt{block_statement}, or a
  @nt{goto_statement}. An implicit
  declaration in a @nt{block_statement} may hide a declaration given in an
  outer program unit or @nt{block_statement} (according to the usual rules
  of hiding explained in @RefSecNum{Visibility}).

  The syntax rule for @nt{label} uses @nt{statement_identifier} which
  is a @nt<direct_name> (not a @nt{defining_identifier}),
  because labels are implicitly declared. The same applies to loop and
  block names.
  In other words, the @nt{label} itself is not the defining occurrence;
  the implicit declaration is.

  @Leading@;We cannot consider the @nt{label} to be a defining occurrence.
  An example that can tell the difference is this:
  @begin{example}
@key[declare]
    --@RI{ Label Foo is implicitly declared here.}
@key[begin]
    @key[for] Foo @key[in] ... @key[loop]
        ...
        <<Foo>> --@RI{ Illegal.}
        ...
    @key[end] @key[loop];
@key[end];
  @end{example}

  The label in this example is hidden from itself by the loop parameter
  with the same name;
  the example is illegal.
  We considered creating a new syntactic category name, separate from
  @nt{direct_name} and @nt{selector_name}, for use in the case of statement
  labels.
  However, that would confuse the rules in Section 8, so we didn't do it.
@end{Reason}
@end{StaticSem}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(null_statement)}
The execution of a @nt{null_statement} has no effect.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Defn{transfer of control}
A @i{transfer of control} is
the run-time action of an @nt{exit_statement},
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]},
@nt{goto_statement},
or @nt{requeue_statement},
selection of a @nt{terminate_alternative},
raising of an exception,
or an abort,
which causes
the next action performed to be one other than what would normally be
expected from the other rules of the language.
@Redundant[As explained in
@RefSecNum{Completion and Finalization},
a transfer of control can cause the execution of constructs to be
completed and then left,
which may trigger finalization.]

@PDefn2{Term=[execution], Sec=(sequence_of_statements)}
The execution of a @nt{sequence_of_statements} consists of the execution
of the individual @nt{statement}s in succession
until the @ntf{sequence_} is completed.
@begin{Ramification}
It could be completed by reaching the end of it,
or by a transfer of control.
@end{Ramification}
@end{RunTime}

@begin{Notes}
A @nt<statement_identifier> that appears immediately within
the declarative region of a
named @nt<loop_statement> or an @nt<accept_statement> is nevertheless
implicitly declared immediately within the declarative region
of the innermost enclosing body or @nt<block_statement>;
in other words, the expanded name for a named statement is
not affected by whether the statement occurs inside or outside
a named loop or an @nt<accept_statement> @em only nesting
within @nt<block_statement>s is relevant to the form of its
expanded name.
@begin{Discussion}
@Leading@keepnext@;Each comment in the following example gives the
expanded name associated with an entity declared in the task body:
@begin{Example}
@key(task body) Compute @key(is)
   Sum : Integer := 0;                       --@RI[ Compute.Sum]
@key(begin)
 Outer:                                      --@RI[ Compute.Outer]
   @key(for) I @key(in) 1..10 @key(loop)     --@RI[ Compute.Outer.I]
    Blk:                                     --@RI[ Compute.Blk]
      @key(declare)
         Sum : Integer := 0;                 --@RI[ Compute.Blk.Sum]
      @key(begin)
         @key(accept) Ent(I : out Integer; J : in Integer) @key(do)
                                             --@RI[ Compute.Ent.I, Compute.Ent.J]
            Compute.Ent.I := Compute.Outer.I;
          Inner:                             --@RI[ Compute.Blk.Inner]
            @key(for) J @key(in) 1..10 @key(loop)
                                             --@RI[ Compute.Blk.Inner.J]
               Sum := Sum + Compute.Blk.Inner.J * Compute.Ent.J;
            @key(end loop) Inner;
         @key(end) Ent;
         Compute.Sum := Compute.Sum + Compute.Blk.Sum;
      @key(end) Blk;
   @key(end loop) Outer;
   Record_Result(Sum);
@key(end) Compute;
@end{Example}
@end{Discussion}
@end{Notes}

@begin{Examples}
@Leading@keepnext@i{Examples of labeled statements:}
@begin{Example}
<<Here>> <<Ici>> <<Aqui>> <<Hier>> @key[null];

<<After>> X := 1;
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
The @nt{requeue_statement} is new.
@end{Extend83}

@begin{DiffWord83}
We define the syntactic category @nt<statement_identifier> to simplify
the description. It is used for labels, loop names, and block names.
We define the entity associated with the implicit declarations
of statement names.

Completion includes completion caused by a transfer of control,
although RM83-5.1(6) did not take this view.
@end{DiffWord83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  The @nt{extended_return_statement} is new (@nt{simple_return_statement}
  is merely renamed).]}
@end{Extend95}


@LabeledClause{Assignment Statements}

@begin{Intro}
@Redundant[An @nt{assignment_statement}
replaces the current value of
a variable with the result of evaluating an
@nt<expression>.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<assignment_statement>,rhs="
   @SynI{variable_}@Syn2{name} := @Syn2{expression};"}
@end{Syntax}

@begin{Intro}
The execution of an @nt<assignment_statement> includes
the evaluation of the @nt<expression> and the @i(assignment)
of the value of the @nt<expression> into the @i(target).
@RootDefn{assignment operation}
@IndexSee{Term=[assign], See=(assignment operation)}
@Redundant[An assignment operation (as opposed to
an @nt<assignment_@!statement>) is performed in other contexts
as well, including object initialization and by-copy parameter
passing.]
@Defn2{Term=[target], Sec=(of an assignment operation)}
@Defn2{Term=[target], Sec=(of an @nt{assignment_statement})}
The @i{target} of an assignment operation
is the view of the object to which a value is being assigned;
the target of an @nt{assignment_@!statement} is the variable denoted by
the @SynI{variable_}@nt{name}.
@begin{Discussion}
Don't confuse this notion of the @lquotes@;target@rquotes@; of an assignment
with the notion of the @lquotes@;target object@rquotes@; of an entry call or requeue.

Don't confuse the term @lquotes@;assignment operation@rquotes@; with the
@nt{assignment_statement}.
The assignment operation is just one part of the execution of an
@nt{assignment_statement}.
The assignment operation is also a part of the execution of various
other constructs; see @RefSec{Completion and Finalization} for a complete
list.
Note that when we say, @lquotes@;such-and-such is assigned to so-and-so@rquotes@;,
we mean that the assignment operation is being applied, and that
so-and-so is the target of the assignment operation.
@end{Discussion}
@end{Intro}

@begin{Resolution}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
@PDefn2{Term=[expected type],
  Sec=(assignment_statement variable_name)}
The @i(variable_)@nt<name> of an @nt<assignment_statement>
is expected to be of any @Chg{Version=[2],New=[],Old=[nonlimited ]}type.
@PDefn2{Term=[expected type],
  Sec=(assignment_statement expression)}
The expected type for the @nt<expression> is
the type of the target.
@begin{ImplNote}
@Leading@keepnext@;An @nt<assignment_statement> as a whole is a "complete context,"
so if the @i{variable_}@nt<name> of an @nt<assignment_statement> is
overloaded, the @nt<expression> can be used to help disambiguate it.
For example:
@begin{Example}
  @key[type] P1 @key[is access] R1;
  @key[type] P2 @key[is access] R2;

  @key[function] F return P1;
  @key[function] F return P2;

  X : R1;
@key[begin]
  F.all := X;  --@RI[ Right hand side helps resolve left hand side]
@end{Example}
@end{ImplNote}
@end{Resolution}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
The target @Redundant[denoted by the
@i(variable_)@nt<name>] shall be a variable@Chg{Version=[2],New=[ of a
nonlimited type],Old=[]}.

If the target is of a tagged class-wide type @i(T)'Class, then
the @nt<expression> shall either be dynamically tagged,
or of type @i(T) and tag-indeterminate
(see @RefSecNum{Dispatching Operations of Tagged Types}).
@begin{Reason}
  This is consistent with the general rule that a single
  dispatching operation shall not have both dynamically tagged and
  statically tagged operands. Note that for an object
  initialization (as opposed to the @nt{assignment_statement}),
  a statically tagged initialization expression is permitted,
  since there is no chance for confusion (or Tag_Check failure).
  Also, in an object initialization, tag-indeterminate expressions
  of any type covered by @i(T)'Class would be allowed, but with
  an @nt{assignment_statement}, that might not work if the tag of the target
  was for a type that didn't have one of the dispatching operations
  in the tag-indeterminate expression.
@end{Reason}
@end{Legality}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(assignment_statement)}
For the execution of an @nt{assignment_statement},
the @i(variable_)@nt<name> and the @nt<expression>
are first evaluated in an arbitrary order.
@begin{Ramification}
  Other rules of the language may require that the
  bounds of the variable be determined prior to evaluating
  the @nt<expression>, but that does not necessarily require
  evaluation of the @i(variable_)@nt<name>, as pointed out by the ACID.
@end{Ramification}

@Leading@keepnext@;When the type of the target is class-wide:
@begin(itemize)
  @PDefn2{Term=[controlling tag value], Sec=(for the @nt{expression}
    in an @nt{assignment_statement})}
  If the @nt<expression> is tag-indeterminate
  (see @RefSecNum{Dispatching Operations of Tagged Types}), then the controlling
  tag value for the @nt<expression> is the tag of the target;
@begin{Ramification}
    See @RefSec(Dispatching Operations of Tagged Types).
@end{Ramification}

  @IndexCheck{Tag_Check}
  @Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
  Otherwise @Redundant[(the @nt<expression> is dynamically tagged)],
  a check is made that the tag of
  the value of the @nt<expression>
  is the same as that of the target;
  if this check fails, Constraint_Error is raised.
@end(itemize)

The value of the @nt<expression> is converted to the subtype of the
target. @Redundant[The conversion might raise an exception
(see @RefSecNum{Type Conversions}).]
@PDefn2{Term=[implicit subtype conversion],Sec=(assignment_statement)}
@begin{Ramification}
  @RefSec(Type Conversions) defines what actions
  and checks are associated with subtype conversion.
  For non-array subtypes, it is just a constraint
  check presuming the types match.
  For array subtypes, it checks the lengths and slides if the
  target is constrained.
  @lquotes@;Sliding@rquotes@; means the array doesn't have to have the same bounds,
  so long as it is the same length.
@end{Ramification}

In cases involving controlled types, the target is finalized,
and an anonymous object might be used as an intermediate in the assignment,
as described in @RefSec{Completion and Finalization}.
@Defn{assignment operation}
@Defn2{Term=[assignment operation],
Sec=(during execution of an @nt{assignment_statement})}
In any case,
the converted value of the @nt<expression> is then @i(assigned) to the target,
which consists of the following two steps:
@begin{Honest}
@RefSecNum{Completion and Finalization} actually says that
finalization happens always, but unless controlled types are involved,
this finalization during an @nt{assignment_statement} does
nothing.
@end{Honest}
@begin(itemize)
  The value of the target becomes the converted value.

  If any part of the target is controlled, its value
  is adjusted as explained in
  clause @RefSecNum{User-Defined Assignment and Finalization}.
@PDefn2{Term=[adjustment], Sec=(as part of assignment)}
@begin{Ramification}
    If any parts of the object are controlled,
    abort is deferred during the assignment operation itself,
    but not during the rest of the execution of an
    @nt<assignment_statement>.
@end{Ramification}
@end(itemize)

@end{RunTime}

@begin{Notes}
The tag of an object never changes;
in particular, an
@nt{assignment_statement}
does not change the tag of the target.

@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[The values of the discriminants of an object
designated by an access value cannot be changed (not even by assigning a
complete value to the object itself) since such objects are always constrained;
however, subcomponents of such objects may be unconstrained.]}
@begin{Ramification}
The implicit subtype conversion described above for
@nt{assignment_statement}s
is performed only for the value of the right-hand side
expression as a whole; it is not performed for subcomponents of the
value.

The determination of the type of the variable of an
@nt{assignment_statement} may require consideration of the expression
if the variable
name can be interpreted as the name of a variable designated by the
access value returned by a function call, and similarly, as a
component or slice of such a variable
(see @RefSec{The Context of Overload Resolution}).
@end{Ramification}
@end{Notes}

@begin{Examples}
@Leading@keepnext@i{Examples of assignment statements:}
@begin{Example}
Value := Max_Value - 1;
Shade := Blue;

Next_Frame(F)(M, N) := 2.5;        --@RI{  see @RefSecNum{Indexed Components}}
U := Dot_Product(V, W);            --@RI{  see @RefSecNum{Subprogram Bodies}}

Writer := (Status => Open, Unit => Printer, Line_Count => 60);  --@RI{ see @RefSecNum{Variant Parts and Discrete Choices}}
Next_Car.@key[all] := (72074, @key[null]);    --@RI{  see @RefSecNum{Incomplete Type Declarations}}
@end{Example}

@begin{Wide}
@Leading@keepnext@i{Examples involving scalar subtype conversions:}
@end{Wide}
@begin{Example}
I, J : Integer @key[range] 1 .. 10 := 5;
K    : Integer @key[range] 1 .. 20 := 15;
 ...

I := J;  --@RI{  identical ranges}
K := J;  --@RI{  compatible ranges}
J := K;  --@RI{  will raise Constraint_Error if K > 10}
@end{Example}

@begin{Wide}
@leading@keepnext@i{Examples involving array subtype conversions:}
@end{Wide}
@begin{Example}
A : String(1 .. 31);
B : String(3 .. 33);
 ...

A := B;  --@RI{  same number of components}

A(1 .. 9)  := "tar sauce";
A(4 .. 12) := A(1 .. 9);  --@RI{  A(1 .. 12) = "tartar sauce"}
@end{Example}
@end{Examples}

@begin{Notes}
@i{Notes on the examples:}
@nt{Assignment_statement}s are allowed even in the case of overlapping
slices of the same array,
because the @SynI{variable_}@nt{name} and @nt{expression}
are both evaluated before copying the value into the variable.
In the above example, an
implementation yielding A(1 .. 12) = "tartartartar" would be
incorrect.
@end{Notes}

@begin{Extend83}
@Defn{extensions to Ada 83}
We now allow user-defined finalization and value adjustment actions
as part of @nt{assignment_statement}s
(see @RefSec{User-Defined Assignment and Finalization}).
@end{Extend83}

@begin{DiffWord83}
The special case of array assignment is subsumed by the concept
of a subtype conversion, which is applied for all kinds of types,
not just arrays. For arrays it provides @lquotes@;sliding@rquotes@;. For numeric
types it provides conversion of a value of a universal type to
the specific type of the target. For other types,
it generally has no run-time effect, other than a constraint
check.

We now cover in a general way in @RefSecNum{Operations of Discriminated Types}
the erroneous execution possible due to
changing the value of a discriminant when
the variable in an @nt<assignment_statement> is a subcomponent
that depends on discriminants.
@end{DiffWord83}

@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@Chg{Version=[2],New=[@Defn{incompatibilities with Ada 95}
The change of the limited check from a resolution rule to
a legality rule is not quite upward compatible. For example],Old=[]}.
@begin{Example}
@Chg{Version=[2],New=[@key{type} AccNonLim @key{is} @key{access} NonLim;
@key{function} Foo (Arg : in Integer) @key{return} AccNonLim;
@key{type} AccLim @key{is} @key{access} Lim;
@key{function} Foo (Arg : in Integer) @key{return} AccLim;
Foo(2).@key{all} := Foo(1).@key{all};],Old=[]}.
@end{Example}
@ChgAdded{Version=[2],Text=[where NonLim is a nonlimited type and Lim is a
limited type. The assignment is legal in Ada 95 (only the first Foo would be
considered), and is ambiguous in Ada 2005. We made the change because we want
limited types to be as similar to nonlimited types as possible. Limited
expressions are now allowed in all other contexts (with a similar
incompatibility), and it would be odd if assignments had different resolution
rules (which would eliminate ambiguities in some cases). Moreover, examples
like this one are rare, as they depend on assigning into overloaded function
calls.]}
@end{Incompatible95}


@LabeledClause{If Statements}

@begin{Intro}
@Redundant[An @nt{if_statement} selects for execution at most one of
the enclosed @ntf{sequences_of_statements}, depending on the (truth)
value of one or more corresponding @nt{condition}s.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<if_statement>,rhs="
    @key{if} @Syn2{condition} @key{then}
      @Syn2{sequence_of_statements}
   {@key{elsif} @Syn2{condition} @key{then}
      @Syn2{sequence_of_statements}}
   [@key{else}
      @Syn2{sequence_of_statements}]
    @key{end} @key{if};"}


@Syn{lhs=<condition>,rhs="@SynI{boolean_}@Syn2{expression}"}
@end{Syntax}

@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(condition)}
A @nt{condition} is expected to be of any boolean type.
@end{Resolution}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(if_statement)}
For the execution of an @nt{if_statement}, the @nt{condition} specified
after @key{if}, and any @nt{condition}s specified after @key{elsif}, are
evaluated in succession (treating a final @key{else} as @key{elsif} True
@key{then}), until one evaluates to True or
all @nt{condition}s are evaluated and
yield False.
If a @nt{condition} evaluates to True, then the
corresponding @nt{sequence_of_statements} is executed; otherwise none of
them is executed.
@begin{Ramification}
  The part about all evaluating to False can't happen if
  there is an @key{else}, since that is herein considered equivalent to
  @key{elsif} True @key{then}.
@end{Ramification}
@end{RunTime}

@begin{Examples}
@Leading@keepnext@i{Examples of if statements:}
@begin{Example}
@key[if] Month = December @key[and] Day = 31 @key[then]
   Month := January;
   Day   := 1;
   Year  := Year + 1;
@key[end] @key[if];

@key[if] Line_Too_Short @key[then]
   @key[raise] Layout_Error;
@key[elsif] Line_Full @key[then]
   New_Line;
   Put(Item);
@key[else]
   Put(Item);
@key[end] @key[if];

@key[if] My_Car.Owner.Vehicle /= My_Car @key[then]            --@RI{  see @RefSecNum{Incomplete Type Declarations}}
   Report ("Incorrect data");
@key[end] @key[if];
@end{Example}
@end{Examples}

@LabeledClause{Case Statements}

@begin{Intro}
@Redundant[A @nt{case_statement} selects for execution one of a
number of alternative @ntf{sequences_of_statements}; the chosen
alternative is defined by the value of an expression.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<case_statement>,rhs="
   @key{case} @Syn2{expression} @key{is}
       @Syn2{case_statement_alternative}
      {@Syn2{case_statement_alternative}}
   @key{end} @key{case};"}


@Syn{lhs=<case_statement_alternative>,rhs="
   @key{when} @Syn2{discrete_choice_list} =>
      @Syn2{sequence_of_statements}"}
@end{Syntax}

@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(case expression)}
The @nt{expression} is expected to be of any discrete type.
@PDefn2{Term=[expected type],
  Sec=(case_statement_alternative discrete_choice)}
The expected type for each @nt{discrete_choice} is the type of the
@nt{expression}.
@end{Resolution}

@begin{Legality}
The @nt{expression}s and @nt{discrete_range}s given as
@nt{discrete_choice}s of a @nt{case_statement} shall be static.
@Redundant[A @nt{discrete_choice} @key(others), if present,
shall appear alone and in the last @nt{discrete_choice_list}.]

The possible values of the @nt{expression} shall be covered as follows:
@begin{itemize}
  If the @nt{expression} is a @nt{name} @Redundant[(including a
  @nt<type_conversion> or a @nt<function_call>)] having
  a static and constrained nominal subtype, or
  is a @nt{qualified_expression} whose
  @nt{subtype_mark} denotes a static and constrained
  scalar subtype,
  then each non-@key{others} @nt{discrete_choice} shall cover only values in
  that subtype, and each value of that subtype shall
  be covered by some @nt{discrete_choice}
  @Redundant[(either explicitly or by @key(others))].
  @begin{Ramification}
    Although not official @nt<name>s of objects, a value conversion
    still has a defined nominal subtype, namely its target subtype.
    See @RefSecNum{Type Conversions}.
  @end{Ramification}

  If the type of the @nt{expression} is
  @i(root_integer), @i(universal_integer), or a descendant of a
  formal scalar type,
  then the @nt{case_statement} shall have an @key{others}
  @nt{discrete_choice}.
@begin{Reason}
  This is because the base range is
  implementation defined for @i(root_integer) and @i(universal_integer),
  and not known statically in the case of a formal scalar type.
@end{Reason}

  Otherwise,
  each value of the base range of the type of the @nt{expression} shall
  be covered
  @Redundant[(either explicitly or by @key(others))].
@end{itemize}

Two distinct @nt{discrete_choice}s of a
@nt{case_statement} shall not cover the same value.
@begin{Ramification}
The goal of these coverage rules is
that any possible value of the @nt{expression} of a
@nt{case_statement} should be covered by exactly one
@nt{discrete_choice} of the
@nt{case_statement}, and that this should be checked at compile time.
The goal is achieved in most cases, but there are two minor
loopholes:
@begin{Itemize}
If the expression reads an object with an invalid representation
(e.g. an uninitialized object),
then the value can be outside the covered range.
This can happen for static constrained subtypes, as well as nonstatic or
unconstrained subtypes.
It cannot, however, happen if the @nt{case_statement} has the
@nt{discrete_choice} @key{others}, because @key{others} covers all values,
even those outside the subtype.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
If the compiler chooses to represent the value of an expression of an
unconstrained subtype in a way that includes values outside the bounds of the
subtype, then those values can be outside the covered range.
For example, if X: Integer := Integer'Last;, and the case @nt{expression} is
X+1, then the implementation might choose to produce the correct value, which
is outside the bounds of Integer.
(It might raise Constraint_Error instead.)
This case can only happen for non-generic subtypes that are either
unconstrained or
non@Chg{Version=[2],New=[],Old=[-]}@ChgNote{Make spelling consistent}static
(or both).
It can only happen if there is no @key{others} @nt{discrete_choice}.
@end{Itemize}

In the uninitialized variable case, the value might be anything; hence, any
alternative can be chosen, or Constraint_Error can be raised. (We intend to
prevent, however, jumping to random memory locations and the like.)
In the out-of-range case, the behavior is more sensible: if there is an
@key{others}, then the implementation may choose to raise Constraint_Error
on the evaluation of the @nt{expression} (as usual), or it may choose
to correctly evaluate the @nt{expression} and therefore choose the
@key{others} alternative.
Otherwise (no @key{others}), Constraint_Error is raised either way @em on
the @nt{expression} evaluation, or for the @nt{case_statement} itself.

For an enumeration type with a discontiguous set of internal codes
(see @RefSecNum{Enumeration Representation Clauses}),
the only way to get values in between the proper values
is via an object with an invalid representation;
there is no @lquotes@;out-of-range@rquotes@; situation that can produce them.
@end{Ramification}
@end{Legality}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(case_statement)}
For the execution of a @nt{case_statement} the
@nt{expression} is first evaluated.

If the value of the @nt{expression} is covered by the
@nt{discrete_@!choice_@!list} of some
@nt{case_@!statement_@!alternative}, then the
@nt{sequence_of_@!statements} of the @ntf{_alternative} is
executed.

@IndexCheck{Overflow_Check}
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
Otherwise (the value is not covered by any
@nt{discrete_choice_list},
perhaps due to being outside the base range),
Constraint_Error is raised.
@begin{Ramification}

In this case, the value is outside the base range of its type,
or is an invalid representation.

@end{Ramification}
@end{RunTime}

@begin{Notes}
The execution of a @nt{case_statement} chooses one and only one
alternative.
Qualification of the expression of a @nt{case_statement} by a static
subtype can often be used to limit the number of choices that need be
given explicitly.
@end{Notes}

@begin{Examples}
@Leading@keepnext@i{Examples of case statements:}
@begin{Example}
@tabclear()@tabset(P22)
@key[case] Sensor @key[is]
   @key[when] Elevation@\=> Record_Elevation(Sensor_Value);
   @key[when] Azimuth@\=> Record_Azimuth  (Sensor_Value);
   @key[when] Distance@\=> Record_Distance (Sensor_Value);
   @key[when] @key[others]@\=> @key[null];
@key[end] @key[case];

@tabclear()@tabset(P22)
@key[case] Today @key[is]
   @key[when] Mon@\=> Compute_Initial_Balance;
   @key[when] Fri@\=> Compute_Closing_Balance;
   @key[when] Tue .. Thu@\=> Generate_Report(Today);
   @key[when] Sat .. Sun@\=> @key[null];
@key[end] @key[case];

@tabclear()@tabset(P16)
@key[case] Bin_Number(Count) @key[is]
   @key[when] 1@\=> Update_Bin(1);
   @key[when] 2@\=> Update_Bin(2);
   @key[when] 3 | 4@\=>
      Empty_Bin(1);
      Empty_Bin(2);
   @key[when] @key[others]@\=> @key[raise] Error;
@key[end] @key[case];
@end{Example}
@end{Examples}

@begin{Incompatible83}
@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[@Defn{incompatibilities with Ada 83}
In Ada 95, @nt{function_call}s and @nt{type_conversion}s are @nt{name}s, whereas
in Ada 83, they were @nt{expression}s. Therefore, if the @nt{expression} of a
@nt{case_statement} is a @nt{function_call} or @nt{type_conversion}, and the
result subtype is static, it is illegal to specify a choice outside the bounds
of the subtype. For this case in Ada 83 choices only are required to be in the
base range of the type.],Old=[]}

@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[In addition, the rule about which choices must be covered is
unchanged in Ada 95. Therefore, for a @nt{case_statement} whose @nt{expression}
is a @nt{function_call} or @nt{type_conversion}, Ada 83 required covering all
choices in the base range, while Ada 95 only requires covering choices in the
bounds of the subtype. If the @nt{case_statement} does not include an @key{others}
@nt{discrete_choice}, then a legal Ada 83 @nt{case_statement} will be illegal
in Ada 95 if the bounds of the subtype are different than the bounds of the
base type.],Old=[]}
@end{Incompatible83}

@begin{Extend83}
@Defn{extensions to Ada 83}
In Ada 83, the @nt{expression} in a @nt{case_statement} is not allowed to
be of a generic formal type.
This restriction is removed in Ada 95; an @key{others} @nt{discrete_choice}
is required instead.

In Ada 95, a function call is the name of an object;
this was not true in Ada 83 (see @RefSec{Names}).
This change makes the following @nt{case_statement} legal:
@begin{Example}
@key[subtype] S @key[is] Integer @key[range] 1..2;
@key[function] F @key[return] S;
@key[case] F @key[is]
   @key[when] 1 => ...;
   @key[when] 2 => ...;
   --@RI{ No @key{others} needed.}
@key[end] @key[case];
@end{Example}

Note that the result subtype given in a function
@nt{renaming_declaration} is ignored;
for a @nt{case_statement} whose expression calls a such a function, the
full coverage rules are checked using the result subtype of the original
function.
Note that predefined operators such as "+" have an unconstrained result
subtype (see @RefSecNum{Logical Operators and Short-circuit Control Forms}).
Note that generic formal functions do not have static result subtypes.
Note that the result subtype of an inherited subprogram need not
correspond to any namable subtype;
there is still a perfectly good result subtype, though.
@end{Extend83}

@begin{DiffWord83}
Ada 83 forgot to say what happens for @lquotes@;legally@rquotes@; out-of-bounds values.

We take advantage of rules and terms (e.g. @i(cover a value))
defined for @nt{discrete_choice}s and @nt{discrete_choice_list}s
in @RefSec{Variant Parts and Discrete Choices}.

In the @ResolutionName for the case expression,
we no longer need RM83-5.4(3)'s @lquotes@;which must be determinable
independently of the context in which the expression occurs, but
using the fact that the expression must be of a discrete type,@rquotes@;
because the @nt{expression} is now a complete context.
See @RefSec{The Context of Overload Resolution}.

Since @nt<type_conversion>s are now defined as @nt<name>s,
their coverage rule is now covered under the general rule
for @nt<name>s, rather than being separated out along with
@nt<qualified_expression>s.
@end{DiffWord83}

@LabeledClause{Loop Statements}

@begin{Intro}
@Redundant[A @nt{loop_statement} includes a
@nt{sequence_of_statements} that is to be executed repeatedly,
zero or more times.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<loop_statement>,rhs="
   [@SynI{loop_}@Syn2{statement_identifier}:]
      [@Syn2{iteration_scheme}] @key{loop}
         @Syn2{sequence_of_statements}
       @key{end} @key{loop} [@SynI{loop_}@Syn2{identifier}];"}


@Syn{lhs=<iteration_scheme>,rhs="@key{while} @Syn2{condition}
   | @key{for} @Syn2{loop_parameter_specification}"}

@Syn{lhs=<loop_parameter_specification>,rhs="
   @Syn2{defining_identifier} @key{in} [@key{reverse}] @Syn2{discrete_subtype_definition}"}

@begin(SyntaxText)
If a @nt{loop_statement} has a @SynI{loop_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end loop};
otherwise, there shall not be an @nt<identifier> after the @key{end loop}.
@end(SyntaxText)
@end{Syntax}

@begin{StaticSem}
@Defn{loop parameter}
A @nt{loop_parameter_specification} declares a @i{loop parameter},
which is an object whose
subtype is that defined by the @nt{discrete_subtype_definition}.
@IndexSeeAlso{Term=[parameter],See=[loop parameter]}
@end{StaticSem}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(loop_statement)}
For the execution of a @nt{loop_statement},
the @nt{sequence_of_statements} is executed repeatedly,
zero or more times,
until the @nt{loop_statement} is complete.
The @nt{loop_statement} is complete when a transfer
of control occurs that transfers control out of the loop, or, in the
case of an @nt{iteration_scheme}, as specified below.

@PDefn2{Term=[execution],
  Sec=(loop_statement with a while iteration_scheme)}
For the execution of a @nt{loop_statement} with a @key{while}
@nt{iteration_scheme}, the condition is evaluated before each
execution of the @nt{sequence_of_@!statements}; if the value of the
@nt{condition} is True, the @nt{sequence_of_@!statements} is executed;
if False, the execution of the @nt{loop_@!statement} is complete.

@PDefn2{Term=[execution],
  Sec=(loop_statement with a for iteration_scheme)}
@PDefn2{Term=[elaboration], Sec=(loop_parameter_specification)}
For the execution of a @nt{loop_statement} with a @key{for}
@nt{iteration_scheme},
the @nt{loop_@!parameter_@!specification} is first elaborated. This
elaboration creates the loop parameter and elaborates the
@nt{discrete_@!subtype_@!definition}.
If the @nt{discrete_@!subtype_@!definition} defines a subtype
with a null range,
the execution of the
@nt{loop_statement} is complete. Otherwise, the
@nt{sequence_of_@!statements} is executed once for each value of the
discrete subtype defined by the
@nt{discrete_@!subtype_@!definition} (or until the loop is left as a
consequence of a transfer of control).
@Defn2{Term=[assignment operation], Sec=(during execution of a @key{for} loop)}
Prior to each such iteration,
the corresponding value of the discrete subtype is assigned to the
loop parameter. These values are assigned in increasing order unless
the reserved word @key{reverse} is present, in which case the values
are assigned in decreasing order.
@begin{Ramification}
The order of creating the loop parameter and evaluating the
@nt{discrete_subtype_definition} doesn't matter,
since the creation of the loop parameter has no side effects (other
than possibly raising Storage_Error, but anything can do that).
@end{Ramification}
@end{RunTime}

@begin{Notes}
A loop parameter is a constant;
it cannot be updated within the
@nt{sequence_of_statements} of the loop
(see @RefSecNum{Objects and Named Numbers}).


An @nt{object_declaration} should not be given for a loop parameter,
since the loop parameter is automatically declared by
the @nt{loop_parameter_specification}.
The scope of a loop parameter extends from the
@nt{loop_parameter_specification} to the end of the
@nt{loop_statement}, and the visibility
rules are such that a loop parameter is only visible within the
@nt{sequence_of_statements} of the loop.
@begin{ImplNote}
An implementation could give a warning if a variable is hidden by a
@nt{loop_parameter_specification}.
@end{ImplNote}

The @nt<discrete_subtype_definition> of a for loop is elaborated
just once. Use of the
reserved word @key[reverse] does not alter the discrete subtype defined,
so that the following @nt{iteration_scheme}s are not equivalent; the
first has a null range.
@begin{Example}
@key[for] J @key[in] @key[reverse] 1 .. 0
@key[for] J @key[in] 0 .. 1
@end{Example}
@begin{Ramification}
If a @nt{loop_parameter_specification} has a static discrete range,
the subtype of the loop parameter is static.
@end{Ramification}
@end{Notes}

@begin{Examples}
@Leading@keepnext@i{Example of a loop statement without an iteration scheme:}
@begin{Example}
@key[loop]
   Get(Current_Character);
   @key[exit] @key[when] Current_Character = '*';
@key[end] @key[loop];
@end{Example}

@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a @key[while] iteration scheme:}
@end{Wide}
@begin{Example}
@key[while] Bid(N).Price < Cut_Off.Price @key[loop]
   Record_Bid(Bid(N).Price);
   N := N + 1;
@key[end] @key[loop];
@end{Example}

@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a @key[for] iteration scheme:}
@end{Wide}
@begin{Example}
@key[for] J @key[in] Buffer'Range @key[loop]     --@RI{  works even with a null range}
   @key[if] Buffer(J) /= Space @key[then]
      Put(Buffer(J));
   @key[end] @key[if];
@key[end] @key[loop];
@end{Example}

@begin{Wide}
@leading@keepnext@i{Example of a loop statement with a name:}
@end{Wide}
@begin{Example}
Summation:
   @key[while] Next /= Head @key[loop]       --@RI{ see @RefSecNum{Incomplete Type Declarations}}
      Sum  := Sum + Next.Value;
      Next := Next.Succ;
   @key[end] @key[loop] Summation;
@end{Example}
@end{Examples}

@begin{DiffWord83}
The constant-ness of loop parameters is specified in
@RefSec{Objects and Named Numbers}.
@end{DiffWord83}

@RMNewPage
@LabeledClause{Block Statements}

@begin{Intro}
@Redundant[A @nt{block_statement} encloses a
@nt{handled_sequence_of_statements}
optionally preceded by a @nt{declarative_part}.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<block_statement>,rhs="
   [@SynI{block_}@Syn2{statement_identifier}:]
       [@key{declare}
            @Syn2{declarative_part}]
        @key{begin}
            @Syn2{handled_sequence_of_statements}
        @key{end} [@SynI{block_}@Syn2{identifier}];"}

@begin(SyntaxText)
If a @nt{block_statement} has a @SynI{block_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end};
otherwise, there shall not be an @nt<identifier> after the @key{end}.
@end(SyntaxText)
@end{Syntax}

@begin{StaticSem}
A @nt{block_statement} that has no
explicit @nt{declarative_part} has an implicit empty
@nt{declarative_part}.
@begin{Ramification}
Thus, other rules can always
refer to the @nt{declarative_part} of a @nt<block_statement>.
@end{Ramification}
@end{StaticSem}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(block_statement)}
The execution of a @nt{block_statement} consists of the elaboration
of its @nt{declarative_part} followed by the execution of
its @nt{handled_sequence_of_statements}.
@end{RunTime}

@begin{Examples}
@Leading@keepnext@i{Example of a block statement with a local variable:}
@begin{Example}
Swap:
   @key[declare]
      Temp : Integer;
   @key[begin]
      Temp := V; V := U; U := Temp;
   @key[end] Swap;
@end{Example}
@begin{Ramification}
If task objects are declared within a @nt{block_statement} whose execution
is completed, the @nt{block_statement} is not left until all its dependent
tasks are terminated
(see @RefSecNum{User-Defined Assignment and Finalization}).
This rule applies to completion caused by a transfer of control.

Within a @nt{block_statement}, the block name can be used in expanded
names denoting local entities such as Swap.Temp in the above example
(see @RefSecNum{Selected Components}).
@end{Ramification}
@end{Examples}

@begin{DiffWord83}
The syntax rule for @nt{block_statement} now uses the syntactic category
@nt{handled_sequence_of_statements}.
@end{DiffWord83}

@LabeledClause{Exit Statements}

@begin{Intro}
@Redundant[An @nt{exit_statement} is used to complete the execution
of an enclosing @nt{loop_statement}; the
completion is conditional if the @nt{exit_statement} includes a
@nt{condition}.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<exit_statement>,rhs="
   @key{exit} [@SynI{loop_}@Syn2{name}] [@key{when} @Syn2{condition}];"}
@end{Syntax}

@begin{Resolution}
The @i(loop_)@nt{name}, if any, in an @nt{exit_statement} shall resolve to
denote a @nt{loop_statement}.
@end{Resolution}

@begin{Legality}
@Defn2{Term=[apply], Sec=(to a @nt{loop_statement} by an @nt{exit_statement})}
Each @nt{exit_@!statement} @i{applies to} a
@nt{loop_@!statement}; this is the @nt{loop_@!statement} being exited.
An @nt{exit_@!statement} with a @nt{name} is only allowed within the
@nt{loop_@!statement} denoted by the @nt{name},
and applies to that @nt{loop_@!statement}.
An @nt{exit_@!statement} without a @nt{name} is only allowed within a
@nt{loop_@!statement}, and applies to the innermost enclosing one.
An @nt{exit_@!statement} that applies to a given @nt{loop_@!statement}
shall not appear within a body or @nt{accept_@!statement}, if
this construct is itself enclosed by the given @nt{loop_statement}.
@end{Legality}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(exit_statement)}
For the execution of an @nt{exit_statement}, the @nt{condition}, if
present, is first evaluated.
If the value of the @nt{condition} is True, or if there is no @nt{condition},
a transfer of control is done to complete the @nt{loop_@!statement}.
If the value of the @nt{condition} is False, no transfer of control takes
place.
@end{RunTime}

@begin{Notes}
Several nested loops can be exited by an @nt{exit_statement} that names
the outer loop.
@end{Notes}

@begin{Examples}
@i{Examples of loops with exit statements:}
@begin{Example}
@key[for] N @key[in] 1 .. Max_Num_Items @key[loop]
   Get_New_Item(New_Item);
   Merge_Item(New_Item, Storage_File);
   @key[exit] @key[when] New_Item = Terminal_Item;
@key[end] @key[loop];

Main_Cycle:
   @key[loop]
      --@RI{  initial statements}
      @key[exit] Main_Cycle @key[when] Found;
      --@RI{  final statements}
   @key[end] @key[loop] Main_Cycle;
@end{Example}
@end{Examples}

@LabeledClause{Goto Statements}

@begin{Intro}
@Redundant[A @nt{goto_statement} specifies an explicit transfer of control
from this @nt{statement} to a target
statement with a given label.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<goto_statement>,rhs="@key{goto} @SynI{label_}@Syn2{name};"}
@end{Syntax}

@begin{Resolution}
@Defn2{Term=[target statement], Sec=(of a @nt{goto_statement})}
The @i(label_)@nt{name} shall resolve to denote a @nt<label>;
the @nt{statement} with that @nt{label} is the @i(target statement).
@end{Resolution}

@begin{Legality}
The innermost @nt{sequence_of_statements} that encloses the target
statement shall also enclose the @nt{goto_statement}.
Furthermore, if a @nt{goto_statement} is enclosed by an
@nt{accept_statement} or a body, then the target
statement shall not be outside this enclosing construct.
@begin{Ramification}
The @nt{goto_statement} can be a @nt{statement} of an inner
@ntf{sequence_}.

It follows from the second rule that if the target @nt{statement}
is enclosed by such a construct, then the @nt{goto_statement}
cannot be outside.
@end{Ramification}
@end{Legality}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(goto_statement)}
The execution of a @nt{goto_statement} transfers control to the
target statement, completing the execution
of any @nt<compound_statement> that encloses the @nt<goto_statement>
but does not enclose the target.
@end{RunTime}

@begin{Notes}
The above rules allow transfer of control to a @nt{statement} of an
enclosing @nt{sequence_of_statements} but not the reverse. Similarly,
they prohibit transfers of control such as between alternatives of a
@nt{case_statement}, @nt{if_statement}, or @nt{select_statement};
between @nt{exception_handler}s; or from an @nt{exception_handler} of
a @nt{handled_sequence_of_statements}
back to its @nt{sequence_of_statements}.
@end{Notes}

@begin{Examples}
@Leading@keepnext@i{Example of a loop containing a goto statement:}
@begin{Example}
<<Sort>>
@key[for] I @key[in] 1 .. N-1 @key[loop]
   @key[if] A(I) > A(I+1) @key[then]
      Exchange(A(I), A(I+1));
      @key[goto] Sort;
   @key[end] @key[if];
@key[end] @key[loop];
@end{Example}
@end{Examples}